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Viable microorganisms and a diverse microbial ecosystem found in human

milk play a crucial role in promoting healthy immune system and shaping the

microbial community in the infant’s gut. Culturomics is a method to obtain

a comprehensive repertoire of human milk microbiota. However, culturomics

is an onerous procedure, and needs expertise, making it difficult to be widely

implemented. Currently, there is no efficient and feasible culturomics method

specifically designed for human milk microbiota yet. Therefore, the aim of

this study was to develop a more efficient and feasible culturomics method

specifically designed for human milk microbiota. We obtained fresh samples of

human milk from healthy Chinese mothers and conducted a 27-day enrichment

process using blood culture bottles. Bacterial isolates were harvested at different

time intervals and cultured on four different types of media. Using matrix-

assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-

TOF MS) analysis, we identified a total of 6601 colonies and successfully

obtained 865 strains, representing 4 phyla, 21 genera, and 54 species. By

combining CBA and MRS media, we were able to cultivate over 94.4% of

bacterial species with high diversity, including species-specific microorganisms.

Prolonged pre-incubation in blood culture bottles significantly increased the

number of bacterial species by about 33% and improved the isolation efficiency

of beneficial bacteria with low abundance in human milk. After optimization,

we reduced the pre-incubation time in blood culture bottles and selected

optimal picking time-points (0, 3, and 6 days) at 37◦C. By testing 6601 colonies

using MALDI-TOF MS, we estimated that this new protocol could obtain more

than 90% of bacterial species, reducing the workload by 57.0%. In conclusion,

our new culturomics strategy, which involves the combination of CBA and

MRS media, extended pre-incubation enrichment, and optimized picking time-

points, is a feasible method for studying the human milk microbiota. This

protocol significantly improves the efficiency of culturomics and allows for the

establishment of a comprehensive repertoire of bacterial species and strains in

human milk.
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Introduction

Breast milk is considered the best natural food for infants due
to its complex nutritional and bioactive composition (Moubareck,
2021). The World Health Organization recommends exclusive
breastfeeding for the first 6 months of a baby’s life to meet
their nutritional needs (Bosi et al., 2016). While breast milk
was once believed to be sterile, recent evidence suggests that
it contains diverse microbial communities, primarily belonging
to Firmicutes, Proteobacteria, and Actinomycetota (Marin-Gómez
et al., 2020). Exclusively breastfed infants consume approximately
800 mL of breast milk per day, which contain 1 × 104

−1 × 107

bacteria. Breast milk provides infants with a continuous supply
of beneficial bacteria (Milani et al., 2017; Pannaraj et al., 2017),
which play a role in the colonization and development of gut
microbes, immune system maturation, cognitive development,
and protection against diseases such as obesity, gastrointestinal
disorders, and type 2 diabetes (Marseglia et al., 2015; Unar-
Munguía et al., 2017; Ortega-García et al., 2018; Notarbartolo et al.,
2022; Stinson and Geddes, 2022).

Advances in molecular technologies, particularly
metagenomics, have revolutionized our understanding of microbial
communities (Nayfach et al., 2021) and their impact on health
and disease (Lagier et al., 2016). However, these new technologies
are often plagued by inadequacies and biases, especially amplicon
sequencing technologies, including high detection limits and DNA
extraction errors that mask the true nature of bacterial diversity
in humans and the environment (Hugon et al., 2015; Almeida
et al., 2019; Chang et al., 2019). Even among bacterial strains of the
same species, there are many biological phenotypic differences that
cannot usually be distinguished by amplified sequences (Forster
et al., 2019). Additionally, the analysis of metagenomic datasets
heavily relies on high-quality reference databases (Quince et al.,
2017), which can be complemented by traditional culture methods
(Lagier et al., 2012).

Microbial culturomics is a highly effective method to obtain
bacterial strains in a microbiota by isolating microorganisms
on a large scale (Lagier et al., 2016, 2018), allowing for the
identification of species with low abundance that are not detectable
by metagenomics (Seck et al., 2019). A variety of effective
culturomics techniques have been developed in the past few years
to isolate gut bacteria. For example, one strategy involves using
an LpxC enzyme inhibitor to prevent fast-growing bacteria from
dominating the culture (Hou et al., 2019). Another approach
is to use immunomagnetic beads to selectively isolate potential
pathobionts for a particular disease of interest (Huang Z. et al.,
2023). However, as our knowledge of microbiota continues
to expand, traditional isolation strategies for discovering new
microbes become more challenging. Therefore, there is a need for
the development of more effective culturomics methods. Although
culturomics is not sufficient to quantify the abundance of each
species, it is the best method to obtain a live repertoire of the
microbiota (Dickson, 2017). Therefore, to interpret the microbiota
spectrum and decipher any microbial mechanism of action, it
is essential to acquire a live microbial communities possible
(Togo et al., 2019).

