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Background: Recent research linked changes in the gut microbiota and serum 
metabolite concentrations to intracerebral hemorrhage (ICH). However, the 
potential causal relationship remained unclear. Therefore, the current study 
aims to estimate the effects of genetically predicted causality between gut 
microbiota, serum metabolites, and ICH.

Methods: Summary data from genome-wide association studies (GWAS) of 
gut microbiota, serum metabolites, and ICH were obtained separately. Gut 
microbiota GWAS (N =  18,340) were acquired from the MiBioGen study, serum 
metabolites GWAS (N =  7,824) from the TwinsUK and KORA studies, and GWAS 
summary-level data for ICH from the FinnGen R9 (ICH, 3,749 cases; 339,914 
controls). A two-sample Mendelian randomization (MR) study was conducted 
to explore the causal effects between gut microbiota, serum metabolites, and 
ICH. The random-effects inverse variance-weighted (IVW) MR analyses were 
performed as the primary results, together with a series of sensitivity analyses 
to assess the robustness of the results. Besides, a reverse MR was conducted to 
evaluate the possibility of reverse causation. To validate the relevant findings, 
we further selected data from the UK Biobank for analysis.

Results: MR analysis results revealed a nominal association (p  <  0.05) between 
17 gut microbial taxa, 31 serum metabolites, and ICH. Among gut microbiota, 
the higher level of genus Eubacterium xylanophilum (odds ratio (OR): 1.327, 
95% confidence interval (CI):1.154–1.526; Bonferroni-corrected p  =  7.28  ×  10−5) 
retained a strong causal relationship with a higher risk of ICH after the 
Bonferroni corrected test. Concurrently, the genus Senegalimassilia (OR: 0.843, 
95% CI: 0.778–0.915; Bonferroni-corrected p  =  4.10  ×  10−5) was associated 
with lower ICH risk. Moreover, after Bonferroni correction, only two serum 
metabolites remained out of the initial 31 serum metabolites. One of the serum 
metabolites, Isovalerate (OR: 7.130, 95% CI: 2.648–19.199; Bonferroni-corrected 
p  =  1.01  ×  10−4) showed a very strong causal relationship with a higher risk of 
ICH, whereas the other metabolite was unidentified and excluded from further 
analysis. Various sensitivity analyses yielded similar results, with no heterogeneity 
or directional pleiotropy observed.
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Conclusion: This two-sample MR study revealed the significant influence of gut 
microbiota and serum metabolites on the risk of ICH. The specific bacterial taxa 
and metabolites engaged in ICH development were identified. Further research 
is required in the future to delve deeper into the mechanisms behind these 
findings.
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1 Introduction

Spontaneous intracerebral hemorrhage (ICH) is one of the leading 
causes of morbidity and mortality worldwide (Li et al., 2017), posing 
a significant public health concern on a global scale. ICH, which is 
characterized by a high disability rate, currently lacks effective 
treatment options. Identifying modifiable risk factors for ICH that can 
be targeted for prevention strategies is crucial. Recently, there has been 
growing interest in the relationship between gut microbiota, human 
blood metabolites, and ICH. Changes in the composition of the gut 
microbiota influence the host immune system via inflammatory 
cytokine production and immune cell differentiation, thereby 
enhancing neuroinflammation in ICH (Luo et  al., 2022). The gut 
microbiota produces a wide variety of metabolites, as well as other 
blood metabolites, which have systemic effects on humans. The 
specific serum metabolites are also believed to affect 
neuroinflammation in patients with ICH (Chen et al., 2022). ICH is 
characterized by the presence of bleeding within the brain parenchyma 
(de Oliveira Manoel et al., 2016), with subsequent neuroinflammation 
caused by the byproducts of blood metabolism within the same 
parenchyma (Alsbrook et al., 2023). Sustained activation of resident 
microglial cells, infiltration of systemic immune cells, and the 
generation of proinflammatory cytokines, chemokines, extracellular 
proteases, and reactive oxygen species are all hallmarks of 
neuroinflammation (Mracsko and Veltkamp, 2014). The release of 
these inflammatory mediators causes the breakdown of the blood–
brain barrier, neuronal damage, and the onset of cerebral edema, 
ultimately exacerbating neurological dysfunction and resulting in a 
poor prognosis for the patient. Mitigating neuroinflammation is 
pivotal for enhancing patient outcomes; consequently, the gut 
microbiota and serum metabolites may play a significant role in 
ICH. Exploring the interplay between host genetics and the gut 
microbiota or serum metabolites is crucial for furthering our 
understanding of the ICH pathogenesis.

