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Introduction: The dietary protein level plays a crucial role in maintaining

the equilibrium of rumen microbiota in yaks. To explore the association

between dietary protein levels, rumen microbiota, and muscle metabolites, we

examined the rumen microbiome and muscle metabolome characteristics in

yaks subjected to varying dietary protein levels.

Methods: In this study, 36 yaks were randomly assigned to three groups (n = 12

per group): low dietary protein group (LP, 12% protein concentration), medium

dietary protein group (MP, 14% protein concentration), and high dietary protein

group (HP, 16% protein concentration).

Results: 16S rDNA sequencing revealed that the HP group exhibited the highest

Chao1 and Observed_species indices, while the LP group demonstrated the

lowest. Shannon and Simpson indices were significantly elevated in the MP

group relative to the LP group (P < 0.05). At the genus level, the relative

abundance of Christensenellaceae_R-7_group in the HP group was notably

greater than that in the LP and MP groups (P < 0.05). Conversely, the relative

abundance of Rikenellaceae_RC9_gut_group displayed an increasing tendency

with escalating feed protein levels. Muscle metabolism analysis revealed that

the content of the metabolite Uric acid was significantly higher in the LP group

compared to the MP group (P < 0.05). The content of the metabolite L-(+)-

Arabinose was significantly increased in the MP group compared to the HP

group (P < 0.05), while the content of D-(-)-Glutamine and L-arginine was

significantly reduced in the LP group (P < 0.05). The levels of metabolites 13-

HPODE, Decanoylcarnitine, Lauric acid, L-(+)-Arabinose, and Uric acid were

significantly elevated in the LP group relative to the HP group (P < 0.05).

Furthermore, our observations disclosed correlations between rumen microbes

and muscle metabolites. The relative abundance of NK4A214_group was

negatively correlated with Orlistat concentration; the relative abundance of

Christensenellaceae_R-7_group was positively correlated with D-(-)-Glutamine

and L-arginine concentrations.
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Discussion: Our findings offer a foundation for comprehending the rumen

microbiome of yaks subjected to different dietary protein levels and the

intimately associated metabolic pathways of the yak muscle metabolome.

Elucidating the rumen microbiome and muscle metabolome of yaks may

facilitate the determination of dietary protein levels.

KEYWORDS

yaks, protein levels, muscle, rumen, microbiota, metabolomics yaks, metabolomics

1 Introduction

The yak is an indigenous livestock species native to the Tibetan
Plateau and serves as the primary means of production and
livelihood for local herders (Long et al., 2008). Due to the seasonal
temperature variations on the plateau, the low slaughter rate of
yaks results in an imbalanced supply of yak meat. Yak housing and
fattening technology have emerged to address this issue, and their
promotion can help alleviate the problem of a disrupted seasonal
supply of yak meat in the market, fostering yak industrialization.
As the season has a limited impact on yak fattening, researchers are
increasingly concentrating on enhancing and controlling yak feed
rations.

Diet constitutes the material foundation for animals to
maintain their vital activities and production, and its nutritional
level directly influences animal growth and development
(Katongole and Yan, 2020; Wang et al., 2020). The relationship
between energy and protein ratios is a crucial indicator of
nutritional levels, and a complex interrelationship exists between
the two in ruminants. A sufficient protein level in the diet can
supply necessary nutrients for rumen microorganisms. However,
an excessive protein level in the diet may not only disrupt
the rumen environment’s homeostasis, leading to changes in
the abundance and diversity of rumen microorganisms, but also
squander feed energy and protein, thereby increasing the ecological
pressure on the environment. Thus, the judicious utilization of
protein resources in feed can reduce feed waste due to overfeeding
and decrease urinary nitrogen emissions and environmental
pollution (Jonker et al., 1998; Luo et al., 2004; Hristov et al., 2011).
Selecting the appropriate dietary protein level is essential for
optimizing yak breeding.

The rumen is a complex microbial ecosystem, with rumen
microbes playing a crucial role in the fermentation of plant proteins
(Seshadri et al., 2018; Liu C. et al., 2019). Rumen microbiota
is influenced by various factors, such as species, sex, and diet
(Ma et al., 2019; Zhang et al., 2019; Zhao et al., 2019). The
diet’s nutritional level is among the most critical factors that can
alter the relative abundance of rumen flora (Park et al., 2020;
Wang et al., 2021). Recent studies have reported that the number
of bacteria in the rumen significantly increases with elevated
dietary protein levels (Kim et al., 2014). da Silva-Marques et al.
(2018) demonstrated that high protein level diets could enhance
the relative abundance of ruminal Fibrobacter succinogenes and
decrease that of Ruminococcus albus in Nellore cattle. However,
the regulation of rumen microbiota in yaks by dietary protein levels
remains unclear; thus, our study concentrates on this area.

Intramuscular fat (IMF) and its fatty acid composition are
critical in determining the quality of meat consumed by humans
(Hausman et al., 2009). Fat content and fatty acids in ruminants
are primarily influenced by rumen diet nutrition and bacterial
metabolism (Uccioni et al., 2012). Zhang et al. (2014) reported that
supplementing high protein diets in early weaned yaks increased
intramuscular fat accumulation. These results suggest that dietary
protein concentration positively impacts growth performance,
carcass characteristics, meat yield, and meat quality in animals.
Muscle metabolites dictate the physiological and meat quality
characteristics of muscles (Ritota et al., 2012; Muroya et al., 2020),
and the properties of muscle metabolites can affect meat quality.
Prior studies have demonstrated a link between hydrophilic amino
acids, β-alanine, and the longissimus dorsi and intermuscular
muscles in beef (Argyri et al., 2011; Muroya et al., 2014). Organic
acids in beef have been shown to be an effective means of
monitoring meat quality. The percentage of amino acid content
in muscle significantly influences muscle nutritional value. Beef is
regarded as a protein-rich food with a high concentration of easily
absorbed essential amino acids in human daily nutrition due to
its amino acid composition. However, there is limited information
on the metabolomic biomarkers of dietary protein levels affecting
muscle differences in yaks and on the mechanisms of improving
muscle fatty acid distribution, amino acid composition, and other
quality parameters in yaks fed different protein levels through
rumen microbiota regulation. Consequently, we focused on the
effects of dietary protein levels on muscle metabolic responses
in yaks.

