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Super resolution-based
methodology for self-supervised
segmentation of microscopy
images
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Data-driven Artificial Intelligence (AI)/Machine learning (ML) image analysis

approaches have gained a lot of momentum in analyzing microscopy images in

bioengineering, biotechnology, and medicine. The success of these approaches

crucially relies on the availability of high-quality microscopy images, which is

often a challenge due to the diverse experimental conditions and modes under

which these images are obtained. In this study, we propose the use of recent

ML-based image super-resolution (SR) techniques for improving the image

quality of microscopy images, incorporating them into multiple ML-based image

analysis tasks, and describing a comprehensive study, investigating the impact of

SR techniques on the segmentation of microscopy images. The impacts of four

Generative Adversarial Network (GAN)- and transformer-based SR techniques

on microscopy image quality are measured using three well-established quality

metrics. These SR techniques are incorporated into multiple deep network

pipelines using supervised, contrastive, and non-contrastive self-supervised

methods to semantically segment microscopy images from multiple datasets.

Our results show that the image quality of microscopy images has a direct

influence on the ML model performance and that both supervised and

self-supervised network pipelines using SR images perform better by 2%–6%

in comparison to baselines, not using SR. Based on our experiments, we also

establish that the image quality improvement threshold range [20–64] for the

complemented Perception-based Image Quality Evaluator(PIQE) metric can

be used as a pre-condition by domain experts to incorporate SR techniques

to significantly improve segmentation performance. A plug-and-play software

platform developed to integrate SR techniques with various deep networks using

supervised and self-supervised learning methods is also presented.

KEYWORDS

super-resolution, image segmentation, self-supervised learning, microscopy images,

image resolution

1 Introduction

Microscopy images play a major role in analyzing and predicting the behavior of

complex systems in various fields, such as systems, bioengineering, living materials,

and medicine (Sommer and Gerlich, 2013; Xing and Yang, 2016; Min et al., 2017).

Computational analyses of these images using traditional image analysis algorithms is

a non-trivial task as these images are captured under diverse experimental conditions

and are widely varied in image quality in terms of noise, blur, and magnification
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(Bulgarevich et al., 2018; Ma et al., 2023). Machine learning

(ML) techniques using deep neural networks (DNNs) have

begun to surpass traditional image analysis methods in analyzing

image datasets of varying quality and characteristics. However,

usually, images have to be manually annotated by experts to

build ML methods, interpreting whose outputs again involve a

careful study of the images. Computational approaches that can

improve the quality of microscopy datasets and the integration

of these approaches into image analysis pipelines of DNNs are

essential for effective analyses of microscopy images using ML

techniques. Super-resolution (SR) is a set of well-established image

transformation algorithms that have been used to produce a high-

resolution (HR) image from a given low-resolution (LR) image

(Park et al., 2003). Recently, several sophisticated ML methods

based on DNNs and transformers have been designed and become

the de facto approaches for successfully performing SR itself.

However, the use of such ML-based SR approaches and their

integration into the DNN pipelines used to analyze microscopy

pipelines is relatively new and deserves more attention.

This study presents a detailed analysis of several ML-based SR

approaches and their integration into a variety of DNN pipelines

using supervised learning (SL) and multiple self-supervised

learning (SSL) approaches for performing the segmentation of

microscopy image datasets. We consider microscopy datasets

of varying image quality quantitatively measured using multiple

quality metrics, study, and establish all ML-based SR approaches to

improve image quality though at different levels. Pipelines for the

segmentation of various objects in microscopy images are designed,

incorporating ML-based SR approaches, and it is established that

the segmentation performance of the pipelines incorporating the

ML-based SR approaches is higher than the pipelines, where SR

is not employed. We also show that the quality of microscopy

images has a significant impact on the segmentation performance

of both SL and SSL methods. Our results in this study highlight the

benefits of using ML-based SR approaches for the segmentation of

microscopy images and provide image quality-based criteria for the

selection of an appropriate ML-based SR approach for various ML

approaches. Given the important role of ML-based SR approaches,

we also develop and present a software platform that allows domain

experts where they can perform the segmentation of microscopy

images using a variety of ML-based SR methods integrated with SL

and SSL approaches.

Our main contributions in this study include

• Integrating deep learning-based SR methods with SL and SSL

methods to improve semantic segmentation of microscopy

images of varying quality and volumes.

• The use of image quality metrics to predict the effectiveness of

applicability of the SR methods for semantic segmentation of

microscopy images.

• Quality threshold value ranges which, when satisfied by

the output images of several well-established SR methods,

lead to improved segmentation performance across diverse

microscopy images.

• In addition to providing guidelines to domain experts

regarding the use of SR methods in their applications, these

threshold value ranges and also opens up the possibility of

using SR for data augmentation for SSL methods.

• A pipeline where the use of ML-based SR methods leads

to improvements in image segmentation performed across

a variety of ML techniques including SL and a variety of

SSL methods.

• A software workbench incorporating state-of-the-art ML-

based SR methods, SL, and contrastive and non-contrastive

SSL methods that can be used by domain experts to

segment microscopy images collected under different

experimental conditions.