Although observational studies established links between gut 
microbiota, serum metabolites, and the risk of ICH development, 
residual confounding and reverse causality can influence these 
relationships. Clinical randomized trials represent the most effective 
way to test the findings of these studies. However, assessing the impact 
of gut microbiota, serum metabolites, and ICH is challenging due to 
cost and ethical concerns among the participants (Zabor et al., 2020).

Recently, MR has emerged as a popular alternative method for 
assessing the causal effects of related factors on diseases while avoiding 
biases stemming from confounding factors or reverse causality (Wu 

et al., 2020). MR analysis uses individual genetic variation, which is 
randomly distributed during conception, as an instrumental variable 
(Burgess et  al., 2015). Instrumental variable data from extensive 
GWAS and identified SNPs related to the gut microbiota or serum 
metabolites are used to establish the causal relationship between 
exposures and outcomes.

Previous studies employed MR to analyze the gut microbiota and 
risk of sepsis (Chen et  al., 2023), celiac disease (Li et  al., 2023a). 
However, the relationship between gut microbiota, serum metabolites, 
and the risk of ICH has not been investigated in an MR study. Thus, 
the current study aims to estimate the effects of genetically predicted 
gut microbiota and serum metabolites on the risk of 
ICH. Consequently, several genetic variations associated with bacterial 
and metabolite composition that may drive ICH pathogenesis were 
identified. Our study findings can lay the groundwork for future 
research directions in ICH.

2 Materials and methods

2.1 Study design

MR study was applied to investigate the causal effects between gut 
microbiota, serum metabolites, and ICH. Figure  1 depicts the 
schematic summary of the study design. The MR design should meet 
three necessary conditions (Figure 1): (i) The genetic variant selected 
as the instrumental variable (IV) should be associated with both gut 
microbiota and serum metabolites; (ii) the genetic instrument must 
be  independent of potential confounding factors; (iii) the genetic 
variant has to be  specifically associated with ICH through gut 
microbiota and serum metabolites, rather than through other 
pathways (Bowden and Holmes, 2019).

2.2 Data sources on the gut microbiota and 
serum metabolites

The comprehensive summary statistics of the genetic impact on 
the human gut microbiome in the MiBioGen Consortium are the 
most extensive collection of GWAS data on the gut microbiota to date, 
including genome-wide genotyping data from 18,340 individuals 
(14,363 of whom were of European descent) (Kurilshikov et al., 2021). 
In total, 211 taxa (16 classes, 35 families, 131 genera, 20 orders, and 9 
phyla) were included in the microbiome quantitative trait loci 
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mapping analysis. Summary-level data of GWAS for human 
metabolome were generated from the TwinsUK and KORA studies, 
which involved 7,824 participants. In the GWAS, 486 metabolite 
concentrations were tested (Shin et al., 2014). In the current study, 
we excluded four bacterial traits for which IVs could not be extracted, 
resulting in a remaining set of 207 bacterial traits (16 classes, 34 
families, 128 genera, 20 orders, and 9 phyla) for further analysis. 
Similarly, 451 serum metabolites were utilized for the 
subsequent analysis.