Currently, there are no established standards for the nutritional
requirements of yaks, both domestically and internationally.
Standard diets are typically formulated based on experience
or by considering the nutritional requirements of beef cattle
(National Research Council [NRC], 2007) when feeding yaks.
Investigating appropriate protein levels in diets can provide a
research foundation for ruminant studies and a theoretical basis
for ruminant production, possessing high scientific and economic
determining feeding standards for yaks. Nevertheless, the impact
of dietary protein levels on the rumen microbiota and muscle
metabolism of yaks, as well as the association between them,
remains elusive. In the present study, we hypothesized that
dietary protein levels influence the rumen microbiota and muscle
metabolites of yaks, and that a potential correlation exists between
yak rumen microbiota and muscle metabolome. Consequently,
our study offers new insights into the interactions between rumen
microbiota and muscle metabolome in yaks, which will aid in future
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diet configuration to affect rumen microbes and muscle metabolites
to enhance yak growth performance.

2 Materials and methods

2.1 Experimental design

All experimental procedures and the handling of experimental
animals were conducted in accordance with the guidelines
of the Ethics Committee. The experiment was approved by
the Animal Protection and Utilization Professional Committee
of Qinghai University (approval number: QHU20200921) and
was carried out at the standardized cattle and sheep breeding
demonstration pasture in Haiyan Jinyintan, Qinghai Province,
China. We initially selected 36 healthy 3-year-old male yaks with
similar body weight (198.8 ± 18.7 kg) from grazing pastures
and randomly divided them into three groups with 12 yaks
each: low dietary protein group (LP, 12% protein concentration),
medium dietary protein group (MP, 14% protein concentration),
and high dietary protein group (HP, 16% protein concentration).
The diets were formulated according to the Chinese Beef Cattle
Feeding Standard (NY/T815-2004), and the diet composition and
nutrient composition are shown in Table 1. All yaks were assigned
unique identification numbers and housed in individual pens
per group, with free access to water and fed twice a day at
8:00 and 17:00 with a total mixed ration. The acclimatization
period was 15 days, followed by a regular feeding period of
270 days.

2.2 Ruminal fluid and muscle sampling
and measurement

We selected the final 36 yaks for sampling. At the beginning
and end of the trial period, the test yaks were weighed on an empty
stomach before feeding, and the average daily weight gain and total
weight gain were calculated. The number of feeds and residuals
were recorded daily, and dry matter intake and F/G were calculated.
At 3 to 4 h after feeding on the 90th day of the experiment.
Crude protein (CP), neutral detergent fiber (NDF), acid detergent
fiber (ADF), calcium (Ca), and phosphorus (P) were determined
in each sample in the laboratory and ME was calculated. Mixed
feeds (100 g) were collected and dried in a forced-air oven at 60◦C
for 48 h and then ground through a 1-mm sieve before analysis.
CP, Ca and P contents were determined according to AOAC
Procedure (1990). The NDF and ADF contents were determined
by the method of Van Soest et al. (1991). All samples were collected
on the same day, and each yak was sampled only once. Ruminal
fluid was collected through a gastric tube sampler in the morning
before feeding. The initial 100 mL of the collection was discarded
and filtered through four layers of gauze, with the ruminal pH
measured immediately using a bench top acidity meter (Model
HI221, HANNA, Italy). The remaining ruminal fluid samples were
dispensed into 15 mL centrifuge tubes, immediately frozen in liquid
nitrogen, transported back to the laboratory, and stored at −80◦C.
Five rumen fluid samples from each group were randomly selected
for 16S rDNA high-throughput sequencing. The 36 yaks were
slaughtered according to GB/T 19477-2004 “Operating Procedures

TABLE 1 Ingredient of the basal diet (DM basis).

Ingredients (%) LP MP HP

Corn 23.80 16.70 22.00

Wheat 21.00 23.00 8.30

Wheat bran 4.50 1.90 4.50

Rapeseed meal 4.60 4.60 8.30

Soybean meal 7.20 14.50 18.10

5% Premix1 2.10 2.10 2.10

Calcium hydrogen phosphate 0.40 0.40 0.40

Sodium chloride 0.90 0.90 0.90

Limestone 0.60 0.60 0.60

Oat hay 17.10 10.00 10.00

Oat silage 11.80 21.70 21.20

Wheat straw 6.00 3.60 3.60

Nutrient composition (%)

Crude protein 11.98 14.00 16.02

Metabolizable energy (MJ/kg) 10.66 10.66 10.66

Neutral detergent fiber 35.52 32.92 34.58

Acid detergent fiber 20.24 19.36 20.62

Calcium 0.36 0.38 0.40

Phosphorus 0.30 0.31 0.35

LP, low dietary protein concentration group; MP, medium dietary protein concentration
group; HP, high dietary protein concentration group; DM, dry matter.
1Provided as per kilogram of premix: VA: 4000 IU, VD3 800 IU, VE 40 IU, Cu: 15 mg, Fe:
60 mg, Zn: 30 mg, Mn: 40 mg, Se: 0.3 mg, I: 0.8 mg, Co: 0.3 mg.

for Cattle Slaughter.” After the feeding period, the yaks were
deprived of food and water before slaughter. A 200 mg sample
of the longest muscle of the yak’s back (at the 12th–13th ribs)
was taken after slaughter and stored in sterilized frozen tubes.
Five muscle samples from each group were randomly selected for
non-targeted metabolomics sequencing.

2.3 16S rDNA sequencing

Total genomic DNA was extracted from the samples using
the CTAB method. PCR amplification of the extracted DNA was
performed (pre-denaturation treatment at 94◦C for 5 min, followed
by a denaturation cycle at 94◦C for 30 s, annealing at 50◦C for 30 s,
and extension at 72◦C for 30 min, followed by extension at 72◦C for
5 min). Different regions of the 16S rDNA gene (16S V3-V4) were
amplified using primers 515F (5′-GTGCCAGCMGCCGCGG-3′)
and 806R (5′-GTGCCAGCMGCCGCGG-3′). PCR was performed
using a 25 µl amplification system, 5 µmol/L upstream and
downstream primers, and approximately 5 ng of template DNA.
PCR amplification products were detected by 1.0% agarose gel
electrophoresis and purified using the MinElute Gel Extraction
Kit (Qiagen, Germany). Library construction was performed with
the TruSeq R© DNA PCR-Free Sample Preparation Kit (Illumina,
USA), and the constructed libraries were quantified by Qubit and
Q-PCR and sequenced on the Illumina NovaSeq6000 platform.
Purification, library construction, and sequencing processes were
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performed by Novogene Bioinformatics (Beijing, China) for
paired-end reads (2× 250).