To the best of our knowledge, our work is novel in combining

SR techniques with SSL for microscopy images and provides

quantitative pre-conditions for using these techniques. Data

augmentation is a key approach in SSL to address low data volume

microscopy images. This work suggests the use of conditional data

augmentation, where data augmentation such as super-resolution

is applied only when certain thresholds are satisfied. This study

highlights the potential benefits of ML-based SR approaches for

image analyses, especially for microscopy images that are collected

under diverse experimental conditions. Our focus in this study is

on the particular image analysis task of segmentation. However,

ML-based SR approaches quantitatively improve image quality

and are likely to improve the accuracy of a wide variety of

image analysis tasks, including classification, object detection, and

instance segmentation, and hence are an important tool in the

bioengineering and medical computational toolkit.

2 Related work

2.1 Segmentation using SSL

Electron microscopy plays a critical role in microscale

biomaterial characterization by providing sub-nanometer

structural resolution and uncovering hidden topological and

compositional features (Vladr et al., 2009). As a result, electron

microscopy finds extensive application in diverse fields including

material science, chemistry, nanomedicine, physics, and beyond

(De Haan et al., 2019; Perez et al., 2022). Segmentation, also

known as pixel-level classification, is employed to identify objects

in microscopy images. Different architectural techniques such as

single-staged (Long et al., 2015; Ronneberger et al., 2015) and

two-staged (He et al., 2017) architectures can effectively perform

microscopic image segmentation by training models using SL

techniques (Vuola et al., 2019; Abeyrathna et al., 2021, 2022b;

Kromp et al., 2021). Typically, training high-performance DNN

using SL requires large amounts of manually annotated data

(Huang et al., 2019). Alternatively, SSL techniques (Wang et al.,

2018; Liang et al., 2021; Zhang et al., 2021; Chen et al., 2023)

can be employed to build models that learn representations from

unlabeled data and then fine-tune the model using limited amounts

of manually annotated data.

Numerous applications (Bai et al., 2019; Chaitanya et al., 2020;

Ouyang et al., 2020; Abeyrathna et al., 2022a) have leveraged

SSL techniques for performing the segmentation of images. Deep

learning is well-known and has been used in previous biomedical

studies (Kha et al., 2022; Yuan et al., 2023). For example, SSL-based

segmentation applications on biomedical microscopic images were

Frontiers inMicrobiology 02 frontiersin.org

https://doi.org/10.3389/fmicb.2024.1255850
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Bommanapally et al. 10.3389/fmicb.2024.1255850

highly adopted (Shurrab and Duwairi, 2022; Rettenberger et al.,

2023; Sánchez et al., 2023). However, gathering sufficient volumes

of annotated microscopy images is a tedious and time-consuming

task that requires considerable domain expertise. Training with

scarce annotated data leads to the overfitting problem (models that

perform well on the data on which they are trained but not on

others) (Hesamian et al., 2019), which makes the models unusable.

Several approaches including data augmentation, dividing each

image into multiple patches (Dou et al., 2017), and alternative ML

approaches such as active learning (Chakravarthy et al., 2022) have

been used to reduce the manual annotation effort. While many of

these methods generally enhance the performance of deep learning

models, not all techniques are suitable for analyzing microscopy

image datasets that often consist of images of wide-ranging

resolutions and magnifications. Without sharp and consistent

identifications of the objects of interest across microscopy image

datasets, the application of data augmentation, patching, and active

learning often leads to a class imbalance in the output image data

and lowers the accuracy of the resulting models (Dou et al., 2017;

Abdollahi et al., 2020).

To address these problems and produce high-performing deep

learning models for the segmentation of microscopy image data,

we propose the use of image SR techniques. We design deep ML

pipelines for microscopy image segmentation incorporating SR

techniques. By applying SR, we obtain high-quality image patches,

which ultimately enhance the performance of deep learning models

on image segmentation.

2.2 SR methods

SR is a classic, low-level computer vision task, which has

recently drawn significant attention due to its applicability in

various image analysis applications. This task aims to reconstruct

the HR version of the LR image. SR approaches can be mainly

categorized into interpolation-based methods, reconstruction-

based methods, and learning-based methods (Yang et al., 2019).

These methods analyze the available image data to extract high-

frequency details, which are then utilized to enhance an LR image.

By leveraging these details, these algorithms improve the sharpness

and level of detail in the final output, resulting in an HR image.

Typically, lower resolutions in images are attributed to image

degradation, occurring due to scaling or the introduction of noise

in images.Many approaches use simple degradation functions, such

as a single downsampling operation to model image degradation

and try to invert these functions using SR methods to generate

HR counterparts. In fact, numerous datasets for SR are constructed

based on this assumption, with bicubic interpolation accompanied

by anti-aliasing being the most commonly used downsampling

technique. It is important to note that real-world degradation

can be influenced by various factors, including compression

artifacts, anisotropic degradations, sensor noise, and speckle noise.

Nonetheless, researchers strive to approximate the degradation

functions and reverse their effects to enhance the LR images and

recover plausible HR counterparts (Wang et al., 2020).

DNN-based approaches have been the de facto methodology

for applying SR to generate HR images. The SRCNN by

Dong et al. (2014) can be recognized as the first deep-learning-

based approach applying SR. SRCNN is an approach that directly

learns the mapping between LR and HR images. This is achieved

through a deep CNN architecture. Some of the other techniques

that use CNN in an end-to-end manner to apply SR (Kim et al.,

2016a,b; Lim et al., 2017). Deep Recursive Convolutional Network

(DRCN) (Kim et al., 2016b) introduces recursive learning, where

the same modules are applied multiple times in a recursive manner,

to learn higher level features. VDSR (Kim et al., 2016a) is a single

network that is capable of jointly handling SR for multiple scales.