Culture-based microbiota methods offer two main advantages
over sequencing technique. Firstly, they allow for the preservation

of bacterial species from samples, which can then be used for
further research such as genetic and phenotypic characterization of
individual microbe (Lebeis, 2014; Almeida et al., 2019). Secondly,
these methods are essential for investigating the impact of breast
milk microbes on maternal and infant health at the strain
level.

Previous studies have identified optimal culture conditions
for different types of bacteria, including those found in the
intestines and human fecal samples (Lagier et al., 2012, 2015).
These studies have extended the pre-culture time, used specific
nutrients (rumen fluid and sheep blood), and optimized the
timing of sample collection to increase the successful rate of
bacterial isolation. Chang et al. (2019) optimized the culturomics
strategy in human fecal samples to pick more than 90% of
bacterial species and reduce the workload by 40% by extending
the pre-incubation time, supplementing with fresh medium
and picking at optimal time-points. Prolonged incubation in
blood culture bottles is a key step in the culturomics strategy
used for human fecal samples (Lagier et al., 2012, 2015).
However, there are no existing reports on using prolonged
pre-incubation to isolate the human milk microbiota. During
lactation, it was discovered that Bifidobacterium lactis Probio-
M8 can transfer to breast milk through the entero-mammary
route (Zhong et al., 2022). This suggests that it may be
possible to cultivate microorganisms in milk using blood
culture bottles for preincubation that mimic the intestinal
environment.

The aim of this study was to develop a culturomics strategy
specifically designed for the breast milk microbiota. In this
research, we conducted a systematic comparison of bacterial
species isolated from breast milk using various culture media.
This comparison involved the incorporation of sheep blood
in blood culture bottles, extending the pre-incubation time,
and implementing sampling strategies at different time points.
Ultimately, we successfully established a viable culturomics
strategy to characterize the breast milk microbiome, consequently
enhancing the effectiveness of culturomics and providing a robust
foundation for future research.

Materials and methods

Samples collection

Breast milk samples were obtained from 9 healthy lactating
mothers in Beijing who were 42 days postpartum. The volunteers
were screened for various exclusion criteria including mastitis,
infectious diseases (such as tuberculosis, viral hepatitis, and HIV),
cardiovascular disease, metabolic disease (like diabetes), mental
disorders, cancer or other serious diseases, and ongoing studies
involving nutritional or pharmacological interventions. To collect
the milk samples, the first 3 drops of foremilk were discarded, and
the breast was cleaned with a sterile saline swab. Approximately
5 mL of milk was then collected by pump expression using sterile
collection tubes with a volume of 15 mL. The samples were stored in
a zip bag under anaerobic conditions at a temperature of 4◦C after
collection and transported to the laboratory within 2 h for testing.
This study protocol was approved by the Ethics Committee of the
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Chinese Centre for Disease Control and Prevention (Beijing, China,
agreement no. 2023-001) and all volunteers provided written
informed consent prior to participation.

Cultivation media

Columbia blood agar (CBA, OXOID, United Kingdom) is a
universal medium for the cultivation of Streptococci, Staphylococci
and other related bacteria (Schwab et al., 2019), while BHIS agar,
brain-heart extract medium (BHI, OXOID, United Kingdom)
supplemented with 0.01% hemin chloride (Sigma-Aldrich,
United Kingdom) and 0.01% vitamin K1 (Source leaf organism,
Beijing, China) for non-fastidious bacteria (Moossavi et al.,
2021). The MRS agar, de Man, Logosa and Sharpe agar (MRS,
Oxoid, United Kingdom) with 3% L-cysteine-HCl (Sigma-
Aldrich, United Kingdom) for lactic acid bacteria (Moossavi
et al., 2021) and TOS agar, Transgalactosylated oligosaccharides
(TOS, Millipore, United Kingdom) with 0.04 g/mL mupirocin
(Sangon Biotech, Shanghai, China) agar for Bifidobacterium
(Margolles and Ruiz, 2021).