2.3 Instrumental variables selection

Single-nucleotide polymorphisms (SNPs) were selected with 
p-values below the locus-wide significance level (1 × 10−5) as 
instrumental variables in the preliminary analysis to obtain more 
comprehensive results and increase sensitivity to IVs. Next, all IVs 

underwent linkage disequilibrium (LD) clumping (r2 < 0.01; 
distance = 5,000 kb) to reduce the influence of correlations between 
SNPs. Moreover, PhenoScanner1 was used to search for genome-wide 
traits that were significantly associated with these SNPs to assess 
confounding factors that potentially associated with gut microbiota, 
serum metabolites, and ICH (Flatby et al., 2023). Furthermore, the 
F-statistic (R2 (N–2)/(1–R2)) was calculated to evaluate the strength of 
each instrument, where R2 is equal to the proportion of variance 
explained by the genetic instrument, and N is the effective sample size 
of the GWAS. Notably, an F-statistic threshold greater than 10 
indicates that the genetic variation has a relatively robust estimation 
effect in MR analysis (Burgess and Thompson, 2011). SNPs with an 
F-statistic lower than 10 and palindromic SNPs (where it was unclear 

1 http://www.phenoscanner.medschl.cam.ac.uk/

FIGURE 1

A schematic summary of the study design. GWAS, genome-wide association study; ICH, Intracerebral hemorrhage; IVs,inst1umental variable; SNPs, 
single-nucleotide polymorphisms; MR, Mendelian randomization; IVW, inverse-variance-weighted; MR-PRESSO, MR pleiotropy residual sum and 
outlier.
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which allele was the effect allele) (Xu et al., 2021) were excluded from 
this study. Ultimately, 2,249 host SNPs (p < 1 × 10−5) associated with 
gut microbiota and 8,595 host SNPs (p < 1 × 10−5) associated with 
serum metabolites as instrumental variables were identified. 
Supplementary Tables S1, S2 provide detailed information on the 
selected genetic variants.

2.4 Data sources on the ICH

Summary-level data of GWAS for ICH were generated from the 
latest FinnGen R9 biobank (Kurki et al., 2023), which included 3,749 
ICH cases and 339,914 controls. More details on the ICH GWAS can 
be found online.2

2.5 MR analysis

In the current study, a two-sample MR analysis was used to assess 
the causal association between gut microbiota, serum metabolites, and 
ICH. The method entailed performing three separate analyses: the 
random-effects inverse variance-weighted (IVW) method, weighted 
median estimate, and MR-Egger regression estimate.

The random-effects IVW method was used as the primary 
analysis for MR. It provides unbiased estimates by considering the 
potential presence of horizontal pleiotropy or achieving balance in 
horizontal pleiotropy (Burgess et  al., 2013). Concurrently, the 
MR-Egger and weighted median were employed as sensitivity analysis 
methods. Sensitivity analysis methods were used to consider 
directional horizontal pleiotropy, which refers to the possibility of SNP 
effects on target outcomes through other biological pathways 
independent of the exposure under investigation (Verbanck et al., 
2018). The MR-Egger method accommodates directional horizontal 
pleiotropic effects. If the intercept term differs from zero, then not all 
included instruments are effective, and the IVW may be  biased 
(Bowden et al., 2015). If at least half of the instruments are valid, a 
weighted median approach is used to calculate causal estimates for 
each SNP. Then, the resulting overall MR estimate is determined by 
taking the median of these estimates (Bowden et  al., 2016). The 
Mendelian Randomization Pleiotropy RESidual Sum and Outlier 
(MR-PRESSO) test was also performed to identify possible horizontal 
pleiotropy and correct for its influence by removing outliers (Verbanck 
et al., 2018). Leave-one-out analyses were conducted to assess further 
the pleiotropy associated with individual SNPs. In addition, potential 
heterogeneity and outliers were examined using I2 and Cochran 
Q-derived p values.

A value of p < 0.05 was considered as nominal association. The 
Bonferroni-corrected test was utilized (Brion et al., 2013), considering 
the number of bacteria in each attribute group, to establish a more 
robust causal association (classes: 0.05/16 (3.13 × 10−3), families: 
0.05/34 (1.47× 10−3), genera: 0.05/128 (3.90 × 10−4), orders: 0.05/20 
(2.50 × 10−3), and phyla: 0.05/9 (5.56 × 10−3)). The Bonferroni-
corrected p-value for serum metabolites was 0.05/451 (1.11 × 10−4). 
The statistical analyses were performed using R software version 4.2.3. 

2 https://www.finngen.fi/en

MR analyses were conducted using the TwoSampleMR package (Zhou 
et al., 2019).