EDSR (Lim et al., 2017) focuses on a specific SR scale, while a multi-

scale architecture reconstructs various scales of HR images within a

single model.

2.2.1 Generative adversarial network
(GAN)-based SR

Due to the successes achieved by GAN-based techniques in

generating images, GAN-based architectures are extensively used

in SR tasks. Super-resolution Generative Adversarial Network

(SRGAN) (Ledig et al., 2017) is one of the GAN-based SR

techniques. SRGAN utilizes a perceptual loss function, consisting

of an adversarial loss and a content loss, to generate HR images.

Enhanced Super-Resolution Generative Adversarial Network

(ESRGAN) (Wang et al., 2018) and Blind Super-Resolution

Generative Adversarial Network (BSRGAN) (Zhang et al., 2021)

are improvements over SRGAN, which are state-of-the-art high-

performing GAN-based SR techniques.

The ESRGAN model’s architecture incorporates multiple

Residual Dense Blocks without batch normalization layers.

Training is optimized through techniques, such as residual scaling

and smaller initialization. To enhance texture recovery, a relativistic

GAN is employed as the discriminator, enabling the generator to

discern image realism. The perceptual loss is further improved

by utilizing features before activation, resulting in more accurate

brightness and realistic textures. ESRGAN was trained on DIV2K

and Flickr2K datasets. ESRGAN is trained on Adam optimizer with

a learning rate initialized to 1×10−4 on mini-batches of size 16.

The BSRGAN employs a new degradation model to overcome

the limitations of existing models in capturing diverse degradation

processes in real images. The proposed model combines shuffled

blur, downsampling, and noise degradations, utilizing Gaussian

kernels, various downsampling methods, and multiple noise

sources, where LR images are obtained without any prior

knowledge about the original HR images. BSRGAN incorporates

a perceptual loss function similar to ESRGAN to improve image

quality and also utilizes an attention mechanism to mitigate the

misalignment artifacts between the LR and HR images. Training

a deep blind ESRGAN super-resolver with this model enables

the enhancement of both synthetic and real images with different

degradations. BSRGAN was trained on a wider variety of datasets

including DIV2K, Flick2K, and WED datasets and 2,000 face

images from FFHQ dataset. BSRGAN also uses Adam with a fixed

learning rate of 1×10−5 over a batch size of 48. Experimental

results highlight a significant improvement in the practicality of

deep super-resolvers, offering a powerful solution for real-world

single-image SR applications.

Frontiers inMicrobiology 03 frontiersin.org

https://doi.org/10.3389/fmicb.2024.1255850
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Bommanapally et al. 10.3389/fmicb.2024.1255850

2.2.2 Transformer-based SR techniques
Recently, SR approaches have been developed using

transformer-based architectures (Vaswani et al., 2017), to address

the limitations of CNN-based architectures in handling content-

dependent interactions and modeling long-range dependencies

(Cao et al., 2021; Chen et al., 2021). Swin Transformer (Liu

et al., 2021) integrates CNN and transformer to produce SwinIR

platform (Liang et al., 2021) for image restoration. SwinIR

comprises shallow and deep feature extraction modules, utilizing

convolution and residual Swin Transformer blocks. Due to

attention mechanisms, SwinIR captures the relations between

image patches, leading to considerably better results than CNN-

based approaches. The SwinIR architecture consists of three

main modules, namely, shallow feature extraction, deep feature

extraction, and high-quality image reconstruction. However, Swin

Transformer’s shift window mechanism has limitations in cross-

window information interaction and exploits less number of pixels

in the input image compared with the CNN-based SR approaches.

To address these limitations and leverage the transformer’s

potential for SR, the Hybrid Attention Transformer (HAT) (Chen

et al., 2023) is introduced. HAT combines channel attention

and self-attention, harnessing global information utilization and

powerful representation. An overlapping cross-attention module

facilitates direct interaction among adjacent window features. HAT

activates more pixels for reconstruction, leading to improved SR

performance. SwinIR was trained on DIV2K dataset and HAT was

trained on DIV2K and Flickr2K datasets.

2.3 Our contribution

To improve image resolution of SEM images, the use of deep

learning networks is considered by authors in De Haan et al.

(2019). They propose a deep-learning approach to enhance the

lateral resolution of SEM images. They train a CNN using co-

registered HR and LR SEM images to improve individual image

quality without additional sample preparation. By utilizing an

experimentally acquired training dataset, the network accounts

for aberrations and noise in the imaging system. This data-

driven approach reduces electron beam scanning time, enabling

lower magnification scans over larger fields of view while

maintaining image quality and reducing sample charging and beam

damage. In our earlier studies, Abeyrathna et al. (2022a) used

the BSRGAN technique along with SSL methods for classifying

microscopy images of a biofilm dataset. Ashaduzzman et al. (2022)

showed how images in that dataset can be effectively segmented

after pre-processing the images with BSRGAN, ESRGAN, and

SwinIR methods.