Sequences obtained from the Illumina NovaSeq6000 platform
were processed through the open-source software pipeline QIIME
(Quantitative Insights into Microbial Ecology) version 1.8.0-dev
(Caporaso et al., 2010). Based on the barcode sequence information
for each sample, sequences were first demultiplexed using an
internal Perl script on the raw fastq file and subjected to the
following criteria: on the 10 bp sliding window, the average
mass fraction 20 at any site truncated 250 bp reads, discarding
truncated reads shorter than 50 bp; discarding sequences for exact
barcode matches, 2-nucleotide mismatches in primer matches, and
readings containing ambiguous characters. The DADA2 method
was used to filter, denoise, splice, and de-chimerize the sequencing
data, perform clustering analysis on ASVs of raw data, and
perform species difference analysis between sample groups based
on ASVs and annotation results, among other analyses. Chimeric
sequences were identified and removed using UCHIME (Edgar,
2010). The phylogenetic relationships of each 16S rDNA gene
sequence (referred to as RSV in this paper) were analyzed using the
UCLUST algorithm. Alpha diversity (Chao1, Shannon, PD-whole-
tree and Observed-species) was calculated by MOTHUR (v1.30.2)
based on QIIME 2 (version 1.9.0). Beta diversity was calculated
using unweighted UniFracdistance and the results were visualized
by Principal Coordinate Analysis (PCoA) and plotted against the
GUniFrac and R software packages. To distinguish significant
differences in abundance at the phylum and genus level of yak
ruminal microbiota, we used the Statsp package in R and PYTHON
and the Wilcoxon rank sum test in STAMP. All raw sequences (16S)
were submitted to the NCBI Sequence Read Archive (SRA)1 after
assembly and filtering, registration number SRP089832.

2.4 LC-MS untargeted metabonomics
sequencing

After 100 mg of muscle tissue sample was ground with liquid
nitrogen, 500 µL of an 80% methanol solution was added to mix
evenly and placed in an EP tube. The mixture was shaken with
a scroll oscillator and allowed to stand in a water bath for 5 min
before centrifuging at 4◦C for 20 min. After centrifugation, a
certain volume of supernatant was taken and diluted with mass
spectrometry water until the methanol content reached 53%. The
sample was centrifuged again at 4◦C for 20 min, and a certain
amount of supernatant was collected and analyzed using a liquid
chromatograph-mass spectrometer (LC-MS).

The LC-MS analyses were carried out with an Agilent
1290 Infinity LC system (Agilent Technologies, Santa Clara,
CA, United States) with an Acquity BEH C18 column
(100 mm × 2.1 mm i.d., 1.7 µm, Waters, Milford, MA,
United States) preheated to 45◦C. The mobile phase was composed
of solvent A (aqueous 0.1% (v/v) formic acid) and solvent B
(acetonitrile), delivered at a rate of 0.40 mL/min. The injection
volume was 3 µL. The LTQ Orbitrap mass spectrometer (XL,
Thermo Fisher Scientific, Waltham, MA, United States) was used
to obtain sample mass spectrum data using positive or negative ion

1 http://www.ncbi.nlm.nih.gov/Traces/sra/

scan mode. The electron spray ionization source conditions were
set as follows: sample voltage, 40 V; capillary voltage, 1.0 kV; ion
source temperature, 120◦C; desolvation gas rate and temperature,
900 L/h and 500◦C. The mass range was 50–1000 m/z, and the scan
time and interscan delay were 0.15 and 0.02 s, respectively. The
normalized collision energy was 6 eV.

LECO’s Chroma TOF 4.3X software and the LECO Fiehn
Rtx5 database (Kind et al., 2009) were used for raw peak
extraction, data baseline filtering and baseline calibration, peak
alignment, deconvolution analysis, peak identification, and peak
area integration. A final data matrix containing retention times,
mass-to-charge ratios (MZ), and peak intensities was obtained.
To observe metabolic changes between groups, orthogonal partial
least squares discriminant analysis (OPLS-DA) and principal
component analysis (PCA) were performed using the R package
model,2 and 7-fold cross-validation was used to assess model
stability. Significantly different metabolites were screened based
on the combination of significant predictor variables (VIP) and
t-tests obtained from the OPLS-DA model. Significant predictor
variables (VIP) values > 0.1 and p-values < 0.05 were considered
as differential metabolites (DEMs) (Sreekumar et al., 2009; Haspel
et al., 2014; Heischmann et al., 2016). log2(FC) >0 indicates
up-regulation of metabolites, and log2(FC) <0 indicates down-
regulation of metabolites. DEMs were identified through the
Metabolome Database (BMDB) and the Kyoto Encyclopedia
of Genes and Genomes (KEGG) for further identification and
validation. Metabolic pathway distribution and metabolite set
enrichment analysis using the MetaboAnalyst web server.3

2.5 Correlations between microbial
communities and muscle metabolites

Differential muscle metabolites and significantly affected
microflora were selected for further analysis using R (v3.2.4, see
text footnote 2) to study changes in relevant metabolic processes.
For Spearman correlation analysis, P-values were calculated using
the Psych package (author, W. Revelle; publication date, 2016;
version, 1.6.9),4 considering absolute Spearman correlations with
P > 0.05 as significant. These correlations were visualized using
the Pheatmap package (author, R. Kolde; publication date, 2015;
version 1.0.8)5 in R and Cytoscape 2.8.2 (Smoot et al., 2011) for
generating network visualizations.

2.6 Statistical analysis

Statistical analyses of data related to rumen microbial
communities and muscle metabolomics were performed using
SPSS version 20.0 (SPSS Inc., Chicago, IL, USA). One-way analysis
of variance (ANOVA) and least significant difference (LSD) tests
were employed to assess statistical differences, with data expressed
as the mean and standard error of the mean (SEM). Differences

2 http://www.r-project.org/

3 http://www.metaboanalyst.ca/faces/ModuleView.xhtml

4 http://cran.r-project.org/web/packages/psych

5 https://cran.r-project.org/package=pheatmap
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were considered statistically significant when P< 0.05. Graphs were
generated using GraphPad Prism version 7.00 (GraphPad Software,
San Diego, CA, USA).