Prolonged pre-incubation

Fresh breast milk was diluted 10-fold and 100 µL of each
sample dilution was cultured on CBA, BHIS, MRS, and TOS agar
plates. After 48−72 h of aerobic incubation at 37◦C and anaerobic
incubation (80% N2, 10% H2, and 10% CO2) at 37◦C, colonies were
identified by MALDI-TOF MS EXS2000 (Zybio Inc., Chongqing,
China). The blood culture bottle consists of: peptone, beef paste,
yeast powder, gelatine peptone, sodium chloride, glucose. 1 mL of
each sample was also added to the blood culture bottles (Antobio,
Zhengzhou, China) supplemented with 10% skim sheep blood
(Baote Medical, Beijing, China) and incubated in an anaerobic
incubator at 37◦C (Ruskinn, United Kingdom). Samples were
extracted from the pre-cultures at 6 time points on the 3rd,
6th, 9th, 15th, 21st, and 27th day post pre-incubation. The pre-
incubation suspension was serially diluted 10-fold to 10−10-fold
and 100 uL of each dilution was plated on CBA, BHIS, MRS, and
TOS agar plates and incubated anaerobically at 37◦C for 72 h. The
colonies were then picked and identified by MALDI-TOF MS. After
our initial identification, we would place the plates in anaerobic
conditions to continue to observe if some slow-growing strains
continued to grow.

Colony picking strategies

Colony picking was performed according to the method of
Chang et al. (2019) with some modifications. Plates containing
100−300 clones were selected for colonies picking using two
methods. One method is called “experienced colony picking,”
which means picking according to the size, color, and morphology
of the colonies. With this method, 2−3 colonies with the same
feature were picked. Another method is to pick all the colonies on
the plate, which is called “picking all.” To reduce the workload,
the 0 d samples were all selected by the “picking all” method,

and other sample plates for the 3rd, 6th, 9th, 15th, 21st and
27th day post pre-incubation were carried out by “experienced
picking.”

MALDI-TOF MS identification

Colonies were identified using MALDI-TOF MS. Each deposit
was covered with 1 µL matrix solution (saturated α-cyano-4-
hydroxycinnamic acid in 50% acetonitrile and 2.5% trifluoroacetic
acid) and dried at room temperature. MS data were analyzed using
MDT Master (version 1.1). E. coli ATCC 25922 was used for mass
calibration and optimization of instrument parameters to achieve
a mean deviation in mass-to-charge ratio of less than 300 ppm
after correction. An isolate was then labeled as correctly identified
at the species level if at least one of the colony spectra had a
score >2.0 and another of the colony spectra had a score >1.7. If
the species could not be accurately identified by MALDI-TOF MS
after three attempts, the isolate was identified by 16S rRNA gene
sequencing analysis.

Statistical analysis

Statistical analyses were performed using SPSS statistics 26.0.
Significant differences at P < 0.05 between the means were
calculated with One-way analysis of variance (ANOVA). GraphPad
Prism (v.8) was used for graphing.

Results

Composition of culturable human milk
microbiota under aerobic and anaerobic
conditions

The experimental procedure can be seen in Figure 1. In
summary, fresh milk samples were subjected to incubation
under aerobic and anaerobic conditions. This included
directly inoculating the samples onto four different agar plates.
Additionally, pre-incubation was done in blood culture bottles
containing 5% sheep blood under anaerobic conditions, and
samples were taken at different time points. These samples were
then sub-cultivated on four different types of media. The colonies
that grew were identified using either MALDI-TOF or 16S rRNA
gene sequencing. All identification results were analyzed from
colonies picked within 72 h, and no new species were identified
from colonies picked during the subsequent 48-hour incubation
period. In this study, fresh breast milk samples obtained on day
0 served as control samples. The bacterial species isolated from
pre-incubated samples were compared to those isolated from fresh
breast milk.