This study conducts a comprehensive study of the role

and effectiveness of various SR techniques and their impacts

on segmenting microscopy images across multiple datasets by

using SL and SSL approaches. We consider SL and multiple SSL

methods and quantify the effectiveness of applying various SR

methods in improving segmentation performance. We show that

the image quality metrics can be improved using SR techniques and

establish a good correlation between the quality and segmentation

performance of the models built using SL and SSL approaches. The

SR methods used here include BSRGAN, ESRGAN, SwinIR, and

HAT. These methods were chosen from GAN and transformer SR

techniques based on their high performance and wide usage. The

SSL methods employed here include both contrastive and non-

contrastive architectures. Our results empirically establish that SR

techniques are an important tool and should be an intrinsic part

of any deep learning pipeline that is used for the segmentation of

microscopy images.

3 Materials and methods

The overall study provides a comparative overview of different

SL and SSL deep learning architectures and the models trained

on original microscopy images and those generated using the

SR methods. The study makes the use of different microscopy

image datasets processed with four state-of-the-art SR techniques

to evaluate the segmentation performance of various SL and SSL

models. Several traditionally used image quality metrics are used

to assess the original and SR-generated images and correlate them

with segmentation performance.

3.1 Datasets

The LiveCell dataset consists of 5,239 manually annotated and

expert-validated microscopic images comprising various cell types

(Edlund et al., 2021). In this study, we chose 155 images belonging

to the cell type SHSY5Y, which are consistent with the other chosen

datasets. These are gray-scaled images with a resolution of 704×520

px. The second dataset, C.elegans live/dead assay, Broad Bioimage

Benchmark Collection (Accession number BBBC010, Version 1)

(Ljosa et al., 2012), is a collection of publicly available microscopy

images from a competition (Moy et al., 2009). This dataset consists

of 100 images, and all the images are 16-bit grayscale, having a

resolution of 696×520 px. The third Biofilms dataset is a private

dataset consisting of a set of SEM images of a sulfate-reducing

bacteria Desulfovibrio alaskensis (DA-G20) and their biofilms. The

data were transformed into 7, 16-bit grayscale SEM images at

a resolution of 1,024×758 px. More information regarding the

data collection environments and measurements are discussed

in the study by (Susarla et al., 2021; Abeyrathna et al., 2022a;

Chakravarthy et al., 2022). Sample images from each of the datasets

and their corresponding GT masks are shown in Figure 1. The

selection of the above datasets was mainly based on the diversity of

the morphological characteristics and imaging modalities, LiveCell

belongs to Light microscopy, BBBC010 belongs to Bright field

microscopy, and the Biofilm dataset belongs to SE microscopy

imaging. Notably, the complexity of features to be learned in

the BBBC010 dataset is comparatively lower for the segmentation

task. However, machine learning approaches can exhibit more

adaptability and flexibility for the segmentation task compared with

deterministic approaches, which require various parameter changes

for a given instance. The key idea is to show that even easily

segmentable objects can benefit from controlled super-resolution

improvements.
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FIGURE 1

Sample images from each dataset showing the original images on the top and their corresponding Segmentation GT masks showing cells in the

bottom, (from left) Livecells, C. elegans, and Biofilms.

FIGURE 2

SSL frameworks used in the experiments (A) Barlow Twins, (B) MoCoV2, and (C) SimSiam.

3.2 SSL techniques

We employed one contrastive and two non-contrastive SSL

techniques to compare the efficiency of learning features from

SR images. These state-of-the-art methods use augmentation

as a pretext task for performing representation learning from

unlabeled data. The three techniques are MocoV2, Barlow Twins,

and Simsiam each of which is discussed in this section. The

architectures are shown in Figure 2.

3.2.1 MoCoV2
MoCoV2 (Chen et al., 2020) is one of the contrastive SSL

learning approaches. Unlike non-contrastive approaches, this

approach is based on instance discrimination, where positive and

negative pairs of images are discriminated. The images belong

to a positive set if they are augmented versions of the same

image, otherwise images are paired as a negative set. There are

two types of inputs to the MoCoV2 architecture, an encoded

query and a set of encoded keys comprising keys that match the

encoded query. The rest of the keys are termed negative keys

for encoded queries. The contrastive loss function InfoNCE loss

aims at reducing the distance between the matched pairs while

increasing the distance between the negative samples by learning

their similarities and dissimilarities, respectively. The architecture

comprises two encoders, one encodes the query, and the other is

called a momentum encoder which encodes and maintains a queue

for the new keys dynamically (Figure 2B) (Abeyrathna et al., 2022a).

3.2.2 Barlow twins
Barlow Twins (Zbontar et al., 2021) has been identified as

one of the popular SSL frameworks, which utilizes two encoder

models to extract feature representations and learn from unlabeled

data. The two encoder network (referred to as “twins”) weights

are adjusted during the training process, maximizing the similarity

of two distorted (augmented) positive samples while attempting

a cross-correlation matrix of the outputs of “twin” networks as

close to the identity matrix as possible. The loss function which

utilizes a cross-correlation matrix is known as “Barlow Twin loss”.

The loss function consists of two parts, namely, (1) invariant

term and (2) redundancy reduction term. The invariant term
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handles the noise factor of the data to enhance the robustness,

whereas the redundancy reduction term ensures the invariance of

the representations learned by the twin networks (See Figure 2C)

(Abeyrathna et al., 2022a).