3 Results

3.1 Effects of diets with different protein
levels on growth performance of yaks

Total weight gain in the MP group was higher than the other
two groups, but the difference was not significant (P > 0.05),
average daily weight gain of yaks in the MP group was significantly
higher than that of the LP and HP groups (P < 0.05). Dry matter
intake in the LP group was significantly higher than that of the HP
group (P < 0.05), and the feed-to-weight ratio of the LP group was
significantly higher than that of the MP and HP groups (P < 0.05)
(Supplementary Table 1).

3.2 Analysis of variation in microbial
community amplicon sequencing

To evaluate the differences in the rumen microbiota of yaks fed
varying dietary protein levels, we conducted 16S rDNA sequencing.

High-throughput Illumina sequencing technology was utilized to
detect and characterize the entire rumen bacterial composition
by targeting the V3 and V4 regions of 16S rDNA. A total of
1,229,150 reads were obtained from the Illumina MiSeq platform
sequencing run of 15 rumen fluid samples, averaging 81,943
sequences per sample. After quality control, there were 814,104
clean sequences with an average of 54,273 clean sequences per
sample. Clean sequences from the 15 rumen fluid samples were
clustered based on their ASVs, resulting in a total of 7,748 ASVs.
Alpha diversity was measured within the sample based on the
results of species annotation ASVs. Principal coordinate analysis
(Figure 1) demonstrated separation between the LP group, MP
group, and HP group, indicating that differences in dietary protein
levels were a key factor in these distinctions. In rumen fluid
samples, Chao 1 values and observed_otus indices were higher in
the HP group than in the MP and LP groups. Shannon indices
were significantly higher in the HP and MP groups (P < 0.05),
while Simpson indices were significantly higher in the MP group
compared to the LP group (P < 0.05) (Table 2).

The total relative abundance of Bacteroidota and Firmicutes
was 62.21 and 26.27% in the LP, MP, and HP groups, respectively,
and these were identified as the significant bacterial phyla
based on their assignment. The less abundant phyla included
Fibrobacterota, Proteobacteria, Patescibacteria, Spirochaetota,
Planctomycetota, Euryarchaeota, Thermoplasmatota, and
Acidobacteriota (Figure 2A). As expected, we observed significant

FIGURE 1

Principal component analysis (PCA) of rumen bacterial community. Yaks with low (LP), medium (MP), and high (HP) dietary protein concentrations.
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changes in bacterial phyla in the rumen of yaks fed different feed
protein levels (Figures 3A, B). For the relative abundance of
Bacteroidota and Firmicutes in the rumen microbiota, we observed
a decreasing trend in the relative abundance of Bacteroidota with
increasing feed protein levels. The relative abundance of Firmicutes
was higher in the LP group and lower in the MP group. Notably,
the relative abundance of Bacteroidota and Firmicutes did not
differ significantly among the LP, MP, and HP groups. The relative
abundance of Spirochaetota was significantly higher in the MP
group compared to other feed protein levels (P < 0.05). At the
same time, there was no significant difference between the LP and
HP groups. In addition, the relative abundance of Euryarchaeota
was significantly higher in the MP and HP groups than in the
LP group (P < 0.05). At the same time, there was no significant
difference between the MP and HP groups.

The detected ASV sequences were assigned to 568 genera.
In total, 16 of these genera represented more than 1% of all
samples at different feed protein levels, with F082 (23.24%),
Rikenellaceae_RC9_gut_group (14.29%), and Prevotella
(10.32%) being the most dominant genera, followed by
Bacteroidales_BS11_gut_group (3.22%), Muribaculaceae (2.34%),
Fibrobacter (1.96%), Christensenellaceae_R-7_group (1.74%),
UCG-010 (1.68%), Eubacterium_coprostanoligenes_group (1.64%),
and Papillibacter (1.58%) (Figure 2B). As shown in Figures 3C,
D, the relative abundance of Christensenellaceae_R-7_group
in the HP group was significantly higher than that of LP and
MP groups (P < 0.05), while with increasing feed protein
levels Rikenellaceae_RC9_gut_group. The relative abundance of
Prevotella was highest in the HP group and lowest in the MP group.

3.3 Metabolite differences in the muscle
of yaks with different dietary intake
protein levels

Liquid chromatograph-MS analysis of muscle metabolites
from yaks in the LP, MP, and HP groups identified a total of 786
metabolites. As illustrated in the figure, pairwise comparisons
of the three groups, along with orthogonal partial least squares
discriminant analysis (OPLS-DA), demonstrated a primary
unsupervised separation among the groups (Figure 4). The score
plots revealed significant separation between the LP and MP
groups, the MP and HP groups, and the LP and HP groups.
Subsequently, we further examined these three datasets to

TABLE 2 The alpha diversity index of rumen bacteria in yaks with
different dietary protein concentrations.

Item LP MP HP SEM P-value

Chao 1 1129.762 1260.323 1290.879 33.42 0.106

Observed_
species

1126.400 1257.200 1289.200 33.26 0.099

Shannon 8.489b 9.153a 8.987a 0.11 0.018

Simpson 0.987b 0.995a 0.993ab 0.01 0.041

LP, Low dietary protein concentration group; MP, medium dietary protein concentration
group; HP, high dietary protein concentration group. The data are expressed as means,
different superscript letters in the same row indicate significant differences between groups
(P < 0.05).

