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Poultry production occupies an important place in the economy of any country. 
High broiler production in recent years has badly affected its profitability due 
to bad feed quality, excessive use of chemotherapeutic agents, emergence 
of diverse pathogens, and the deficiencies in management practices during 
rearing cycle. Microbiological improvement of the meat quality using potential 
probiotics can be beneficial for broiler farming. Present study was initiated to 
isolate chicken gastrointestinal tract (GIT) bacteria with probiotic potential. To 
isolate probiotics from chicken gut, alimentary canal of chickens of known 
sizes and ages was suspended in ringers soln. Under shaking conditions for 
overnight followed by serial dilutions of ringers soln. Bacterial isolates were 
analyzed via growth curve analysis, biochemical testing using RapID™ NF Plus 
Panel kit, molecular characterization, antimicrobial activity assay, antibiotic 
sensitivity assay, GIT adherence assay, bile salt and gastric acid resistant assay, 
and cholesterol assimilation assay. Four bacteria isolated in present study were 
identified as Limosilactobacillus antri strain PUPro1, Lactobacillus delbrueckii 
strain PUPro2, Lacticaseibacillus casei strain PUPro3, and Ligilactobacillus 
salivarius strain PUPro4. L. delbrueckii strain PUPro2 grew extremely fast. All 
isolates exhibited exceptional resistance to increasing concentrations of NaCl 
and bile salts with value of p >0.5. L. delbrueckii strain PUPro2 adhered to 
chicken ileum epithelial cells and demonstrated the highest viable counts of 
320 colony forming units (CFUs). Antagonistic action was found in all isolates 
against P. aeruginosa, B. subtilis, B. proteus, and S. aureus, with value of p 
>0.5. Antibiotic susceptibility testing showed sensitivity to all the antibiotics 
used. Cholesterol assimilation was detected in all bacteria, with values ranging 
from 216.12 to 192.2  mg/dL. All isolates exhibited γ-hemolysis. In future, these 
bacteria might be tested for their impact on broilers meat quality and growth 
and can be  recommended for their use as supplements for broilers diet with 
positive impact on poultry production.
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1 Introduction

In Pakistan, poultry is a dynamic livestock sector which has 
contributed to employment opportunities to 1.5 million people in last 
few years due to its massive development, i.e., at the rate of 7.5%. It 
contributes 40% to the total annual meat production, 5.76% to 
agricultural sector, and 12.6% to overall GDP of Pakistan (Akbar et al., 
2023). At present, Pakistan poultry turnover is 1,190 billion rupees 
(Alam et al., 2023). In global poultry industry, current filet yield of 16 
and 22% has been recorded by the slow and fast growing chickens, 
respectively (Baéza et al., 2022). Poultry goods production in Pakistan 
during last 3 years is described in detail in Supplementary Table S1 
(Henchion et al., 2021).

However, this industry has been on the brink of collapse in Pakistan 
as in seven tehsils of Rawalpindi and District Mansehra due to limitations 
associated with broilers farming (Saman et al., 2023). These limitations 
include high cost of broilers feed, mortality due to diseases, improper 
nutrition, lack of disease control programs, poor hatching conditions, 
improper sanitation, and poor immunity in chickens. Additionally, 
farmers use antibiotics to reduce enteric illnesses and increase feed 
conversion ratio (FCR) and body weight gain (BWG) to meet increased 
demand for poultry products (Desiere et al., 2018; Ogbuewu et al., 2022). 
As a consequence, broiler meat is saturated with carcinogenic hormones 
and antibiotic growth promoters (AGPs). As antibiotic abuse has virtually 
outlawed them, so breeders are under pressure to find more ecologically 
benign ways to promote the broilers growth (Arsène et al., 2021). Poor 
waste management practices at poultry farms expose broilers during 
rearing procedures to deep litter producing a filthy environment where 
young chicks are more likely to die immediately after delivery (Yan 
et al., 2021).

To compensate these losses, chicken gut microbiome is being 
targeted by the veterinarians and microbiologists. Replacing the gut 
bacteria with potential probiotics has been reported to be  an 
emerging alternative to AGPs (Dowarah et al., 2018; Reuben et al., 
2019; Melese et al., 2023). Probiotics are the live microorganisms 
which improve host health when given in sufficient amounts (Reid 
et  al., 2019). Probiotics, employed in poultry industry, are the 
inhabitants of chicken gut in most of the cases. They improve serum 
calcium (Ca) and phosphorus (P) availability thus strengthening the 
tibial bone (Rizzoli and Biver, 2020). They boost amino acid levels 
in broiler chickens, improving their flavor (Yadav et  al., 2018). 
Probiotic-fed broilers have been observed to exhibit the reduced 
midsection fat and increased breast muscle (Zhang et al., 2020). 
Metabolites of probiotics have also been found to be associated with 
health promotion activities such as tryptamine, short chain fatty 
acids (SCFAs), tryptophan, vitamins, and bacteriocins play role in 
immune system homeostasis, cell to cell communication, and 
microbiota cross talk, provide resistance to pathogens gut 
colonization, promote integrity, structure, and function of gut, and 
activate toll-like receptors (TLRs) on binding with enterocytes 
leading to cytokine expression (Agus et al., 2018; Khan et al., 2020; 
Liu et al., 2022; He et al., 2023; Li et al., 2023). In addition to this, 
metabolites such as lauric acid, pantothenate acid, L-glutamic acid, 
and N-acetyl-L-aspartic acid have been reported to positively 
regulate the lipid metabolism in broilers (Wu et al., 2021; Zhang 
et al., 2021). Probiotic supplements, at an approximate amount of 
0.5 g/kg, are reported to improve meat texture and pH in broilers 
(Mohammed et al., 2021).