Breast milk contains different types of bacteria that require
different levels of oxygen to survive. The proportion of anaerobic
bacteria in breast milk can provide insight into its overall quality
(Jiménez et al., 2015; Patel et al., 2017; Togo et al., 2019). To
study the bacterial composition of fresh breast milk, we conducted
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FIGURE 1

Experimental flow chart of culturomics for Human milk. Fresh milk samples were collected by pump expression and stored in a zip bag under
anaerobic conditions. Direct inoculation: direct inoculation of the fresh milk sample was carried out on four different agar under aerobic and
anaerobic conditions. Pre-incubation of blood culture bottles and inoculation on agar: The sample was pre-incubated in blood culture bottle
supplemented with 5% sheep blood at 37◦C, and extracted at different time-points (3, 6, 9, 15, 21, and 27 days) and cultured on four different media
under anaerobic conditions. After 48–72 h of incubation in an anaerobic chamber, the bacterial colonies were sub-cultured. The identification of
the colonies involved using MALDI-TOF mass spectrometry. In cases where the colonies could not be identified, they were further evaluated using
16S rRNA gene sequencing.

experiments using both aerobic and anaerobic conditions. We
collected 3,588 bacterial colonies from four different culture media
using a method that captured all the bacteria. We then identified the
bacteria from nine fresh breast milk samples using MALDI-TOF
MS. We found 14 different genera and 34 species of bacteria. Our
analysis showed that 50% of the bacterial species were only found
under anaerobic conditions, including notable examples such
as Lactobacillus gasseri, Bifidobacterium adolescentis, Veillonella
atypica, and other typical anaerobes. In contrast, 5.9% of the
species were only detected under aerobic conditions (Figure 2A).
We also identified 15 species that were present in both aerobic
and anaerobic conditions, including Staphylococcus epidermidis,
Streptococcus salivarius, and Escherichia coli (Figure 2B). Overall,
94.1% of the total bacterial species were isolated from fresh
breast milk under anaerobic conditions. Based on our findings, we
optimized the culturomics method for studying the human milk
microbiota under anaerobic conditions to improve efficiency and
reduce workload.

An appropriate combination of culture
media for human milk microbiota

In this study, we examined different media for isolating breast
milk microbes. We measured viable cell counts and bacterial species
numbers to determine the most suitable media. We observed a
significant increase in viable bacteria over a 27-day pre-incubation
period compared to fresh breast milk, as shown in Figure 3A.
CBA agar had the highest number of viable bacteria, followed by
BHIS, and TOS agar had the lowest. The viable cell counts initially
increased and then decreased, with CBA reaching a peak on the 6th
day of pre-incubation. We isolated a total of 54 bacterial species
from the four media. CBA had the highest percentage (87.0%),
followed by BHIS and MRS (Figure 3B). We found four additional
species, including specific Lactobacillus species, in MRS compared
to TOS. No specific species were obtained from TOS. Overall, we
isolated 51 species from CBA and MRS, accounting for 94.4% of all
bacterial species in this study. The combination of CBA and MRS
could be an optimized media for breast milk culturomics, capturing
the microbial diversity of breast milk.

An optimized picking time-points of
pre-incubation in blood culture bottle

A total of 6,601 colonies from 54 different species were
identified at seven time points. Figure 4A shows the number
of colonies and the distribution of bacterial species. On day 0,
we isolated a maximum of 32 bacterial species. From days 3
to 27 (Figure 4B), we obtained 23 new species, indicating that
the pre-incubation procedure significantly increased the likelihood
of isolating additional bacterial species. The number of species
increased most rapidly during the first 6 days of pre-incubation,
with proportions of 57.4, 14.8, and 18.5% on days 0, 3, and 6,
respectively. However, as time progressed, the rate of obtaining
new species slowed down or even ceased. This may be due to
the depletion of nutrients in the blood culture bottles and the
accumulation of bacterial metabolites, which could not sustain the
necessary nutrient requirements for bacterial growth. More than
90% of the bacteria species identified through the seven time-
point sampling method could be isolated using the optimized
combination of the three time-point strategy (0, 3, and 6 days).

Figure 4C shows eight species that were consistently
found at all seven time points in the study. These include
Staphylococcus epidermidis, Staphylococcus lugdunensis,
Streptococcus parasanguinis, Lactobacillus gasseri, Enterococcus
faecalis, Enterococcus faecium, Veillonella atypica, and Klebsiella
pneumoniae. A total of 13 specific bacterial species were
isolated from the samples taken at four time points (0, 3, 6,
and 9 days), with the highest percentage (69.2%) found in fresh
milk samples. On day 0, nine specific bacterial species were isolated,
including Bifidobacterium adolescentis, Actinomyces graevenitzii,
Corynebacterium kroppenstedtii, Corynebacterium simulans,
Corynebacterium accolens, Rothia kristinae, Staphylococcus
haemolyticus, Staphylococcus hominis, and Enterococcus mundtii.