identify differential metabolites between the groups. A total of
16 differential metabolites were found between the LP and MP
groups, with 14 exhibiting significantly upregulated levels and 2
downregulated; 38 differential metabolites were observed between
the MP and HP groups, with 23 displaying significantly upregulated
levels and 15 downregulated; 46 distinct metabolites were detected
between the LP and HP groups, with 40 showing considerably
upregulated differential metabolite levels and 6 downregulated
metabolites (VIP > 0.1, P < 0.05) (Figure 5). Ultimately, Figure 6
highlights 21 differential metabolites with variable importance
predictions greater than 1.0. In general, a comparison among
the three treatment groups identified 34 differential metabolites
(Table 3). Notably, these primary differential metabolites mainly
comprised lipids and lipid-like molecules (11 metabolites),
organic acids and derivatives (7 metabolites), organic oxygen
compounds (5 metabolites), organoheterocyclic compounds
(5 metabolites), benzenoids (3 metabolites), coumarins and
derivatives (1 metabolite), and organic nitrogen compounds (1
metabolite). Among these, in the LP and MP groups, the content
of metabolites 2-hydroxy-2-methylbutanoic acid, 4-methylvaleric
acid, tetrahydrocortisone, L-cysteine-glutathione gisulfide, 4-
acetamidobutyric acid, N-acetylglucosamine 1-phosphate, uric
acid, and esculin in the LP group was significantly higher than in
the MP group, whereas the content of the metabolite D-mannitol
1-phosphate was notably lower. In the MP and HP groups,
the contents of 2-ethylhexanoic acid, lysopc 16:1, D-erythrose
4-phosphate, and L-(+)-arabinose in the MP group increased
significantly compared to those in the HP group, while the
contents of D-(-)-glutamine, 4-acetamidobutyric acid, L-arginine,
trans-3-hexenoic acid, D-(-)-mannitol, thymine, and lipoic acid
decreased significantly. In the LP and HP groups, LP group
metabolites 2-ethylhexanoic acid, 3-methylglutaric acid, 13-
HPODE, decanoylcarnitine, lauric acid, L-cysteine-glutathione
gisulfide, orlistat, L-(+)-arabinose, uric acid, xanthine, indole-
3-lactic acid, o-toluic acid, monobutyl phthalate, esculin, and
N, N-dimethyldecylamine N-oxide concentrations increased
significantly compared to those in the HP group. The contents of
prostaglandin A2, valproic acid, trans-3-hexenoic acid, cis-aconitic
acid, and veratrole decreased significantly. Based on the analysis
of key metabolic pathways in the positive and negative ion modes
of the KEGG database, metabolic pathways with a P < 0.05 were
selected as the main influential pathways, as shown in Table 4.
The 34 differential metabolites were involved in a total of 8 critical
metabolic pathways: Arginine biosynthesis, Purine metabolism,
Glyoxylate and dicarboxylate metabolism, Pyrimidine metabolism,
Arginine and proline metabolism, D-Glutamine and D-glutamate
metabolism, and Linoleic acid metabolism. These pathways
are primarily involved in amino acid metabolism and energy
metabolism (Figure 7). Additionally, Arginine biosynthesis and
Purine metabolism exhibited higher effect values, suggesting these
pathways are more essential.

3.4 Correlation between muscle
metabolome and rumen microbiome

To further investigate the relationship between rumen bacterial
genera and muscle differential metabolites, we conducted a
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FIGURE 2

Rumen bacterial community composition. The dominant phylum (A) (top 10 relative abundance); genus (B) (top 10 relative abundance). Yaks with
low (LP), medium (MP) and high (HP) dietary protein concentrations.

correlation analysis between the relative abundance of specific
rumen bacterial genera and the concentrations of muscle
differential metabolites. The findings of this study revealed the
following associations: The relative abundance of Fibrobacter was
negatively correlated with the concentrations of o-toluic Acid and
Esculin. The relative abundance of Bacteroidales_BS11_gut_group
was positively correlated with the concentration of Veratrole.
The relative abundance of Rikenellaceae_RC9_gut_group was
negatively correlated with L-Cysteine-glutathione disulfide
and Monobutyl phthalate concentrations, and positively
correlated with Valproic acid concentration. The relative
abundance of NK4A214_group was negatively correlated with

3-Methylglutaric acid and Orlistat concentration, and positively
correlated with Thymine concentration. The relative abundance
of Christensenellaceae_R-7_group was positively correlated
with Valproic acid, D-(-)-Glutamine, L-arginine, and Thymine
concentrations. The relative abundance of UCG-001 was negatively
correlated with the concentration of D-Mannitol 1-phosphate.
The relative abundance of Prevotellaceae_UCG-003 was negatively
correlated with the concentration of 4-Acetamidobutyric Acid. The
relative abundance of Absconditabacteriales_(SR1) was negatively
correlated with the concentrations of L-arginine and Lipoic acid,
and positively correlated with the concentration of D-Erythrose
4-phosphate. The relative abundance of Bacteroidales_UCG-001
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FIGURE 3

Significantly altered relative abundance of rumen bacteria of phylum (A,B) and genus (C,D). Different letters of ab in the graph indicate significantly
different values (P < 0.05). Yaks with low (LP), medium (MP), and high (HP) dietary protein concentrations.

FIGURE 4

Orthogonal partial least squares discriminant analysis (OPLS-DA) scores for two-by-two comparison of metabolomics. Yaks with low (LP), medium
(MP), and high (HP) dietary protein concentrations.

was negatively correlated with the concentrations of 13-HPODE,
Decanoylcarnitine, and N,N-Dimethyldecylamine N-oxide. The
relative abundance of Bacteroidales_RF16_group was negatively
correlated with the concentration of Monobutyl phthalate and
positively correlated with the concentration of Prostaglandin
A2. The relative abundance of Muribaculaceae was positively
correlated with L-Cysteine-glutathione disulfide and Xanthine
concentrations. The relative abundance of Succiniclasticum was
negatively correlated with D-Mannitol 1-phosphate concentration
and positively correlated with L-Cysteine-glutathione disulfide,
D-(-)-Mannitol, and N,N-Dimethyldecylamine N-oxide
concentrations. The relative abundance of Prevotella was negatively
correlated with the concentration of D-Mannitol 1-phosphate.
The relative abundance of Eubacterium_coprostanoligenes_group
was positively correlated with o-Toluic Acid concentration. The
relative abundance of Allobaculum was negatively correlated with

Valproic acid, D-(-)-Glutamine, and Thymine concentrations, and
positively correlated with 2-Ethylhexanoic acid and Monobutyl
phthalate concentrations (P < 0.05) (Figure 8).

4 Discussion

In this study, we examined the rumen microbiome and
muscle metabolome of yaks fed different dietary protein levels.
Our findings shed light on the characteristics of the rumen
microbiome and muscle metabolome in yaks subjected to varying
dietary protein levels, and establish the relationship between
the composition and function of the rumen microbiome and
muscle metabolism. The microbiome is closely related to dietary
regulation (Million et al., 2012; Evans et al., 2013), and dietary
protein levels play a crucial role in the growth and reproduction
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FIGURE 5

Heat map analysis of differential metabolite hierarchical clustering analysis for identifying VIP > 1 in muscle metabolism groups of yaks in LP, MP, and
HP groups. Black squares represent the LP group, blue squares represent the MP group, and yellow squares represent the HP group. Each row
represents one metabolite; each column represents one sample. The coloring is based on the signal intensity measured by LC-MS. Red represents
high signal intensity, blue represents low signal intensity, and white cells represent intermediate (see the color scale on the right side of the heat
map).