The probiotics reported so far in literature include 
L. monocytogenes, E. faecalis, S. enteritidis, S. typhimurium, 
Bifidobacterium, Roseburia, Akkermansia, Propionibacterium, 
Faecalibacterium, L. reuteri I2, Pediococcus acidilactici I5, P. acidilactici 
C3, P. acidilactici I8, P. acidilactici I13, L. acidophilus, L. plantarum, 
L. brevis, L. salivarius and L. fermentum and Enterococcus faecium C14, 
Brevibacillus laterosporus S62, B. coagulans, B. licheniformis, and E. coli 
(Sanders et al., 2019; Sorescu et al., 2021; Tang et al., 2021; Gupta et al., 
2023; Li et  al., 2023). Among these, B. subtilis supplementation 
reduced broiler belly fat in a project (Liu et al., 2020). Lactobacillus sp. 
boosted chicken feed protein and crude protein retention (Wu et al., 
2019). E. faecium NCIMB 11181 supplementation increased FCR (Wu 
et al., 2019; Yang et al., 2023). Limosilactobacillus fermentum PC-76 
and PC-10 were found to be anti-Salmonella gallinarum (Mehmood 
et al., 2023).

Under natural circumstances, young chickens are well protected 
through feeding on parent feces which contain efficient microflora for 
protection against pathogenic microbes, but the chickens being reared 
under commercial settings are usually deprived of such beneficial 
microbes due to cleanliness maintained at the hatching place, i.e., 
incubators. Shell contamination of pathogens and the gastric secretion 
of HCl at eighteenth day of incubation exacerbate the composition of 
gut microflora. Therefore, the post-birth probiotic feed 
supplementation is crucial in chickens (Lutful, 2009; Ivanova and 
Denisenko, 2019). Although literature reports various chicken 
gut-associated bacteria with different probiotic potentials, however, in 
majority of the cases, a single bacterium does not exhibit wide  
range of probiotic characteristics simultaneously and cannot 
be recommended as a sole nutritional tool. They can only be used in 
combination with other bacteria. Present study has been initiated to 
isolate and characterize the GIT inhabiting bacteria which might 
exhibit maximum potential of exerting probiotic effects on chicken 
health as a single bacterium. For this purpose, we selected the 10 
broilers with improved performance and hypothesized that we might 
find wholesome probiotic bacteria from their guts. These bacteria 
might be administered via broiler feed as a sole zootechnical tool for 
the wholesomeness of meat, better FCR, high-quality egg production, 
healthy weight gain, effective establishment of intestinal microflora, 
immune system modulation, and pathogen resistance.

2 Materials and methods

2.1 Sample collection and preparation

Healthy broiler chickens (n = 10) at 21 days of age were purchased 
from a butcher and slaughtered. The chickens were washed twice with 
distilled water followed by 70% ethanol, before the GIT sampling. 
Followed this, gut was aseptically removed and washed with 0.9% 
NaCl. Washed gut was minced in 225 mL of ringer solution and mixed 
well for an hour (Musikasang et al., 2009; Shamsudin et al., 2019).

2.2 Isolation and culturing of probiotics

De Man–Rogosa–Sharpe agar (MRS) (Merck KGaA, 64271 
Darmstadt, EMD Millipore Corporation, Germany) and Mueller 
Hinton agar (MHA) (M0203, FLINN SCIENTIFIC) were used for 
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isolation and characterization of probiotics, respectively. MRS was 
prepared and poured into petri plates and allowed to get solidified 
(Kumar and Kumar, 2015; Soemarie et al., 2022; Gupta et al., 2023). 
The original sample (200 μL) and its six serial dilutions (10−6 to 10−1) 
were poured on solidified agar plates. Plates were incubated at 
37°C. Bacterial colonies obtained after 24 h were enumerated to 
determine CFUs/ml using the formula:

 

CFUs ml of ringers soln

No of colonies dilution factor v

/ .

( . ) /

=
× oolume of culture

The isolated bacteria were preserved in the form of glycerol stocks 
for later use (Fadanka et al., 2022).