2.6 Reverse MR analysis

A reverse MR analysis was conducted to assess whether ICH has 
any causal effects on gut microbiota abundance or serum metabolites. 
MR analysis was performed as described earlier.

2.7 Gut microbiota and serum metabolites 
bidirectional MR analysis

An additional bidirectional MR analysis was performed to 
determine if significant gut microbiota had any reciprocal causal 
effects on significant serum metabolites. We  used the genus 
Eubacterium xylanophilum or the genus Senegalimassilia as the 
exposure and Isovalerate as the outcome. Similarly, we used Isovalerate 
as the exposure and the genus Eubacterium xylanophilum or genus 
Senegalimassilia as the outcome.

2.8 Validation set

We utilized publicly available summary statistics data on ICH (700 
cases, 399,017 controls) from an independent European ancestry 
cohort sourced from the UK Biobank (Gagliano Taliun et al., 2020) to 
validate our positive findings observed in the FinnGen study.

3 Results

3.1 Causal effects of gut microbiota on ICH

All reported associations correspond to an OR for risk of ICH per 
standard deviation (SD) change in abundance of gut microbiota 
feature. The IVW method identified 17 causal associations from gut 
microbiota features to ICH traits were identified 
(Supplementary Table S3). Due to two unknown bacterial taxa, 
we  excluded them from the presentation of the results. Figure  2 
presents these IVW results (p < 0.05).

The IVW analyses demonstrated that genetically greater 
abundance of class Actinobacteria (OR: 0.802, 95% CI: 0.668–0.963, 
p = 0.018), class Negativicutes (OR: 0.711, 95% CI: 0.535–0.948, 
p = 0.020), genus Eubacterium eligens (OR: 0.813, 95% CI: 0.665–0.994, 
p = 0.043), genus Eubacterium rectale (OR: 0.726, 95%CI: 0.561–0.939, 
p = 0.015), genus Lachnospiraceae ND3007 (OR: 0.558, 95% CI: 
0.368–0.846, p = 0.006), genus Ruminococcaceae UCG011 (OR: 0.912, 
95% CI: 0.835–0.996, p = 0.042), genus Ruminococcus2 (OR:0.768, 
95%CI:0.651–0.907, p = 0.002), genus Senegalimassilia (OR: 0.843, 
95% CI: 0.778–0.915, p = 4.10 × 10−5), order Mollicutes RF9 (OR: 
0.794, 95% CI: 0.677–0.931, p = 0.005), order Selenomonadales (OR: 
0.712, 95% CI: 0.535–0.948, p = 0.020), and phylum Actinobacteria 
(OR: 0.731, 95% CI: 0.550–0.973, p = 0.031) were correlated with a 
reduced risk of ICH. Additionally, the genetically predicted abundance 
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of genus Dorea (OR: 1.455, 95% CI: 1.064–1.990, p = 0.019), genus 
Eubacterium xylanophilum (OR: 1.327, 95% CI:1.154–1.526, 
p = 7.28 × 10−5), genus Lachnospiraceae UCG001 (OR: 1.172, 95% CI: 
1.009–1.362, p = 0.038), and genus Ruminococcaceae UCG009 (OR: 
1.191, 95% CI: 1.009–1.405, p = 0.039) were positively correlated with 
the risk of ICH.

The MR-Egger regression found no evidence of horizontal 
pleiotropy, as indicated by the lack of significance for all intercepts 
(p > 0.05). Genus Eubacterium rectale was identified as an outlier by 
MR-PRESSO, and the outlier was subsequently corrected. No 
remaining results were observed as outliers by MR-PRESSO, 
indicating the absence of significant directional horizontal 
pleiotropy. The results of Cochran’s Q for the IVW test did not 
detect evidence of heterogeneity (Supplementary Table S5). 
Supplementary Table S10 displays the genetic associations between 
SNPs related to significant gut microbiota and their respective 
outcomes, as identified through PhenoScanner. Additional File S1 
presents the leave-one-out analysis.

3.2 Causal effects of serum metabolites on 
ICH

All reported associations correspond to an OR for risk of ICH per 
SD change in the abundance of gut microbiota features. The IVW 
method revealed 31 causal relationships between serum metabolites 
and ICH traits (Supplementary Table S4). However, 20 of these 
metabolites were unknown and were excluded from the presentation 
of the results. Figure 3 presents these IVW results (p < 0.05).