FIGURE 6

Volcano plot of differential metabolites for a two-by-two comparison (red represents up-regulated metabolites and green represents
down-regulated metabolites). Yaks with low (LP), medium (MP), and high (HP) dietary protein concentrations.

of ruminants. Optimal dietary protein levels can enhance yak
growth (Zhang et al., 2014), which may provide the foundation
for an effective strategy to differentiate between low-protein
(LP), medium-protein (MP), and high-protein (HP) groups of
yaks. We assessed the rumen microbiota composition of yaks
under different dietary protein levels by utilizing high-throughput
Illumina sequencing of the 16S rDNA V3-V4 region, and employed
LC-MS to characterize the yak muscle metabolome. Analyzing the

variations in the rumen microbiome can help elucidate the impact
of different dietary protein levels on yaks. Firstly, our study found
significant differences in both alpha and beta diversity indices of
the microbiota among the LP, MP, and HP groups, suggesting that
the diversity of rumen microbiota in yaks is closely related to
dietary protein levels. The highest Chao1 and Observed_species
indices were observed in the HP group, while the lowest were in
the LP group, indicating that the richness of the rumen flora in yaks
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TABLE 3 Significant changes in muscle metabolites of yaks at different protein levels.

Biological roles Metabolite name LP vs. MP MP vs. HP LP vs. HP Rtmed3 Mzmed4 Chemical
structure

2-Hydroxy-2-methylbutanoic
acid

↑ Up1 None None 5.11 117.056 C5 H10 O3

4-Methylvaleric Acid ↑ Up None None 5.415 115.077 C6 H12 O2

Tetrahydrocortisone ↑ Up None None 5.962 382.258 C21 H32 O5

2-Ethylhexanoic acid None ↑ Up ↑ Up 5.734 143.108 C8 H16 O2

Lysopc 16:1 None ↑ Up None 8.875 492.310 C24 H48 N O7 P

Lipids and lipid-like
molecules

3-Methylglutaric acid None None ↑ Up 3.208 145.051 C6 H10 O4

13-HPODE None None ↑ Up 6.235 313.237 C18 H32 O4

Prostaglandin A2 None None ↓ Down2 7.304 333.208 C20 H30 O4

Valproic acid None None ↓ Down 5.823 145.122 C8 H16 O2

Decanoylcarnitine None None ↑ Up 6.052 316.248 C17 H33 N O4

Lauric acid None None ↑ Up 6.427 199.171 C12 H24 O2

L-Cysteine-glutathione
gisulfide

↑ Up None ↑ Up 1.367 425.081 C13 H22 N4 O8
S2

D-(-)-Glutamine None ↓ Down None 1.347 145.062 C5 H10 N2 O3

4-Acetamidobutyric Acid ↑ Up ↓ Down None 1.351 144.067 C6 H11 N O3

Organic acids and
derivatives

L-arginine None ↓ Down None 1.222 173.105 C6 H14 N4 O2

Trans-3-Hexenoic acid None ↓ Down ↓ Down 5.048 115.075 C6 H10 O2

Cis-Aconitic acid None None ↓ Down 2.08 173.009 C6 H6 O6

Orlistat None None ↑ Up 7.869 496.399 C29 H53 N O5

D-Mannitol 1-phosphate ↓ Down None None 1.518 261.043 C6 H15 O9 P

N-Acetylglucosamine
1-phosphate

↑ Up None None 1.072 300.049 C8 H16 N O9 P

Organic oxygen
compounds

D-(-)-Mannitol None ↓ Down None 1.296 181.072 C6 H14 O6

D-Erythrose 4-phosphate None ↑ Up None 1.200 199.002 C4 H9 O7 P

L-(+)-Arabinose None ↑ Up ↑ Up 1.381 149.046 C5 H10 O5

Uric acid ↑ Up None ↑ Up 1.806 167.021 C5 H4 N4 O3

Thymine None ↓ Down None 1.269 125.036 C5 H6 N2 O2

Organoheterocyclic
compounds

Lipoic acid None ↓ Down None 2.219 205.036 C8 H14 O2 S2

Xanthine None None ↑ Up 2.117 151.026 C5 H4 N4 O2

Indole-3-lactic acid None None ↑ Up 5.568 206.081 C11 H11 N O3

o-Toluic Acid None None ↑ Up 5.173 135.046 C8 H8 O2

Benzenoids Monobutyl phthalate None None ↑ Up 6.21 221.082 C12 H14 O4

Veratrole None None ↓ Down 5.196 139.073 C8 H10 O2

Coumarins and
derivatives

Esculin ↑ Up None ↑ Up 5.172 339.069 C15 H16 O9

Organic nitrogen
compounds

N,N-Dimethyldecylamine
N-oxide

None None ↑ Up 5.954 202.216 C12 H27 N O

1The“↓” means that the relative peak area of metabolites in the LP group was significantly lower compared with the HP or MP group the relative peak area of metabolites in the MP group
was significantly lower compared with the HP group. “None” means that there is no significant difference between the LP group and MP group, between the MP group and the HP group, and
between the LP group and the HP group.
2“Down” and “Up” indicate P < 0.05, which is adjusted by Bonferroni’s correction.
3Rtmed, median of m/z.
4Mzmed, the median of retention time.
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TABLE 4 The results of metabolic pathways influenced the detection of important metabolites between groups based on MetaboAnalyst 3.0.

Metabolite pathway name Total compounds1 Hits2 Raw P-Value3 Impact

Arginine biosynthesis 14 2 0.005 0.076

Purine metabolism 66 3 0.013 0.049

Glyoxylate and dicarboxylate metabolism 32 2 0.025 0.024

Pyrimidine metabolism 38 2 0.035 0.000

Arginine and proline metabolism 38 2 0.035 0.058

D-Glutamine and D-glutamate metabolism 5 1 0.039 0.000

Linoleic acid metabolism 5 1 0.039 0.000

Nitrogen metabolism 6 1 0.047 0.000

1Total compounds indicate the number of compounds in the pathway.
2The Hits indicate the actual matched number from the user-uploaded data.
3The Raw P-value is the original P-value calculated from enrichment analysis.

increased gradually with rising dietary protein levels. Both Shannon
and Simpson indices were significantly higher in the MP group
than in the LP group, suggesting that elevated dietary protein levels
may support greater bacterial diversity. However, extremely high
or low bacterial diversity may not necessarily promote a healthy
rumen environment (Latham et al., 2018). Beta diversity displayed
distinct clustering but also exhibited overlap among the LP, MP, and
HP groups, indicating that these three groups share similar rumen
microbiota.