Beneficial bacteria, such as Lactobacillus, Bifidobacterium,
Bacteroides, and Akkermansia muciniphila, are typically present
in breast milk in very small amounts (Togo et al., 2019; Lugli
et al., 2020). While sequencing technology (Togo et al., 2019;
Lugli et al., 2020) can identify these bacteria in breast milk,
directly isolating them from fresh breast milk without pre-
incubation enrichment is challenging. Our experiment yielded
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FIGURE 2

(A) Human milk microbiota composition of fresh breast milk samples at genus level isolated only from the anaerobic condition, only from the
aerobic condition, and from both conditions. (B) Bacterial species composition in fresh breast milk samples grown only in anaerobic condition, only
in the aerobic condition, and in both conditions.

FIGURE 3

(A) Viable cell counts pre-incubated in blood culture bottles on four different media over time under anaerobic conditions. (B) Cultivable bacteria
species numbers of human milk microbiota on different media under anaerobic conditions.

similar results, with Lactobacillus gasseri and Bifidobacterium
adolescentis only being isolated from two fresh samples, without
the presence of other typical infant-type species. However, through
pre-incubation enrichment, we were able to successfully isolate
Bifidobacterium longum, Bifidobacterium breve, Bifidobacterium
catenulatum, Ligilactobacillus salivarius, Limosilactobacillus reuteri,
Bacteroides ovatus, and other strains from additional samples.
These results indicate that pre-incubation enrichment can improve
the success rate of isolating beneficial bacteria in breast milk.

Overview of the cultivable microbiota
composition in breast milk

In this study, we isolated a total of 865 strains from nine
breast milk samples. These strains belonged to 4 phyla, 17

families, 23 genera, and 54 species. As shown in Figure 5, the
majority of the bacteria were from the phyla Firmicutes (57.4%),
Actinomycetota (33.3%), Proteobacteria (7.4%), and Bacteroidota
(1.9%). Firmicutes mainly consisted of Streptococcaceae (32.3%)
and Staphylococcaceae (19.4%), both of which were parthenogenetic
anaerobes, followed by Lactobacillaceae (12.9%) and Veillonellaceae
(12.9%).The second most abundant phylum, Actinomycetota,
consisted of six families. The most frequently found genera in
breast milk were Streptococcus, Staphylococcus, and Escherichia.
The isolation method used in this study significantly increased
the probability of detecting beneficial bacteria. The proportions of
Bifidobacterium, Ligilactobacillus, and Limosilactobacillus increased
to 44% (4/9), 33% (3/9), and 22% (2/9), respectively, (Figure 6A)
surpassing the previously reported probabilities of isolating
Bifidobacterium in breast milk samples, which ranged from 1.7 to
10.9% (González et al., 2013; Sakwinska et al., 2016). Sample 20
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FIGURE 4

(A) Bacteria clones isolated from breast milk samples over time under anaerobic conditions. The bacteria identified at each time point are
represented by red horizontal lines. The color scale at the right side of the figure indicates the number of bacterial clones isolated at each time
point. (B) Distribution proportion and number of new bacterial species separated at each time point. (C) Upset plot showing how many species in
different culture time were identified and their overlap. Horizontal bars show the total number of species in different culture time. Vertical bars show
the number of same species at either one or more time-points, which are represented by multiple dots connected by a filled line.
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FIGURE 5

The bacteria species identified from all breast milk samples under anaerobic conditions. The outermost circle shows all 54 of the bacteria that were
identified, with the four colors representing the phylum to which the bacteria belong. The evolutionary relationship between the bacterial species is
shown by the lines in the middle.

FIGURE 6

(A) Heatmap of the correlation between species numbers and breast milk samples under anaerobic conditions. The bacteria identified from each
sample are represented by red horizontal lines. The color scale at the right side of the figure indicates the number of bacterial species isolated from
each sample. (B) Human milk microbiota composition at genera level in each human milk sample. (C) Proportional distribution of bacterial species
based on the separation source of breast milk samples.
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exhibited the highest diversity with 15 genera and 27 species, while
sample 21 had the lowest diversity with only 7 genera (Figure 6B).
Additionally, 41.5% of the bacterial species were found exclusively
in a single milk sample, indicating a high variability of specific
bacterial species in breast milk samples (Figure 6C).