IVW results indicated that genetically predicted higher 
concentrations of Mannose (OR: 0.466, 95% CI: 0.263–0.827, 
p = 0.009), Myristate (OR: 0.530, 95% CI: 0.295–0.954, p = 0.034), 
Bilirubin (OR: 0.781, 95% CI: 0.628–0.972, p = 0.027), 
1-arachidonoylglycerophosphoinositol (OR: 0.570, 95% CI: 0.360–
0.895, p = 0.015), Cysteine-glutathione disulfide (OR: 0.643, 95% CI: 
0.499–0.829, p = 6.40 × 10−4) were correlated with a reduced risk of 
ICH. Moreover, genetically predicted higher concentrations of Uridine 
(OR: 5.151, 95% CI: 1.065–24.913, p = 0.042), Phenylacetate (OR: 

FIGURE 2

Causal effects of gut microbiota 0n ICH. Significant p-value after Bonferroni-corrected classes: 0.05/16 (3.13 × 10–3), families: 0.05/34 (l.47  >  < 10–3), 
genera: 005/128 (3.90 × 10–4), orders: 0.05/20 (2.50 × 10–3), and phyla: 0.05/9 (5.56 × 10–3).

FIGURE 3

Causal effects of Serum metabolites on ICH. The Bonferroni-corrected p-value for serum metabolites was 005/451 (1.11 × 10–4).
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1.871, 95% CI: 1.072–3.265, p = 0.027), Pyroglutamylglycine (OR: 
2.129, 95% CI: 1.313–3.453, p = 0.002), Decanoylcarnitine (OR: 1.758, 
95% CI: 1.040–2.972, p = 0.035), Isovalerylcarnitine (OR: 2.043, 95% 
CI: 1.358–3.077, p = 6.16 × 10−4), and Isovalerate (OR: 7.130, 95% CI: 
2.648–19.199, p = 1.01 × 10−4) were associated with higher ICH risk. 
The MR-Egger regression did not find evidence of horizontal 
pleiotropy and Cochran’s Q test did not detect evidence of 
heterogeneity. Decanoylcarnitine was identified as an outlier by 
MR-PRESSO and the outlier was subsequently corrected. No 
remaining results were observed as outliers by MR-PRESSO, 
indicating no significant directional horizontal pleiotropy 
(Supplementary Table S6). Finally, Additional File S1 depicts the 
leave-one-out analysis.

3.3 Reverse MR analysis

3.3.1 Modification of gut microbiota by ICH
Figure 4 summarizes the causal relationship between ICH and 

bacterial taxa. After Bonferroni correction, ICH was causally and 
significantly associated with a lower abundance of class 
Verrucomicrobiae (OR: 0.918, 95%CI: 0.872–0.966, 
p = 9.38 × 10−4),family Verrucomicrobiaceae (OR: 0.918, 95% CI: 
0.872–0.966, p = 9.33 × 10−4), order Verrucomicrobiales (OR: 
0.918, 95% CI: 0.872–0.966, p = 9.38 × 10−4), and phylum 
Verrucomicrobia (OR: 0.923, 95% CI: 0.880–0.969, p = 1.20 × 10−3). 
Supplementary Table S6 lists the details and the other 
sensitivity methods.

3.3.2 Modification of serum metabolites by ICH
Figure 5 summarizes the causal relationship between ICH and 

serum metabolites. After Bonferroni correction, ICH was causally 

and significantly associated with lower concentrations of 
Cholesterol (OR: 0.986, 95% CI: 0.981–0.992, p = 3.41 × 10−6), 
Chiro-inositol (OR: 0.907, 95% CI: 0.864–0.952, p = 8.6 × 10−5), and 
Palmitoyl sphingomyelin (OR: 0.987, 95% CI: 0.982–0.993, 
p = 5.4 × 10−6). Supplementary Table S7 lists the details and the other 
sensitivity methods.