In the current study, Firmicutes and Bacteroidota were the
dominant phyla of rumen microorganisms in all three groups
of yaks, consistent with previous studies (Zhou et al., 2017;
Bi et al., 2018). Prior research has demonstrated that protein
levels, a significant factor in ruminant diet formulation, have a
substantial impact on the dominant rumen flora (Cui et al., 2019).

FIGURE 7

Visual analysis of metabolic pathways by MetPA software with
bubble plots. The size of the bubbles is proportional to the effect of
each channel; bubble color represents significance, with red being
the highest and white the lowest; P-values less than 0.05 and
pathway impact factors greater than 0.5 indicate that the pathway is
more affected.

Firmicutes degrade organic matter such as cellulose, protein,
polysaccharides, and amino acids through metabolism (Levén
et al., 2007). Bacteroidota break down large molecules of dissolved
organic carbon such as proteins and polysaccharides (Spirito et al.,
2018), and their higher proportions give them an advantage in
nutrient utilization, which is essential for ruminants nutritional
metabolism. We observed that the relative abundance of Firmicutes
and Bacteroidota in the rumen of yaks in the LP group was
higher than those in the MP and HP groups. This suggests that
the relative abundance of rumen Firmicutes and Bacteroidota
is higher for lower dietary protein levels, meaning that high-
nutrient diets reduce their relative abundance, in agreement
with the study by Ley et al. (2006). Proteobacteria, a typical
marker of gastrointestinal flora imbalance (Pham et al., 2019),
were significantly reduced in the LP group, presumably due to
increased production of short-chain fatty acids and lactic acid,
which lowered rumen pH and inhibited the growth of harmful
rumen bacteria (Chen et al., 2016). This supports the notion
that a 12% protein level can improve the ecological balance
of yak rumen flora. Spirochaetota has been reported to play
an important role in the hydrolysis of complex polysaccharides
as well as the degradation of B vitamins and proteins in the
rumen (Hernández et al., 2022). In the present study, we found
that the relative abundance of Spirochaetota in the MP group
was significantly higher than that in the LP and HP groups.
Additionally, the average daily weight gain of yaks in the MP
group was significantly higher than that of the LP and HP groups.
This disparity can be attributed to the positive correlation between
dietary protein levels and the apparent digestibility of crude
protein and neutral detergent fiber (Van Dung et al., 2013). The
enhanced digestibility of these nutrients resulted in an increased
availability of energy and essential nutrients for the organism’s
growth. Consequently, these findings suggest that yaks fed a
protein level of 14% have a higher efficiency in the conversion
and utilization of feed. Some spectra of Euryarchaeota have roles
in metabolizing methane and degrading certain hydrocarbons
(Baker et al., 2020) and play a role in yak feed utilization and
methane emissions, among others (Zhou et al., 2017). In addition,
methane emissions from yaks are usually lower than other breeds
of cattle due to Euryarchaeota (Sha et al., 2020). In this study,
we found that the relative abundance of rumen Euryarchaeota
was significantly higher in the MP and HP groups than in the
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FIGURE 8

Spearman’s correlation study between yak rumen bacterial genera and muscle differential metabolites. Each row in the figure represents a
metabolite, each column represents a genus, and the color of each cell represents the Spearman correlation coefficient between metabolite and
genus levels (red indicates positive correlation, blue indicates negative correlation). *P < 0.05, **P < 0.01.

LP group, suggesting that yaks fed 14 and 16% protein levels
may have higher energy utilization efficiencies, and also suggesting
that yak rumen bacteria have the ability to adapt in structural

composition in response to changes in diet. At the genus level, F082,
Rikenellaceae_RC9_gut_group, and Prevotella were the dominant
bacteria in the rumen. Prevotella is consistently dominant in
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the rumen, regardless of diet composition (Bi et al., 2018; Sun
et al., 2019). The Rikenellaceae_RC9_gut_group belongs to the
Rikenellaceae family, and most members of this group can ferment
unabsorbed polysaccharides in the host intestine, producing short-
chain fatty acids (SCFAs) such as acetic acid, propionic acid,
and butyric acid (Su et al., 2014). Rikenellaceae_RC9_gut_group
confirms its essential role in protein fermentation with increasing
dietary protein levels (Yang et al., 2020). Prevotella is the
predominant protein-degrading bacterium in the rumen, breaking
down starch and some cell wall polysaccharides (Fernando et al.,
2010). Prevotella utilizes protein, starch, and hemicellulose to
generate various end products (Stevenson and Weimer, 2007;
Carberry et al., 2012). Ellison et al. (2017) found that differences
in crude protein levels, neutral detergent fiber, and acidic detergent
fiber in the diet caused differences in the relative abundance of
Prevotella in the rumen of ruminants. In our study, we observed
a lower abundance of Prevotella in the MP group than in the LP
and HP groups. The results of this study may be related to the
particular breed of yak and the composition of the diet, and the
highest abundance of Prevotella was observed in the HP group,
indicating that the high protein diet promoted the proliferation of
Prevotella. Additionally, Christensenellaceae are widely present in
the gastrointestinal tract and mucosa of animals and are closely
associated with high protein and fiber diets and fat deposition
(Waters and Ley, 2019). Christensenellaceae_R_7_group plays an
essential role in maintaining the structure and function of the
gastrointestinal tract and in immune regulation within the animal
organism (He et al., 2019; Liu J. et al., 2019). In our study,
we found that the abundance of Christensenellaceae_R_7_group
was significantly higher in the HP group than in the LP and
MP groups. We speculate that Christensenellaceae_R_7_group is
more likely to proliferate under high protein level diets. High
protein diets may provide more fermentation and energy substrates
for Christensenellaceae_R_7_group, and the increased microbial
population in turn improves the efficiency of partial nutrient
degradation (Singh et al., 2012).