3.2.3 SimSiam
SimSiam (Chen and He, 2021) is a state-of-the-art non-

contrastive learning approach to SSL. This approach uses a Siamese

twin network (see Figure 2A) with a stop gradient applied to

one of the twins. This prevents the network from collapsing.

Two different randomly chosen augmented versions are provided

as inputs to the two network branches. A cosine similarity loss

function is trained on the encoded features from each branch

aiming to learn to maximize the similarity between them and

thereby learning the invariant representations from the data. A

predictor is applied on one of the network encoders here to enable

the architecture to transform one of the augmented views and

further compare this transformed view with the augmented view

from the other network encoder. Different augmentations such as

rotation, random horizontal/vertical flip, and Gaussian noise are

randomly performed on the images.

3.3 Experiments

The experiments including the SSL and downstream model

training and testing tasks were conducted on a LAMBDA QUAD

Deep Learning Workstation with Intel(R) Core(TM) i9-9920X

CPU (3.50GHz), with 24GB Nvidia Quadro RTX 6000 GPU and

128GB RAM.

The flow of the experiments is shown in Figure 3. The first

step in the experiment process was to generate SR images for

each of the three datasets - Biofilms, C.elegans, and LiveCells. As

mentioned, four different SR methods BSRGAN, ESRGAN, HAT,

and SwinIR were employed to generate images with resolutions×2

and ×4 for each method. For generality, the original microscopy

images and those output by SR methods with resolution ×2

were resized to their corresponding ×4 resolution sizes for each

dataset. The original images were also resized to ×4 with bicubic

interpolation to compare super-resolution and high-resolution

segmentation performance. Consequently, we curated nine datasets

for each of Biofilms, C.elegans, and LiveCells attributing to a

total of 27 unique datasets. These nine datasets comprise an

original dataset without SR and four different SR methods with

two levels of scale (×2 and ×4) generating eight combinations

of datasets.

We randomly chose 80% of the images from each dataset for the

SSL methods to learn representations without labels. The rest 20%

of the data was labeled and used for fine-tuning the downstream

task for SSL. To increase the volume of the datasets the images are

patched. As the images contain microbial cells spatially distributed

patching can capture cell information in each image patch. For the

SSL pretext task, strided patching of the images was performed

to generate patches with a size of 256 × 256. The patch size is

determined from our previous experiments (Bommanapally et al.,

2021; Abeyrathna et al., 2022a; Ashaduzzman et al., 2022) where we

showed that increased patch size can often capture more relevant

features of the objects in the biofilm microscopy images. The 27

datasets were patched to create approximately 66000 image patches

for each dataset used for pre-training. The remaining 20% of the

images were also patched with a patch size of 256 × 256 px for

performing the downstream segmentation along with pixel-wise

FIGURE 3

Stages in the experiments conducted beginning with datasets, the SR techniques, generation of patched datasets, SSL pre-training, and downstream

segmentation.
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annotated masks for the cell class of the dataset. The 20% labeled

data was further split into 70%, 20%, 10% train, validation, and

test sets respectively. For SL, the entire dataset, which had labels,

was used.

Following, three SSL frameworks MoCoV2, Barlow Twins, and

SimSiam were trained on the patched datasets. The pre-training

for all the frameworks used a batch size of 256 trained for 300

epochs. Augmentation was used as a pretext task for the three

frameworks. Different augmentations were randomly applied to

the patches including random crop, random color jitter, gaussian

blur, and flip for all the SSL methods used. All the models use

ResNet50 (He et al., 2016), as the backbone for the encoders. The

trained weights were further used for the downstream tasks. The

trained weights with ResNet50 were used as the backbone for the

FCN ResNet50. The network is then fine-tuned with the patched

dataset along with the ground truth (GT) masks. The model is

trained for 100 epochs with a batch size of 16 and binary cross-

entropy loss. Hyperparameters such as learning rate, momentum,

and loss used for SSL were the same as the vanilla implementations

of each model. For the finetuning of all the pretrained models,

an adjustable learning rate was used with an initial learning

rate set to 0.01, SGD optimizer with a momentum of 0.9

was used.

3.3.1 Evaluation Metrics
3.3.1.1 SR image quality

Peak signal-to-noise ratio (PSNR) is one of the widely used

metrics to compare the image compression quality of an image over

its reference (in our experiments reference image is the original

image) image. We measured the PSNR values to understand the

quality enhancement or the distortion that occurred due to the

application of the SR methods. The metric calculates the ratio

between the maximum possible power of a signal and the mean

squared error (MSE). The formula for the PSNR metric is provided

in Equation 1.

PSNR = 10× log10(
I2

MSE
) (1)

Here, I represents the maximum possible pixel value of an image,

and the MSE value is calculated as the average of the squared

differences between the corresponding pixels of the image and

its reference image. A higher PSNR value indicates better image

quality and a lower PSNR value indicates a higher amount of

distortion due to the SR application. However, PSNR evaluates the

quality of an image based on image pixel-level differences which is

not the way the human observers perceived image quality.

Structural Similarity Index (SSIM) (Wang et al., 2004) is used

as a metric to measure structural similarity between two images.

SSIM is a widely used metric due to the fact that it is closer to the

perceptual quality of images by the human visual system, which is

often more sensitive to structural information rather than intensity

or pixel-wise differences. SSIM metric mainly attempts to capture

Luminance (l), Contrast (c), and Structure (s) when it compares

an image to a reference image. The SSIM can be formulated as

SSIM = l × c × s, where the three components l, c, and s

are calculated as the mean, the variance, and the covariance of

the corresponding image segments in the given and the reference

image respectively.