2.3 Molecular characterization by 16S rRNA 
gene sequence analysis

Using an organic extraction method, DNA was isolated from 
bacterial pellet (Gupta, 2019). Agarose (RXP 10121, RxBiosciences, 
Rockville) gels assessed DNA quality. Forty-five min after activation 
at 90 volts, the Gel Documentation System (4,191,354, BIO-RAD) 
revealed DNA bands under UV light (Green and Sambrook, 2019). 
Using particular primers F1 and R1 (Supplementary Table S2), 16S 
rDNA was amplified by polymerase chain reaction (PCR) equipment 
(MyGeneTM Series Thermal Cycler) (Beckers et al., 2016). The 12.5 μL 
master mix, 1 μL forward primer, 1 μL reverse primer, 2 μL template, 
8 μL injection water, and 0.5 μL Taq polymerase were added to 20 μL 
PCR reaction mixture. PCR conditions used are as follows: initial 
denaturation at 94°C for 10–15 min, followed by 38 cycles of 
denaturation at 94°C for 30–40 s, annealing at 94°C for 30–40 s, 
extension at 72°C for 30 s, and final extension at 72°C for 10 min. The 
results of the PCR amplification were verified by gel electrophoresis. 
After inspecting the gel in UV light, the Gel Documentation System 
captured an image of it (Lorenz, 2012). PCR products were shipped to 
Macrogen, Inc., Korea, for DNA sequence analysis using Sanger chain 
termination method (Young, 2018).

2.4 Bioinformatics analysis

Sequencing results were downloaded in FASTA format. Basic 
Local Alignment Search Tool (BLAST) program1 from the National 
Center for Biotechnology Information (NCBI)2 was used to align and 
scan these sequences against bacterial database. Clustal Omega3 
multiple sequence alignment was performed using NCBI consensus 
sequences of isolates and related bacteria. Phylogenetic tree was 
constructed using MEGA 11,4 after aligning the gaps. The neighbor 
joining statistical approach, maximum likelihood substitution 
method, and 1,000-repeat Bootstrap analysis were used to build 
phylogenetic trees (Sievers and Higgins, 2014).

1 https://blast.ncbi.nlm.nih.gov

2 https://www.ncbi.nlm.gov

3 https://www.ebi.ac.uk

4 https://www.megasoftware.net

2.5 Submission of DNA sequences to 
GenBank

Sequences of four isolates have been deposited in the publically 
accessible NCBI GenBank database. DNA sequences and their 
corresponding accession codes are listed in Supplementary Table S3.

2.5.1 Growth analysis
Bacterial growth was monitored by measuring the optical density 

of the cultures at 600 nm (OD600) at different time intervals (0, 3, 6, 9, 
24, 27, 30, 51, 54, 57 h) using a UV–visible spectrophotometer (BioTek 
Equipment, Inc.). A growth curve was obtained by plotting the OD600 
versus time. Growth assay was performed in triplicates using 
synchronized cultures.

2.6 Biochemical characterization by 
RapID™ NF plus panel system

For this biochemical study, we used the Remel RapID™ NF 
Plus Panel kit (Thermo Scientific™) qualitative micromethod 
(Maloney et al., 2014). RapID™ NF Plus Panel kit screened the 
isolates for the presence of arginine dihydrolase (ADH), aliphatic 
thiol (TRD), triglyceride (EST), p-nitrophenyl-phosphoesterase 
(PHS), p-nitrophenyl-N-acetyl-β-D-glucosaminidase (NAG), 
p-nitrophenyl-D-α glucosidase (α-Glu), p-nitrophenyl-β-D-
glucosidase (β-Glu), p-nitrophenyl-β-D-galactosidase (ONPG), 
urea hydrolysis test (URE), glucose fermentation test (GLU), 
proline β-naphthylamidase test (PRO), pyrrolidonyl 
β-naphthylamidase test (PYR), γ-glutamyl β-naphthylamidase test 
(GGT), tryptophan β-naphthylamidase (TRY), N-benzyl-arginine 
naphthylamidase test (BANA), tryptophan fermentation test (IND), 
and nitrate utilization test (NO3).

2.7 Assays of probiotics

All the assays performed to assess the probiotic potential of 
present study bacteria were carried out in triplicates. This helped to 
validate the observed results. Synchronized cultures were used as 
inoculum in triplicate experiments.

2.7.1 NaCl tolerance assay
To test salt tolerance of present study bacteria, NaCl 

(ONLINESCIENCEMALL, Clay Palmerdale Road, Pinson, 
United States) concentrations of 0.2, 2, and 5% were selected. To get 
synchronized cultures, fresh overnight grown cultures (100 μL) were 
inoculated to MRS broth supplemented with different NaCl 
concentration. The OD600 was measured at 0 h. Following this, bacteria 
were cultured in shaking incubator (Bio-Techne, China) at 150 rpm 
and 37°C until the log phase was achieved. After that, bacterial growth 
was assessed by measuring OD600 at the end of exponential phase 
(Rocha-Ramírez et al., 2021).