Ruminal microbiota exhibit differences in their functions and
metabolic pathways, which ultimately determine the production of
fermentation end products and their impact on the host animal
(Hungate, 1966). In this study, we first investigated the muscle
metabolome of yaks fed different dietary protein levels. The results
of OPLS-DA illustrate that there are significant differences in the
composition of muscle metabolites among the three groups of yaks.
Significant differences were found in Arginine biosynthesis, Purine
metabolism, Glyoxylate and dicarboxylate metabolism, Pyrimidine
metabolism, Arginine and proline metabolism, D-Glutamine and
D-glutamate metabolism, Linoleic acid metabolism, and Nitrogen
metabolism-related pathways between the three groups. Uric acid,
the final metabolite of purines, is closely associated with TG,
HDL, and fatty liver (Keenan et al., 2012) and is considered
the most significant factor related to health status (Sampa et al.,
2020). Several studies have found a correlation between body mass
index (BMI) and uric acid, with fat content being associated with
individual BMI (Chen et al., 2021). Dai et al. (2013) observed
a strong association between increased BMI and elevated uric
acid levels. Our study showed that the LP group had higher uric
acid content, indicating that yaks fed a 12 percent protein level
diet had higher body fat content. L-(+)-Arabinose, a component
of hemicellulose, was found in lower levels in yaks in the HP

group, suggesting that yaks in this group rapidly used these
degradation products to meet their energy requirements based
on the higher abundance of hemicellulose-degrading bacteria.
13-HPODE, a linoleic acid derivative detected by LC-MS (El
Khoury et al., 2020), is an essential fatty acid for animal nutrition
(Marangoni et al., 2020; Hamilton and Klett, 2021). Linoleic acid
not only provides energy for vital activities and plays a crucial
role in lipogenesis (Shao et al., 2020) but also has physiological
effects such as regulating lipid metabolism, promoting growth
and development, and improving organism immunity. Our study
showed that yaks in the LP group had higher levels of 13-
HPODE, suggesting that higher utilization of 13-HPODE by yaks
consuming diets with 12% protein level may promote lipogenesis.
We also detected organic acids and derivatives, such as L-arginine
and D-(-)-Glutamine. Arginine is a conditionally essential amino
acid that is an important regulator of growth, reproduction, and
homeostatic metabolic pathways in animals (Morris Sidney, 2009).
Arginine improves meat color stability, presumably related to its
ability to delay mitochondria-mediated apoptosis (Tuell et al.,
2021). Glutamine is an abundant free amino acid in animal
plasma. It is an important precursor for protein, nucleotide,
and amino sugar synthesis in animals and plays a vital role in
maintaining acid-base balance, regulating immune function, and
providing raw materials for energy metabolism (Souba, 1993;
Wu et al., 1995). We found that the relative abundance of
L-arginine and D-(-)-Glutamine increased with increasing dietary
protein levels, suggesting that increasing dietary protein levels may
contribute to improving yak meat quality and antioxidant capacity.
Decanoylcarnitine is an important metabolite involved in energy
metabolism and is an acylcarnitine. Carnitine combines with fatty
acids or deamination products of branched-chain amino acids
to form acylcarnitine, which transports metabolites through the
cytoplasm to the mitochondria, where β-oxidation occurs during
degradation to produce energy (Yang et al., 2021) and has the
function of promoting lipid metabolism (Maruyama et al., 2017).
Lauric acid is a specific saturated fatty acid with the longest
carbon chain among medium-chain fatty acids and does not have
cardiovascular disease risk. Lauric acid was previously found to be
an essential substance in regulating energy metabolism in animal
studies and improves coagulation factors and the antioxidant
status of the body (Thijssen and Mensink, 2005). Our study
showed higher levels of Decanoylcarnitine and Lauric acid in
yaks fed on 12% protein level diets, suggesting that feeding
12% protein level diets may facilitate higher energy and fat
deposition in yaks. When fat is deposited to a certain extent,
it can improve the quality and flavor of yaks beef. Finally,
KEGG pathway enrichment analysis showed that there were
significant differences in Arginine biosynthesis, Purine metabolism,
Glyoxylate and dicarboxylate metabolism, Pyrimidine metabolism,
Arginine and proline metabolism, D-Glutamine and D-glutamate
metabolism, Linoleic acid metabolism, and Nitrogen metabolism-
related pathways between the three groups. Therefore, the yak
muscle metabolomics indicated that the activation pathways of
muscle metabolites in response to dietary nutrition were different
in yaks with different dietary protein concentrations.

The significant correlation between rumen microbes and
muscle metabolites reveals a potential relationship between
these bacteria and muscle metabolites. NK4A214_group is a
Ruminaceae-associated bacterium involved in the degradation
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of cellulose, providing an energy source for the host (Biddle
et al., 2013). A recent study showed a positive correlation
between the NK4A214_group and concentrations of Isobutyrate
and Isovalerate (Liu C. et al., 2019). Ladeira et al. (2016) found that
ruminal propionic acid production could increase intramuscular
fat deposition in beef cattle. Orlistat is a gastrointestinal
lipase inhibitor (Al-Nada, 2020) that impedes the digestion and
absorption of lipid-rich foods, decreases food conversion, and leads
to a compensatory increase in animal intake to reduce the systemic
absorption of dietary fat (Hvizdos and Markham, 1999). In our
study, the relative abundance of NK4A214_group was negatively
correlated with orlistat concentration, leading us to conjecture
that the rumen microorganism NK4A214_group in yaks provides
more energy and increases muscle fat deposition by elevating its
relative abundance. The decrease in orlistat concentration ensures
healthy growth and muscle fat deposition in yaks. The relative
abundance of Christensenellaceae_R-7_group in this study was
positively correlated with the concentrations of D-(-)-Glutamine
and L-arginine. This can be explained by the increase in the number
of rumen microorganisms in the Christensenellaceae_R_7_group,
which improves protein metabolism breakdown. This results in
an increase in protein synthesis by rumen microorganisms and a
consequent increase in the total amount of microbial protein in the
small intestine. In turn, this increases the total amount of amino
acids available for absorption and utilization in the small intestine,
facilitating the improvement of yaks’ productive performance and
thus increasing the protein content in yak muscle.

In conclusion, in our study, the rumen microbiome of yaks
showed that increasing the dietary protein level increased the
abundance and diversity of rumen bacteria. However, excessively
high dietary protein levels were found to have a negative impact on
the abundance and diversity of rumen bacteria. Yaks fed a diet with
a protein level of 14% had a high feed conversion efficiency, and
yaks fed a 12% protein level had better fat deposition and improved
the quality and flavor of yak meat. Yak muscle metabolomics
analysis further revealed that feeding a 12% protein diet may
facilitate fat deposition in yaks, thus improving the quality and
flavor of yak meat. Our findings not only provide new insights into
the yak rumen microbiome at dietary protein level intake, but also
characterize the yak muscle metabolome at different dietary protein
level intakes and reveal correlations between yak rumen microbes
and yak muscle metabolites. Characterization of the yak rumen
microbiome and yak muscle metabolome may be useful in practice
for determining dietary protein level intake.
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