3.4 Gut microbiota and serum metabolites 
bidirectional MR analysis

A bidirectional MR analysis was performed again to evaluate the 
potential causal relationship between significant gut microbiota and 
significant serum metabolites. The results of the MR analysis reveal no 
causal relationship between the genus Eubacterium xylanophilum 
(p = 0.623), genus Senegalimassilia (p = 0.914), and isovalerate. 
Moreover, there is no causal association between isovalerate and the 
genus Eubacterium xylanophilum (p = 0.560) or genus Senegalimassilia 
(p = 0.869) (Supplementary Table S9). The analysis findings provide 
supporting evidence for our conclusion that both gut microbiota and 
serum metabolites have distinct influences on the incidence of ICH.

3.5 Validation set

We validated the causal relationships of 17 gut microbiota and 31 
serum metabolites associated with ICH in the dataset from the UK 
Biobank. The results indicate that the presence of the following genera 
is associated with intracerebral hemorrhage (ICH): Eubacterium 
eligens (OR: 0.474, 95% CI: 0.246–0.913, p = 0.026), Ruminococcaceae 
UCG011 (OR: 0.697, 95% CI: 0.550–0.884, p  = 2.84 × 10−3), 
Ruminococcus2 (OR: 0.605, 95% CI: 0.381–0.962, p = 0.034), and 

FIGURE 4

Causal effects of ICH on gut microbiota. Significant p-value after Bonferroni-corrected classes: 0.05/16 (3.13 × 10–3), families: 0.05/34 (l.47  >  < 10–3), 
genera: 005/128 (3.90 × 10–4), orders: 0.05/20 (2.50 × 10–3), and phyla: 0.05/9 (5.56 × 10–3).
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Dorea (OR: 1.919, 95% CI: 1.119–3.291, p  = 0.018). Additionally, 
among the metabolites, only one unknown metabolite was found to 
have a causal association, and it was excluded from our analysis 
(Supplementary Tables S11, S12).

4 Discussion

Over the last few decades, rapid advances in microbiome and 
metabolome studies have greatly aided our understanding of the 
pathogenic mechanisms underlying ICH (Zhang et al., 2021b; Chen 
et al., 2022). Most studies are animal or case–control studies, which 
can demonstrate an association with ICH but cannot establish a causal 
relationship. To the best of our knowledge, this is the first MR analysis 
report establishing a causal relationship between gut microbiota/
serum metabolites and ICH. In our MR study, we excluded unknown 
bacteria or metabolites and found associations between 15 gut 
microbiota taxa and 11 serum metabolites with ICH (Figure 6). After 
performing Bonferroni correction, the genus Eubacterium 
xylanophilum and Isovalerate were found to have a strong causal 
relationship with a higher risk of ICH, as well as the genus 
Senegalimassilia with a strong causal relationship with a lower risk of 
ICH. Sensitivity analyses further supported this conclusion.

However, in the validation set, following Bonferroni correction 
(0.05/17), only the genus Ruminococcaceae UCG011 remains 
significantly associated with a reduced risk of ICH. Discrepancies in 
the results between the two datasets may be attributed to a relatively 
lower number of intracerebral hemorrhage cases in the UK Biobank 
and incomplete updates in the database. The FinnGen R9 Biobank, 
being the most recent and having the largest number of ICH cases, 
provides potentially more comprehensive results. Consequently, the 
subsequent discussion primarily focuses on the relevant findings from 
the FinnGen database.