2.7.2 HCl tolerance assay
Present study bacterial isolates were grown for overnight at 

37°C under shaking conditions. Cultures were centrifuged using 
centrifuge machine (HERMLE, Z380) at 6,000 rpm, 4°C, and 
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10 min to get the pellet. MRS medium of three different pH values, 
i.e., 2, 3, and 5, was prepared in three separate tubes, each tube 
containing 2 mL medium. The pH was adjusted with HCl 
(AQUABOND Inc.). Each of these tubes were inoculated with 
pelleted bacterial cells and incubated for 3 h at shaker at 37°C. The 
OD600 was measured at 0 h (before incubation) and 3 h (after 
incubation) to measure the tolerance of bacteria against different 
pH values (Nawaz et al., 2017).

2.7.3 Bile salt tolerance assay
Bile salt tolerance was tested at 0.3% concentration of bile salt 

(Research Products International, United States). MRS broth without 
bile salts was used as control. Experimental solution was made by 
adding 0.3 g bile salts to 100 mL MRS broth. Both MRS broth and 
control were inoculated with 100 μL fresh overnight cultures. It was 
then cultured at 37°C and 250 rpm until the log phase was achieved. 
Using a spectrophotometer, OD600 was measured at 0 h and at log 
phase to test the bile salt tolerance in bacteria (Xu et al., 2020).

2.7.4 Cell adhesion assay
The chicken gut was kept at 4°C for 30 min in phosphate buffer 

saline (PBS) (G-Biosciences, United States) to release surface mucus 
and was cut into four 1 cm pieces of disinfected ileum. Each 
component was added in probiotic cell suspension at 37°C for 
different time intervals, i.e., 0, 30, 60, and 90 min. Ileum was collected 
and macerated to remove non-adherent bacteria, seeded on MHA 
agar plates, and incubated for 24 h at 37°C. CFUs in each plate were 
counted (Reuben et al., 2019).

2.7.5 Growth in the presence of pathogens
Isolates were tested against different pathogens, i.e., Pseudomonas 

aeruginosa, Bacillus subtilis, Bacillus proteus, and Staphylococcus 
aureus. The pathogen glycerol stocks (60 μL) and overnight grown 
cultures of probiotics (60 μL) were used as inoculum and added to 
MRS broth (5 mL). Control comprised of MRS broth inoculated with 
overnight grown probiotic culture (60 μL). Cultures were incubated 
under shaking conditions for 24 h at 37°C and 150 rpm. Growth of 
probiotics in the presence of pathogens was assessed by measuring 
OD600 (Cizeikiene and Jagelaviciute, 2021).

2.7.6 Antibiotic sensitivity profiling
The disk diffusion method was used to determine the antibiotic 

sensitivity profile of all isolates by measuring the inhibitory zone for 
each antibiotic. Tested antibiotics included amoxicillin (DMS 
Chemical Pharmaceutical Inc., Ltd, China), azithromycin (Jenpharm 
Life Sciences, Pakistan), cefadroxil (Wellona Pharma, India), velosef 
(GlaxoSmithKline, London), kanamycin (Kanto Chemical Co., Inc., 
Tokyo, Japan), and augmentin (MEDSAFE, New  Zealand) 
(Jomehzadeh et  al., 2020). Three concentrations of each of these 
antibiotics were consulted, i.e., 5, 10, and 15 μL.

2.7.7 Hemolytic assay
Autoclaved blood agar (Millipore, India) was poured into petri 

plates. After solidification, overnight bacterial cultures were 
streaked. These plates were incubated at 37°C for 24 h, and 
hemolytic activities were estimated. The presence of a clear, 
colorless, or light-yellow zone surrounding the colonies will show 
total red blood cell (RBC) lysis, i.e., β-hemolysis. A greenish to 

brownish discoloration of the media will reflect reduction of 
hemoglobin, i.e., α-hemolysis, and no change in media color will 
reflect the ϒ-hemolysis (Kumari VB et al., 2023).

2.7.8 Cholesterol assay
Cholesterol breakdown characteristics were evaluated by 

CHOD-PAP method using cholesterol liquicolor kit (PATHOZYME 
DIAGNOSTICS, India). The probiotic culture cuvette received 10 μL 
of cholesterol standard (STD). The standard was mixed with culture 
and incubated at 20–25°C for 5 min. Blank cuvette contained 10 μL 
STD. OD was measured at 500 nm. Cholesterol concentration was 
measured as follows:

 
C mg dl or C mmol lSTD = × ( ) = × ( )553 14 3∆ ∆A A/ , . /

 
Cholesterol concentration mg dl sample STD/ /( ) = ×200 ∆ ∆A A

 
Cholesterol concentration mmol l sample STD/ . /( ) = ×5 17 ∆ ∆A A

2.8 Statistical analysis

After each test, the findings were summarized as a mean ± SD as 
triplicates of each experiment were conducted separately. One-way 
ANOVA statistical tests were run using SPSS version 18.0. Threshold 
for statistical significance was set at p ≤ 0.05.