Perception-based Image Quality Evaluator (PIQE) (Venkatanath

et al., 2015) is another popular metric that differs from the above

two metrics in evaluating the quality of an image without using any

reference image (No-reference algorithm). This metric instead uses

statistical features of an input image to evaluate its image quality.

Similar to the SSIM metric, PIQE focuses on human perception-

based quality evaluation to measure image quality. This metric

inherently provides local measures of quality in addition to global

scores. As there are some research studies (Bogatyrev et al., 2023)

that have proposed PSNR and SSIM do not sufficiently provide

overall quality measures, we have also considered counting PIQE

values in the experiments.

The PIQE scores are inversely proportional to image quality

where lower scores indicate higher image quality and are

computed without any reference image. For consistency, we have

complemented the scores with 100 so the high scores represent

better quality.

3.3.1.2 Segmentation model performance evaluation

The SSL pretext tasks were evaluated through their

performance in downstream segmentation tasks. We employed

one of the widely used metrics, the Dice Similarity Coefficient

(Dice) score to evaluate the segmentation prediction performance

of the downstream task. It is computed as twice the area of

overlap between the GT mask and predicted mask over the total

area of GT and prediction (see Equation 2 below). We show

the scores on a scale of 0 to 100 for consistency across different

measures, where a score of 100 indicates a perfect overlap between

the predicted mask and GT masks, and a score of 0 indicates

no overlap.

Dice = 2×
(g ∩ p)

(g + p)
(2)

where g is the GT mask and p is the predicted mask.

4 Results

This section presents the results from the experiments for

each dataset including fine-tuned evaluation of the models for

segmentation using Dice scores, image quality metrics, and

the statistical tests to compare the scores across different SR

methods. We also present a graphical user interface we developed

to host the models so that domain experts can experiment

with them.

4.1 Evaluation of SR image quality

For the Biofilm dataset, the PSNR scores for×2 and×4 images

in comparison to reference images were consistent between 21 to

22 for all the SR techniques compared to the original LR images.

The SSIM scores for ×2 and ×4 images ranged over 0.8, which

indicated that the image quality had improved for the ×2 and

×4 images. However, the ×4 images showed slightly lower SSIM

scores compared to the×2 images. The PIQE scores for the models
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FIGURE 4

Plots showing Dice scores and Image quality across di�erent SR techniques for Biofilms dataset. The X-axis shows di�erent SR techniques at ×2, ×4

scales along with the original. The Y-axis to the left represents dice scores and to the right represents the Image quality measures for the three

metrics.

FIGURE 5

Plots showing Dice scores and Image quality across di�erent SR techniques for C. elegans dataset. The X-axis shows di�erent SR techniques at ×2,

×4 scales along with the original. The Y-axis to the left represents dice scores and to the right represents the Image quality measures for the three

metrics.

showed a consistent decrease with the original scores being higher

than the scores of images at the ×2 scale, which were higher

than that of images at the ×4 scale. Consequently, original images

showed a lower PIQE score of 23.5, while ×2 images had scores

ranging from 39 to 43 with HAT exhibiting scores lower than 30,

and the ×4 images score improved further ranging from 60 to

69. This shows improvement in the image quality of ×4 images

with scores higher than ×2 images for all the SR techniques. These

metrics are shown in Figure 4 as the lines on the bar graph with

the right Y-axis showing the measures and the X-axis showing the

different SR techniques and×2 and×4 scales.

The C. elegans dataset showed PSNR values ranging from 30 to

32 for all the SR techniques but HAT with the scales ×2, and ×4.

HAT with ×2 and ×4 scaling showed scores around 50 indicating

the best image quality of all. The scores of ×4 images were slightly

lower with a variation of 1 to 2 points compared to ×2 images.

The SSIM scores were ranging from 93 to 96, demonstrating a

significantly higher image quality. Consistently, the complemented

PIQE score of the original images was considerably low. The scores

for ×2 resolution have increased ranging between 15 and 25 with

HAT images showing the lowest scores. The quality of ×4 images

showed improved PIQE measures ranging from 53 to 60 with

the exception of HAT, showing little or no improvement with ×4

resolution. The metrics are shown in Figure 5.

The Livecells dataset had PSNR scores ranging from 28 to

37 for ×2 images and ×4 images showed a slight reduction of

1 to 2 points. HAT images had a maximum score of the other

images. SSIM images also followed a similar pattern where ×2

images ranged from 82 to 88 with a slight reduction for×4 images.

HAT images showed the highest score of 96. PIQE scores also
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FIGURE 6

Plots showing Dice scores and Image quality across di�erent SR techniques for Livecells dataset. The X-axis shows di�erent SR techniques at ×2, ×4

scales along with the original. The Y-axis to the left represents dice scores and to the right represents the Image quality measures for the three

metrics.