The relationship between these florae in our findings and ICH has 
rarely been reported. Previous studies demonstrated significant 
differences in the overall abundance of gut microbes, as well as specific 
flora, in patients with ICH compared to healthy control individuals. A 
prior case–control study revealed that an enriched presence of 
Enterococcus and a depleted presence of Prevotella increased the risk 
of ICH (Luo et  al., 2022). Another prospective case–control study 
depicted that Escherichia/Shigella, Enterococcus Peptoniphilus, and 
Ezakiella, are more abundant in the bacterial flora subsequent to ICH 
(Haak et al., 2021). Multi-omics research revealed a significant decrease 
in the phylum of Firmicutes and a significant increase in Bacteroidetes 
in ICH patients. At the genus level, Streptococcus, Lactobacillus, 
Bifidobacterium, and Akkermansia were found to be abundant in ICH 
patients (Chen et al., 2022). Moreover, Li et al. (2022b) and Xiong et al. 
(2022) reported that the abundance of Akkermansia in patients with 
parenchymal hemorrhage was significantly increased. Several animal 
model studies consistently indicated that ICH is characterized by a 
significant increase in Actinomycetes, Bacteroidetes, and Firmicutes, 
with minor changes in other bacterial populations (Yu et al., 2021a; 
Zhang et al., 2021a). The gut microbiota affects the occurrence of ICH, 
and similarly, patients with ICH also exhibit alterations in their gut 
microbiota. Our study presents divergent findings, revealing that an 
enriched abundance of the genus Eubacterium xylanophilum increases 
the risk of ICH. In contrast, an enriched abundance of the genus 
Senegalimassilia decreases the risk of ICH. Among the 13 meaningful 
results that we  excluded, some findings support the results of the 
aforementioned study. However, potentially meaningful results may 
have been lost due to the overly stringent nature of the Bonferroni 
correction. These findings are not currently discussed in this article, 
but they can provide directions for future research. The genus 
Eubacterium xylanophilum is considered a pathogenic bacterium in the 
gut and was found to be associated with diseases such as colitis in mice 
(Li et al., 2022a) and upper urinary urolithiasis (Zhang et al., 2023). 

FIGURE 5

Casual effects of ICH on serum metabolites. The Bonferroni-corrected p-value for serum metabolites was 005/451 (1.11 × 10).

https://doi.org/10.3389/fmicb.2024.1257405
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Zhang et al. 10.3389/fmicb.2024.1257405

Frontiers in Microbiology 08 frontiersin.org

Senegalimassilia is a genus of actinobacterial strains that are Gram-
positive, anaerobic, and coccobacilli-shaped (Han et al., 2020). The 
genus Senegalimassilia was found to be a protective factor for various 
diseases, including hypertension (Li et al., 2023b), allergic conjunctivitis 
(Liu et al., 2023). Based on our findings, this could potentially provide 
a strategy for extracting this bacterium from fecal samples in the future 
to prevent a specific disease. Although the microbiota’s heterogeneity 
and interindividual differences diminish the statistical power of 
microbiota analysis, it still offers a favorable basis for exploring the 
causal relationship between bacterial taxa and ICH.

Emerging research suggested that the gut microbiome can 
influence various physiological processes, including neurological 
functions, metabolism, and immune responses (Yu et  al., 2022). 
Regarding neural function, the gut microbiota may form a direct 
functional link with the central nervous system (CNS) through the 
gut-brain axis (Berer et al., 2011). The gut microbiota plays a key role 
in CNS diseases, such as ischemic stroke (Chen et al., 2019), and ICH 
(Yu et al., 2021b), which may be related to neuroinflammation. The 
potential mechanism by which the gut microbiota influences the risk 
of ICH may include neuroinflammation modulation through its 
impact on T-cell homeostasis. When there is an imbalance in the gut 
microbiota, inflammatory factors in the gut, such as T helper type 1, 
Th17, and interleukin-6, are released in significant amounts. The 
release of these inflammatory factors causes alterations in intestinal 
permeability, barrier dysfunction, and the extravasation of 
inflammatory substances into the peripheral blood, which are then 

transported to the blood–brain barrier. Finally, these factors influence 
the occurrence, progression, and prognosis of ICH within the 
cerebrovascular system (Zou et  al., 2022). Furthermore, the gut 
microbiota functions like an endocrine organ that produces bioactive 
metabolites, including short-chain fatty acids, neurotransmitter 
precursors, secondary bile acids, trimethylamine-N-oxide, and 
lipopolysaccharide (Xu et al., 2020). Gut-derived metabolites, along 
with other blood metabolites in the human body, play a part in the 
onset and development of diseases. While the exact mechanisms are 
unknown, these metabolites have the potential to impact ICH 
outcomes by modulating neuroinflammation, influencing brain 
function, and possibly contributing to cardiovascular factors (Wang 
and Zhao, 2018). The gut-brain connection in ICH is an evolving area 
of research, and further studies are warranted to understand its 
implications fully.