3 Results

3.1 Isolation of probiotics

Probiotics were isolated from chicken intestines using MRS broth. 
Clear bacterial colonies appeared on the plates after 24 h of incubation 
at 37°C.

3.2 Molecular characterization

Present study bacteria were identified using molecular analysis 
(Supplementary Figure S1). Sequences of 16S rRNA gene have been 
deposited in GenBank database, and accession numbers were assigned 
(Supplementary Table S3).

3.3 Phylogeny analysis

Phylogenetic analysis revealed the close relation of 
L. delbrueckii strain PUPro2 with L. delbrueckii strain sample 
AAA with bootstrap value of 100. L. antri strain PUPro1 and 
L. panis strain DSM 6035 both originated from the shared clade 
of L. antri strain DSM 106038 and L. antri strain Kx146A4. L. casei 
strain PUPro3 originated from the same branch point as that of 
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L. casei strain TA001 with strong bootstrap value of 100 showing 
their close relatedness. L. salivarius strain PUPro4 was closely 
related to Lactobacillus species OTU343 through strong bootstrap 
value of 100 (Figure 1).

3.4 Growth analysis

All bacterial isolates were fast growing. L. antri strain PUPro1 
entered the logarithmic phase at 24 h and exited after 57 h. 
L. delbrueckii strain PUPro2 grew logarithmically from 3 to 24 h. 
L. salivarius strain PUPro4 exhibited log phase of 9–24 h. L. casei 
strain PUPro3 grew logarithmically between 6 and 24 h (Figure 2; 
Supplementary Tables S4, S5).

3.5 Biochemical characterization

All isolates were tested positive for TRD and EST tests. Only 
L. antri strain PUPro1 was positive for PHS. All isolates fermented 
glucose except L. delbrueckii strain PUPro2 and L. casei strain PUPro3. 
All isolates were nitrate-reducing and NO3−positive. All the isolates 
showed negative results for ADH, NAG, α-GLU, β-GLU, PRO, PYR, 

GGT, TRY, BANA, IND, and ONPG assays (Supplementary Figure S2; 
Supplementary Table S6).

3.6 Assays of probiotics

3.6.1 NaCl tolerance assay
Each isolate survived at 0.2, 2, and 5% concentration of NaCl, 

and OD600 dropped slightly as NaCl increased from 0.2 to 2 and 
5% (Figure  3). L. salivarius strain PUPro4 had the highest 
tolerance at 0.2 and 2% NaCl with OD600 = 0.984 and 0.929, 
respectively, while L. casei strain PUPro3 had the lowest OD600. 
L. salivarius strain PUPro4, with an OD600 of 0.922, was the most 
tolerant to 5% NaCl. Least tolerance was observed in case of 
L. antri strain PUPro1 with 0.714 (Table 1). Statistics showed 
value of p >0.05.

3.6.2 HCl tolerance assay
Present study bacteria were analyzed for resistance against HCl 

via incubation in media of three different pH values, i.e., 2, 3, and 5. 
All the four isolates showed maximum tolerance to HCl at pH value 
of 3. Highest growth measured in terms of O.D600 at pH 3 was 
1.60 ± 0.003, 1.56 ± 0.04, 1.54 ± 0.004, and 1.44 ± 0.001 for L. casei 

FIGURE 1

Phylogenetic trees constructed for present study bacteria using MEGA11. (A) Limosilactobacillus antri strain PUPro1. (B) Lactobacillus delbrueckii strain 
PUPro2. (C) Lacticaseibacillus casei strain PUPro3. (D) Ligilactobacillus salivarius strain PUPro4.
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strain PUPro3, L. delbrueckii strain PUPro2, L. antri strain PUPro1, 
and L. salivarius strain PUPro4, respectively (Figure  4; 
Supplementary Table S7). These results showed that these bacteria are 
capable of surviving the acidity of stomach before reaching the host 
chicken intestine.

3.6.3 Bile salt tolerance assay
In bile salt tolerance test, all isolates performed well. After 24 h 

incubation at 37°C, the isolates with bile salts showed a marked increase 
in the OD600 value (Figure 5). L. casei strain PUPro3 exhibited the greatest 
OD600, i.e., 0.973 in the presence of bile salts, while L. delbrueckii strain 
PUPro2 had the lowest value of 0.851 (Table  2). Statistical analysis 
revealed significant results with value of p greater than 0.05.

FIGURE 2

Growth curve analysis of present study bacterial isolates performed 
measuring OD600.