FIGURE 7

Sample segmentation predictions in the SL setting for the three datasets. The top row inside each dataset block shows the image patches from

di�erent SR techniques and scales and the bottom row shows corresponding predicted masks along with the GT mask in the first column.

followed a similar pattern to the other two datasets of consistent

increase from original to ×2 to ×4. Original images have a score

of 14, ×2 images ranging between 39 to 44 with HAT showing

the lowest score of 22. While ×4 images had scored from 64 to

70 with HAT showing no improvement. The metrics are shown

in Figure 6.
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FIGURE 8

Sample segmentation predictions in SSL SimSiam setting for the three datasets. The top row inside each dataset block shows the image patches from

di�erent SR techniques and scales and the bottom row shows corresponding predicted masks along with the GT mask in the first column.

4.2 Evaluation of downstream
segmentation task

To compare the effectiveness of using SR images, from various

SR techniques, to perform SSL with the respective SR unlabeled

images, we chose segmentation as the downstream task. The

three representation learning architectures chosen use ResNet50

as their backbone for the encoders. The weights of the network

pre-trained on unlabeled data were transferred to FCN ResNet50

for performing segmentation. The segmentation head in FCN

Resnet50 was fine-tuned with a few labeled data by freezing

the pre-trained weights of Resnet50. For segmentation purposes,

we considered segmenting only single class “cells” for each of

the datasets.

For the Biofilm dataset, the Dice scores for the experiments

and their variations across the different resolution techniques with

chosen SSL methods for original, ×2, and ×4 images are shown

as bar graphs in Figure 4. As the Figure shows, the Dice score of

original images in an SL setting was observed to be 62.50±0.016

and the score improved for ×2 resolution highest was observed

to be SimSiam trained on ×4 ESRGAN images with the Dice

score of 69.37±0.071. Compared to the original images in SL and

SSL approaches, the Dice scores of images generated using SR

methods improved varying in a range of 2%− 6%. The Dice scores

of ×4 images slightly dropped compared to that of ×2 images

by a range of 1% − 2%. Of all the combinations, HAT ×2, and

×4 datasets showed lower performance. The performance of SSL

techniques was comparable to that of the SL ImageNet pre-trained

setting, at times with SimSiam outperforming the others including

the SL approach. MoCoV2 and Barlow Twins showed similar

performance.

For the C. elegans dataset, the Dice scores for the dataset ranged

from 77.01±0.081 to 80±0.062 with original images for the ×2

images. The Dice scores of ×4 images increased by 1% − 2%

more than×2 images. SimSiam was observed to show performance

comparable to the SL setting. The scores of these experiments are

shown as bar graphs in Figure 5.

For the Livecells dataset, the Dice score for original images in

the SL setting was 60.68±0.001 and ranged around 61±0.072 for

the SSL setting. SimSiam outperformed in the experiments with

ESRGAN showing the maximum Dice score of 66.70±0.059. ×4

SR images showed slightly lower performance compared to that of

×2 images varying about 1% − 3%. The scores are shown in bar

charts in the plot in Figure 6.

Figures 7–10 show image samples and the corresponding

predicted segmentation masks for supervised, SimSiam, Barlow

Twins and MoCoV2 settings respectively.

4.3 Statistical evaluation

For statistical analysis, student t-tests were performed to see if

improving image quality improved the segmentation performance

by comparing the mean Dice scores. We compared the mean Dice
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FIGURE 9

Sample segmentation predictions in SSL Barlow Twins setting for the three datasets. The top row inside each dataset block shows the image patches

from di�erent SR techniques and scales and the bottom row shows corresponding predicted masks along with the GT mask in the first column.

scores of SimSiam and SL settings for all the datasets. The mean

Dice scores of original images were compared with all ×2 and ×4

datasets. The mean Dice scores show that for the Biofilms dataset,

there was a significant difference between original vs×2, original vs

×4, and×2 vs×4 dataset dice scores (p<0.001). However, original

vs ×4 performances for HAT did not show significant difference.

C.elegans dataset did not show a significant difference between

mean Dice scores of×2 vs×4 scales at α=0.05, however, there was

significant difference between original vs ×2 and original vs ×4

scales (p<0.05). The Livecells dataset of all three different scales

showed significant difference in performance (p<0.001) original vs

×2, original vs×4, and×2 vs×4.

4.4 Graphical user interface

To utilize the models trained and experimented with in this

paper, we have developed a user-friendly graphical interface as

shown in Figure 11. The interface is equipped with all the models

trained for segmentation. It enables the user to upload the image

patch to be segmented and choose the configuration of choice from

the dataset, scale, resolution technique, and SSL technique. After

the user selects the original image and the necessary configurations,

the result can be automatically displayed to the user. As a result, this

system can be used with different datasets in real time by placing the

trained models in the backend.

5 Discussion

With this study, we aimed to compare how SR of different scales

is effective for performing SSL. In this section, we discuss some of

the aspects of our experiments and the results.

PSNR and SSIM are reference-based image quality metrics.

Recent studies also compared the metrics to show that they are

not particularly suitable for assessing the image quality specifically

for super-resolution algorithms (Ding et al., 2021; Kirillova. et al.,

2022). We observed similar behavior in our experiments that

these metrics did not fluctuate over the ×2, ×4 scales for

all the SR techniques (see Figures 4–6). However, we observed

that non-reference-based metrics, PIQE, were comparatively

more representative of the image quality improvement and

hence sensitive to the super-resolution scale over reference-based

metrics. We then compared PIQE scores to the Dice scores

of the segmentation task and observed that PIQE reflects the

segmentation model performance.