Discussion

Culturomics is a technology that combines various culture
conditions with MALDI-TOF mass spectrometry and 16S rDNA
sequencing to identify pure bacteria from complex ecosystems
(Lagier et al., 2018). Pure bacterial cultures serve as a powerful tool
in microbiome research, particularly for investigating the effects
of host-microbe and microbe-microbe interactions. Although
culturomics is widely applied to investigate microorganisms in the
gut, vagina, mouth, and urinary tract (Wein et al., 2015; Fenollar
and Raoult, 2016; Si et al., 2017; Chang et al., 2019), there have been
relatively few studies on its application in human milk microbiota
(Jost et al., 2013; Schwab et al., 2019; Treven et al., 2019). Therefore,
there is a need to develop a culturomics strategy specifically for
human milk samples. This would help establish a comprehensive
microbial repertoire and uncover new insights. In this study, we
propose a protocol to maximize the diversity of isolated human
milk microbes and facilitate targeted selection of specific species.

Metagenomics and amplicon sequencing techniques uncover
a broader range of bacterial diversity in fecal, vaginal, and breast
milk samples compared to methods that rely on cultivation.
However, cultivation-independent approaches may be ineffective
for microorganisms that have not been previously cultured,
isolated, and identified. Thus, we developed a culture-based
strategy to analyze the breast milk microbiota under multiple
conditions to capture viable microbial diversity through extensive
isolation procedures. Traditional pure culture methods typically
result in a limited number of species isolated from the breast milk
microbiota. For example, Treven merely identified 25 different
genera from 33 samples (Treven et al., 2019), whereas our study
utilized a more efficient method and isolated 54 species from
23 genera in 9 samples. These findings indicate that improving
culture methods can lead to a more comprehensive understanding
of cultivable microorganisms in breast milk.

Previous studies have identified 820 types of bacteria and
archaea in human milk, with the majority belonging to the
Proteobacteria and Firmicutes phyla, specifically Streptococcus and
Staphylococcus (Togo et al., 2019). Anaerobic microorganisms
like Bifidobacterium and Lactobacillus are important for maternal
and infant health (Lyons et al., 2020; Selma-Royo et al., 2021).
However, these microorganisms were found in lower amounts in
cases of mastitis and breast abscesses compared to healthy controls.
Certain bacteria, such as Bifidobacterium breve, Bifidobacterium
bombi, Lactobacillus fermentum, and Akkermansia muciniphila,
were not found in mastitis and breast abscess samples (Togo
et al., 2019). Recent studies have confirmed the importance of
maternal probiotics for human health (Liu et al., 2020; Hou et al.,
2023). Bifidobacterium lactis Probio-M8 can prevent respiratory
infections in infants and improve symptoms of certain conditions
like Alzheimer’s disease and Parkinson’s disease by regulating
the gut microbiota (Cao et al., 2021; Mageswary et al., 2021;

Sun et al., 2022). When lactating mothers were given Probio-
M8, it was detected in both their milk and their infants’
fecal samples, indicating that it was transferred to the infant’s
gut through breastfeeding (Zhong et al., 2022). Lactobacillus
fermentum CECT5716 has also shown potential beneficial effects
on inflammatory processes and the immune response, including
mastitis and pediatric infections (Rodríguez-Sojo et al., 2021).
In our study, we isolated a total of 6601 clones from fresh
mature milk, mostly belonging to the Firmicutes, Actinomycetota,
Bacteroidota, and Proteobacteria. Similar to previous studies,
we found that Staphylococcus and Streptococcus were the most
common genera in human milk, while Bifidobacterium and
Lactobacillus were less abundant. We only found certain potential
probiotic strains, like Bifidobacterium longum, Bifidobacterium
adolescentis, and Lactobacillus gasseri, in a few milk samples.
However, Staphylococcus aureus, Streptococcus agalactiae, and
Escherichia coli, which can be both commensal and pathogenic,
were the most common species found in all samples, regardless of
the health status.