FIGURE 3

NaCl resistance potential of present study bacteria performed 
measuring OD600 at different NaCl concentrations. (a) L. antri strain 
PUPro1, (b) L. delbrueckii strain PUPro2, (c) L. casei strain PUPro3, (d) 
L. salivarius strain PUPro4.
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3.6.4 Cell adhesion assay
All isolates adhered to chicken ileum epithelial cells, and the 

number of CFUs increased as incubation time raised from 0 to 
90 min (Supplementary Figure S3; Figure 6). Incubation for 0 min 
yielded zero CFU. L. delbrueckii strain PUPro2 adhered chicken 
ileum epithelial cells best and had the highest CFUs, i.e., 102.33, 
261.33, and 312.67 after 30, 60, and 90 min of incubation, 
respectively. Least tendency of adherence was observed in case of 
L. casei strain PUPro3 (Table 3). The results were significant with 
p > 0.05.

3.6.5 Growth in the presence of pathogens
All isolates showed excellent tolerance against pathogens. 

L. delbrueckii strain PUPro2 had the highest tolerance against 
Pseudomonas aeruginosa with OD600 of 1.226, whereas L. casei strain 
PUPro3 had the lowest resistance with OD600 = 1.017 
(Supplementary Table S8). L. casei strain PUPro3 exhibited highest 

resistance against B. subtilis with OD600 = 1.394, while L. delbrueckii 
strain PUPro2 showed least tolerance with OD600 of 1.127 
(Supplementary Table S9). L. casei strain PUPro3 had highest OD600 
value of 1.033 against B. proteus (Supplementary Table S10). 
L. salivarius strain PUPro4 had the highest OD600 (1.321) against 
Staphylococcus aureus, while in case of L. casei strain PUPro3, the 
value was 0.861 (Supplementary Table S11). Statistical analysis 
demonstrated the p-value of above 0.05 (Figure 7).

3.6.6 Antibiotic sensitivity profiling
All isolates were antibiotic-sensitive and exhibited zones of 

inhibition (Figure  8). In case of amoxicillin, cefadroxil, and 
kanamycin, highest zones of inhibition were observed in L. casei strain 
PUPro3, i.e., 34.33, 24.33, and 30.33 mm, respectively, while for 
azithromycin in L. antri strain PUPro1 (28.67 mm). For velosef and 

TABLE 2 Bile salt resistance estimated in present study bacterial strains through measurement of OD600 in the presence and absence of bile salts.

Isolates OD of control at log phase (600  nm) OD with bile salts at log phase (600  nm)

1st 2nd 3rd Mean SD p-value 1st 2nd 3rd Mean SD p-value

L. antri strain 

PUPro1
0.81 0.861 0.820 0.83 ± 0.027

0.996

0.92 0.961 0.89 0.923 ± 0.035

0.987

L. delbrueckii 

strain PUPro2
0.192 0.132 0.160 0.161 ± 0.030 0.851 0.82 0.883 0.851 ± 0.031

L. casei strain 

PUPro3
0.273 0.22 0.291 0.261 ± 0.036 0.985 0.964 0.972 0.973 ± 0.010

L. salivarius 

strain PUPro4
0.871 0.881 0.792 0.848 ± 0.048 0.921 0.933 0.911 0.921 ± 0.011

FIGURE 4

Comparison of HCl resistance potential of present study bacteria 
performed via measuring OD600 at different pH values. (a) 
Limosilactobacillus antri strain PUPro1. (b) Lactobacillus delbrueckii 
strain PUPro2. (c) Lacticaseibacillus casei strain PUPro3. 
(d)Ligilactobacillus salivarius strain PUPro4.

FIGURE 5

Characterization of probiotics reported in present study using bile 
salt tolerance assay and antimicrobial assay. (a) Comparison of OD600 
of isolates in the absence and presence of bile salts. (b) Graphical 
representation of antimicrobial resistance of probiotic isolates 
against Pseudomonas aeruginosa, Bacillus subtilis, Bacillus proteus, 
and Staphylococcus aureus. (a) L. antri strain PUPro1, (b) L. 
delbrueckii strain PUPro2, (c) L. casei strain PUPro3, (d) L. salivarius 
strain PUPro4.
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augmentin, largest zones were observed in L. salivarius strain PUPro4, 
i.e., 33.67 and 39.33 mm (Supplementary Table S12). Significant 
p > 0.05 were obtained for all the antibiotics.

3.6.7 Hemolytic assay
Since there was no change in color of media, so all isolates were 

found to show ϒ-hemolysis (Supplementary Table S13). No zones 
were observed around the colonies (Supplementary Figure S4), 
indicating no RBC lysis, making these isolates the safest and best.

3.6.8 Cholesterol assay
Among the four present study bacteria, L. casei strain PUPro3 

significantly degraded cholesterol from 216.12 to 192.2 mg/dL. L. antri 
strain PUPro1 showed the lowest cholesterol assimilation, i.e., 208 mg/
dL (Figure 8).