Based on the experiment results, images with the image quality

bound to “poor” to “fair” (Venkatanath et al., 2015) were found to

show better segmentation performance. In the experiments images

with ×2 resolution observed the PIQE scores in the range [20, 60],

we presume that is one of the reasons for ×2 images exhibiting

better performance over original images whose PIQE scores fell in

the range [0, 20] or “bad” category(see Table 1). However, though

PIQE scores for ×4 scale images are higher (60 and above) “good”
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FIGURE 10

Sample segmentation predictions in SSL MoCoV2 setting for the three datasets. The top row inside each dataset block shows the image patches from

di�erent SR techniques and scales and the bottom row shows corresponding predicted masks along with the GT mask in the first column.

FIGURE 11

Sample run of the C. elegans image patch on the graphical interface developed to perform and visualize automatic segmentation of low-resolution

electron microscopy targets.

to “excellent”, the performance of ×4 images was comparatively

lower than ×2 in some scenarios. It can be observed that the PIQE

scores and their corresponding Dice scores exhibit similar trends

suggesting that the values are correlated. It can be deduced that

given a safe range of PIQE “poor” to “fair”, Dice scores show a

near parallel trend. This indicates that the PIQE score can be an
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important tool for the initial analysis of the images, thereby aiding

in further improving the quality using SR techniques accordingly

for a desired segmentation performance.

No significant differences in segmentation performance were

observed between GAN-based and transformer-based SR methods.

However, we observed that HAT exhibited a drop in image

quality (see Figure 12) and thus the segmentation performance as

compared to the other SR techniques. This poor super-resolution

performance could occur due to the domain differences between

pre-trained data and the test data (HAT SR models trained on

natural data). C. elegans dataset showed similar segmentation

performances with original, ×2, and ×4. This could be due to the

fact that the complexity of features to be learned in this dataset

is comparatively lower for the segmentation task. The foreground

and background were vivid and highly contrastive even without

any resolution enhancements. However, we noticed an interesting

behavior of ×4 performances which was slightly better than ×2.

We suspect this was due to the ×4 enhancements in terms of

texture and intensity contrast (see Figure 12 original, ×2, ×4

images of C. elegans) making the segmentation task better. Further,

we have also experimented with another loss function, dice loss, to

understand how the performance differs from BCE loss. However,

the segmentation results are almost similar to dice and BCE loss

functions. We conjecture that BCE performs well because the

TABLE 1 PIQE quality ranges as used in the experiments.

Quality scale Score range

Bad [0, 19]

Poor [20, 49]

Fair [50, 64]

Good [65, 79]

Excellent [80, 100]

datasets show balanced ratios of foreground to background pixels,

hence BCE was favorable.

Finally, the performance of SSL techniques using only 20% of

labeled data showed comparative results to the FL baseline for all

the scales. Also, the overall performance of models with ×2 and

×4 scales was improved compared to the original images. Further,

with limited labeled data SSL models for higher scales performed as

good or better than SL in some scenarios. This shows that SR helps

the SSL models to learn representations better from the unlabeled

data. Given the scarce availability of labeled images in challenging

domains where labeling images is expensive SSL techniques can be

a potential substitute to overcome this challenge.

6 Conclusion

This study investigates two challenges- the impact of

performing SR, as a pre-processing step, on segmentation and

leveraging SSL with super-resolved unlabeled images when

pixel-wise annotations are limited, specifically for electron

microscopy images. For performing SR to improve the quality

of images we employed ML-based SR techniques which showed

promising results in improving image resolution in various

fields. Underlying these challenges, in this empirical study we

experimented with various SR techniques on various datasets,

compared the effectiveness of SR processing over different SSL

methods, and presented the significance over supervised baseline

performance. We also studied different metrics used to measure

the image quality of SR images and characterized a safe range of SR

upscaling in order to achieve optimal electron microscopic image

segmentation performance.

The image quality of all the datasets improved significantly

with all the SR techniques. However, we observed HAT could

not improve the image quality as compared to the other SR

techniques and SwinIR introduced some artifacts like extra-

smoothing though it improved overall image quality. We observed

FIGURE 12

Unintended artifacts introduced by ×4 SR for SwinIR where the image is extra-smoothed. HAT shows little improvement over the original images.

The top row shows C. elegans and the bottom row shows Livecells.
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that of the three metrics PSNR, SSIM, and PIQE, the latter was

more representative of the image quality. Also, we observed a

dice score improvement of 2%-6% over the supervised baseline

with SimSiam performing better than the other SSL models.

Another notable observation is that images with ×2 showed

better segmentation performance compared to ×4, and ×2

images mostly fall in the complemented PIQE scores in poor,

fair which is the proposed image quality threshold. Though we

observed significant performance improvements, it is essential to

conduct further investigation for any potential scenarios where SR

techniques negatively impact the model performance. We believe a

deeper theoretical explanation of how SR preprocessing improves

SSL representation learning would broaden the understanding

of the usability of SR preprocessing in electron microscopic

image segmentation which could be a potential future direction.

Further, it can be speculated that the method would perform

better, for instance, segmentation as well. We believe that this

would be due to the improvement of feature learning capabilities

which would be beneficial for any vision-based applications such

as classification, detection, and segmentation. Moreover, image

quality improvement and enhanced object boundaries resulting

from super-resolution could contribute to other complex vision

tasks, such as instance segmentation, which would be another

promising area to study.
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