There are differences in the detection limits between high-
throughput sequencing and culturomics methods, and it is
commonly observed that sequencing and culturomics approaches
complement each other rather than being inclusive in revealing
microbial composition (Feehily et al., 2023). The objective of
our study is to investigate cultureomics strategies specifically
designed for cultivating microorganisms present in breast milk.
The culturomics method isolates and identifies microorganisms
based on their unique characteristics (Sakwinska and Bosco, 2019).
However, it is important to note that this method is limited
to microorganisms that can grow in specific culture media. In
this study, we compared different culture media to find the
best combination for isolating microorganisms in breast milk.
We measured viable cell counts and bacterial species numbers
to evaluate the cultivation characteristics of the human milk
microbiota on the four different media. The results showed that
the number of viable cells in breast milk samples varied among
different populations. For example, breast milk samples from
Slovenian and Swiss mothers had viable cell counts ranging from
1.2 to 5.5 log CFU/mL and log 2.6 to 6.1 CFU/mL, respectively,
(Schwab et al., 2019; Treven et al., 2019). Our data from Chinese
breast milk samples showed bacterial counts ranging from log
2.4 to 5.3 CFU/mL, which is consistent with previous studies.
As the pre-incubation time increased, we observed that CBA had
significantly higher live bacteria counts compared to the other
three media. This suggests that CBA provided a more favorable
environment for the growth of microorganisms that prefer its
nutrients. The total number of bacteria reached its peak on the 6th
day of incubation in CBA, indicating its suitability for capturing
a wide range of microorganisms in breast milk. Furthermore, we
found that Lactobacillus gasseri, Limosilactobacillus reuteri, and
Ligilactobacillus salivarius were only detected on MRS medium,
highlighting its superiority for isolating Lactobacillus species. The
number of Bifidobacterium species isolated in CBA was comparable
to that in TOS, suggesting that CBA could replace TOS for
the isolation of Bifidobacteria in breast milk. In summary, our
findings suggest that the combination of CBA and MRS media can
effectively capture bacterial diversity and target potential probiotic
species in breast milk. This makes it an ideal combination for
culturomics studies.
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In our study, we examined ways to improve the efficiency
of isolating bacteria from human milk using culturomics.
Culturomics is a meticulous and time-consuming task that requires
careful consideration of efficiency and workload (Chang et al.,
2019; Alou et al., 2020; Huang Y. et al., 2023). To address
this challenge, we explored different picking methods, culture
enrichment, and extended incubation time. Initially, we used the
“picking all” method at the beginning and then switched to the
“experienced picking” method. Previous research has indicated
that the experienced picking method missed 32.9% of bacteria
when compared to the picking all method at a single time point.
However, as the pre-incubation time progressed, only 8.5% of the
bacteria were missed (Chang et al., 2019). Hence, we believed that
combining the experienced picking method with pre-incubation
can compensate for the deviation between experienced picking
and picking all. We also experimented with enriching blood
culture bottles and extending the incubation time. This approach
significantly increased the number of newly isolated species by
33%. We observed the highest count of viable cells on day 6
and were able to isolate 10 additional bacterial species, including
potential probiotics like Bifidobacterium longum, Bifidobacterium
catenulatum, Ligilactobacillus salivarius, and Limosilactobacillus
reuteri. Compared to traditional methods, pre-incubation with
blood culture bottles greatly enhanced the isolation efficiency of
low-abundance bacterial species in breast milk. However, we found
that prolonged incubation beyond day 6 was no longer beneficial
for bacterial growth likely due to nutrient depletion in the culture
medium. As a result, only 10% of new species were isolated in
the later phase (7−27 days) using a time-consuming approach that
yielded little success. To optimize the selection of time-points, we
compared bacterial species isolated at seven different incubation
times. Our findings revealed that 57.4, 14.8, and 18.5% of the total
bacterial species were only isolated at day 0, 3, and 6, respectively.
This indicates that 90.7% of the workload was completed within
the first 43% of the total timeframe. By combining pre-incubation
with blood culture bottles and selecting optimal time-points (0, 3,
and 6 days), our new protocol enabled the isolation of more than
90.0% of the identified bacteria while reducing the workload by
almost 57.0% compared to the original method. Therefore, our new
protocol allows for the isolation of more new species from breast
milk with the same amount of work effort.

Conclusion

Culturomics is an effective way to study the microorganisms
in human milk at the strain level. Our method combines culture
and MALDI-TOF to isolate microorganisms from human milk. By
using blood culture bottles, two culture media (CBA and MRS),
and optimal time-points (0, 3, and 6 days), we can improve the
efficiency of isolation and reduce the workload. However, there are
limitations to our approach. We did not include control samples
from the teat canal or skin, which could affect the accuracy of our
findings. Using high-throughput sequencing methods in addition
to culturomics would provide more comprehensive analysis.
Further studies with more samples and access to high-throughput
equipment are needed to develop improved methods.
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