4 Discussion

Poultry serves as major source of animal protein in the form of 
meat and eggs all over the world. In 2018, per person consumption 
of broiler meat has been estimated to be 14 kg globally and 48 kg in 
USA (Thorp, 2021). In Pakistan, both the private and public sectors 
have increased their poultry investment from 1.28 billion $ in 2015 
to 4.47 billion $ in 2018 (Aslam et al., 2020). Protein production from 
animal agriculture in a sustainable way is becoming crucial need 
because the global food demand is expected to increase by 35 to 56% 
between 2010 and 2050 (Van Dijk et al., 2021; Castro et al., 2023), but 
these days poultry industry is suffering from major challenges which 
can be  overcome through direct-fed microbial (DFM) probiotics 
which might equip chickens with beneficial properties such as 
tolerance to heat stress, reduction in foodborne illnesses, competitive 
exclusion of pathogens, enhanced immunity, and prebiotics with 
positive physiological impact (Abd El-Hack et  al., 2020; Ebeid 
et al., 2021).

FIGURE 6

Comparison of CFUs of present study bacteria formed at different 
time intervals during cell adhesion assay indicating their ileum 
adhering tendency. (a) Limosilactobacillus antri strain PUPro1. (b) 
Lactobacillus delbrueckii strain PUPro2. (c) Lacticaseibacillus casei 
strain PUPro3. (d) Ligilactobacillus salivarius strain PUPro4.
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Keeping in view the role of probiotics in overcoming the 
challenges of poultry industry, present project was initiated to isolate 
bacteria from broiler chicken GIT and their in vitro assessment for 
probiotic potential. Bacteria qualifying the in vitro assessment assays, 
as described in methodology of this study, might contribute to 
upgrade the economic status of Pakistan associated with poultry 
performance by providing hygienic and proper broilers diet in cost 
effective way. These might serve for the production of disease-resistant 
broilers with reduce cooking, pressing, and shear losses. They may also 
enhance bone mass, meat quality (amino acids, fat content, protein 
content, texture), and FCR (Pourakbari et  al., 2016; Fekadie 
et al., 2022).

In addition to abovementioned benefits, the prebiotics 
derived from these probiotics also positively regulate the chicken 
metabolism in variety of ways, e.g., compound probiotics have 
been observed to contribute to growth performance of broilers 
exposed to heat stress, through increased rate of arginine, amino 

sugar, alanine, aspartate and glutamate, and beta alanine 
biosynthesis (Zhang et  al., 2023). Metabolomics has also 
confirmed the formation of same metabolites in chicken intestine 
as formed in the presence of antibiotics, i.e., amino acids, sugars, 
organic acids, disaccharides, and trisaccharides, confirming their 
use as alternative to antibiotics (Li et  al., 2023). Among the 
probiotics reported in the literature, Lactobacillus have been 
found to have strong involvement in the regulation of gut 
metabolites which in turn improves homoeostasis in chickens. In 
a study, chickens were fed on L. acidophilus supplemented diet 
which positively affected the amino acid and lipid metabolism 
along with increased production of immunoglobulin G (IgG) 
(Chen et  al., 2023). Another study has reported enhanced 
concentration of acetate in broiler chickens fed with diet 
supplemented with L. salivarius. When this probiotic was 
combined with phytobiotics, it reduced extended-spectrum beta-
lactamase (ESBL) producing E. coli (Ren et al., 2019). In a study, 

FIGURE 7

Analysis of resistance against pathogenic bacteria in present study isolates. Control comprised of medium and bacterium, while experimental tube 
contained medium, bacterium, and pathogen. (a) L. antri strain PUPro1, (b) L. delbrueckii strain PUPro2, (c) L. casei strain PUPro3, (d) L. salivarius strain 
PUPro4.
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FIGURE 8

Comparison of zones of inhibition exhibited by present study bacteria against different antibiotics and comparison of cholesterol degradation potential 
of present study bacteria evaluated by CHOD-PAP method using cholesterol liquicolor kit. (a) L. antri strain PUPro1, (b) L. delbrueckii strain PUPro2, (c) 
L. casei strain PUPro3, (d) L. salivarius strain PUPro4.

broilers fed with L. plantarum-derived metabolites considerably 
increased height of villi and growth (Gao et al., 2017). Dietary 
supplementation with L. plantarum along with 
fructooligosaccharide (FOS) showed increased levels of short 
chain fatty acids (SCFAs), IgA, and IgG and efficient growth 
performance in E. coli O78 challenged broilers (Ding et al., 2019). 
Another study has reported increased expression of genes 
involved in sulfur and nitrogen metabolism, flagella assembly and 
chemotaxis, and vitamin and cofactor synthesis, in lincomycin 
exposed broilers, supplemented with L. plantarum P-8 (Gao et al., 
2017). Literature has also reported efficient role of L. plantarum-
derived postbiotics in enhancing carcass yield, immunity, 
intestinal microbial composition, and growth performance of 
broilers exposed to heat stress (Humam et al., 2019).