Regarding serum metabolites, the association between these 
metabolites in our findings and ICH has rarely been reported. 
Previous studies demonstrated the crucial role of blood metabolites in 
the early diagnosis and prognosis of patients with cerebral 
hemorrhage. A prior metabolomic analysis of patients with ICH 
revealed that the 20-hydroxy-leukotriene B4 metabolite may function 
as a potential biomarker for ICH diagnosis and risk assessment 
(Zhang et  al., 2021b). Another metabolomic study aimed at 
distinguishing between cerebral hemorrhage and acute ischemic 
stroke confirmed the potential roles of 11 metabolites (Zhang et al., 
2017). However, different outcomes have been reported. A 

FIGURE 6

Casual links between gut microbiota, serum metabolites and intracerebral hemorrhage.
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case–control study demonstrated that the 225 metabolic markers 
showed no concordant associations with ICH (Holmes et al., 2018). 
Our research findings indicated that 11 serum metabolites are 
associated with ICH. However, after Bonferroni correction, only 
isovalerate remains strongly correlated with ICH, and an elevated level 
of isovalerate increases the risk of ICH by more than sevenfold. 
Isovalerate is a short-chain fatty acid produced by gut microbiota 
(Fawad et  al., 2022). Previous studies revealed that there is an 
association between isovalerate and adenomatous polyposis (Niccolai 
et al., 2019). However, no clinical or experimental studies supported 
the claim that ICH affects blood isovalerate levels. Based on our 
findings, this opens up the possibility for future research to investigate 
the use of this biomarker in blood assays for the prevention of 
ICH. However, additional studies are required to validate its efficacy.

The relationship between gut microbiota, serum metabolites, and 
ICH has remained controversial due to the possibility of confounding 
risk factors in observational studies. Thus, in this research, an MR 
study was conducted to investigate this association in order to address 
this issue. Besides, a reverse MR analysis was performed to account for 
reverse causality. The reverse MR analysis produced significant results 
that contradicted our main findings, bolstering our conclusions. 
Additionally, this suggested that while gut microbiota and metabolites 
influence ICH, ICH also exerts an impact on gut microbiota and 
metabolites. Moreover, to enhance the reliability of our findings, the 
causal relationships between significant gut microbiota and serum 
metabolites were assessed. The results revealed no causal relationship 
between them, suggesting that they independently contribute to 
ICH. In a sense, this research provides a theoretical foundation for 
follow-up research.

Nevertheless, this study has several limitations. First, the GWAS 
data of exposure (gut microbiota and metabolites) and outcome (ICH) 
were obtained from publicly available summary data, and the potential 
overlap in samples introduces a challenging risk of confounding bias 
(Burgess et  al., 2019). Second, the study participants were 
predominantly individuals of European descent. Considering that ICH 
is a global public health issue, it is important to evaluate the 
generalizability of our findings to other populations. Third, to enhance 
the reliability of our results, multiple corrected analyses were employed. 
However, the stringent multiple testing correction may overlook 
potential bacterial strains or metabolites causally linked to ICH. Fourth, 
we did not conduct further stratified analyses on the data, such as age 
or gender stratification among ICH patients, to investigate potential 
differences. Finally, due to the limited variance explained by SNPs or 
sample size limitations in GWAS results, some of our MR analyses may 
have lacked sufficient power to detect small effects. Despite these 
potential limitations, this study provides the best available evidence on 
the causal impacts of gut microbiota and serum metabolites on the risk 
of ICH. Prospective studies to investigate the underlying mechanisms 
of treatment or prevention strategies are required to develop effective 
and feasible treatment or prevention strategies.

5 Conclusion

This two-sample MR study revealed the significant role of gut 
microbiota and serum metabolites in the risk of ICH. The identification 
of the genus Eubacterium xylanophilum, genus Senegalimassilia, and 

isovalerate as strong causal factors, as well as the nominal causality of 
other microbiota or metabolites, adds to our understanding of the 
complex interplay between the gut, metabolites, and the brain in ICH 
development. Furthermore, they offer valuable insights and strategies 
for ICH prevention and treatment. Further research is warranted to 
delve deeper into the mechanisms underlying these findings.
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