In addition to above health benefits, probiotics through interfering 
the metabolic pathways of host chickens enable them to withstand 
heat and oxidative stresses. Probiotics, in intestinal epithelial cells, 
activate the heat shock proteins (HSPs), glutathione S-transferase 
(GST), and glutathione (GSH) and inactivates iNOS, COX-2, NF-KB, 
and toll-like receptor-4 (TLR-4) when there is high reactive oxygen 
species (ROS) accumulation. ROS are produced in intestine under 
oxidative stress. Activation of GST by probiotics results in production 
of GSH which serves as an antioxidant and removes ROS. Inhibition 
of iNOS by probiotics inhibits synthesis of nitric oxide synthase (NOS) 
resulting in decreased nitric oxide (NO) thus reducing ROS. Inhibition 
of COX-2, NF-KB, and TLR-4 reduces heat shock-induced 
inflammation in intestinal epithelium thus protecting the digestive 
system from permanent damage. To reduce the heat-induced 
epithelium disruption, probiotics accelerate the production of mucous 
and tight junction-adherent junction (TJ-AJ) pathway which seals 
intracellular space between neighboring cells (Abd El-Hack 
et al., 2020).

Keeping in view, these beneficial effects of probiotics, we attempted 
to isolate bacteria from chicken GIT. Four fast growing isolates were 

processed for detailed in vitro characterization. These isolates were 
identified to be  L. antri, L. delbrueckii, L. casei, and L. salivarius, 
respectively. As all of these had different species and also showed 
variations during characterization, so were designated as different 
strains, i.e., PUPro1, PUPro2, PUPro3, and PUPro4, respectively. Our 
study is consistent with the previous one because most of the broilers 
have been reported to have Lactobacilli as gut flora (Boonkumklao 
et  al., 2006). L. casei, L. johnsonii, L. acidophilus, L. crispatus, 
L. salivarius, and L. aviaries are the most reported Lactobacillus species 
in poultry (Sanders and Klaenhammer, 2001; Tharmaraj and Shah, 
2003; Neville and O’Toole, 2010; Pieniz et al., 2014).

All isolates were found fast growing. Log phases comprising of 
24–57 h, 3–51 h, 6–24 h, and 9–24 h were observed in L. antri strain 
PUPro1, L. delbrueckii strain PUPro2, L. casei strain PUPro3, and 
L. salivarius strain PUPro4, respectively. These findings are in line 
with previously reported chicken gut-associated bacteria which 
exhibited a rapid growth (Vinderola et  al., 2002; Śliżewska and 
Chlebicz-Wójcik, 2020).

Literature describes various biochemical features of probiotics 
(Bansal et al., 2019; Samedi and Charles, 2019; Abid et al., 2022), 
but this is the first study to use the RapID™ NF Plus Panel for 
biochemical testing. The ability of a bacterium to use arginine as 
a carbon source can be tested biochemically by ADH test (Kwon 
et  al., 2005). In present analysis, none of the isolates tested 
positive for ADH. All isolates were positive in EST and GLU test 
results. In the EST test, lipid break down releases fatty acids 
which drop the pH and change the color (MacFaddin, 2000). 
With the exception of L. antri strain PUPro1, all of the probiotic 
strains tested positive for PHS assay (Gilardi et al., 1975). None 
of the isolates showed positive results for GGT, NAG, α-GLU, 
β-GLU, PRO, BANA, IND, TRY, PYR, ONPG, and URE tests that 
detects the presence of glutamyl aminopeptidase, p-nitrophenyl-
N-acetyl-β-D-glucosaminidase, ρ-nitrophenyl-D-glucosidase, 
ρ-nitrophenyl-β-D-glucosidase, proline aminopeptidase, 
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N-benzyl-arginine aminopeptidase, potential of tryptophan to 
indole conversion, tryptophan aminopeptidase, pyrrolidonyl 
aminopeptidase, ρ-nitrophenyl-β-D-galactosidase, and urea 
hydrolysis potential, respectively (Westley et al., 1967; Mulczyk 
and Szewczuk, 1970; Gilardi et al., 1975; Kilian and Bülo, 1976; 
Nagatsu et al., 1976; Humble et al., 1977; Holt et al., 1984; Kwon 
et  al., 2005). L. antri strain PUPro1 and L. salivarius strain 
PUPro4 tested positive for NO3 test that identifies nitrate 
reductase activity (Mulczyk and Szewczuk, 1970).

All the isolates were found to be resistant to NaCl at 0.2, 2, and 
5% concentration. L. salivarius strain PUPro4 was the most resistant, 
with OD600 of 0.984, 0.929, and 0.922 for 0.2, 2, and 5% NaCl 
concentration, respectively. A previous study indicated that LAB 
from milk and milk products, meats, chicken dung, and other sources 
can grow in 1–10% NaCl treatments (Hoque et al., 2010; Shehata 
et al., 2016). Our findings are consistent with the literature and imply 
that present study bacteria can survive higher concentrations of NaCl 
and stress in vitro (Ye et al., 2020).

Probiotic strains must bind to host intestinal cells for better 
colonization (Collado et  al., 2007). Probiotics’ antimicrobial and 
cholesterol-lowering benefits require strong colon epithelial cell 
attachment (Shokryazdan et al., 2014). In this study, all isolates adhered 
to chicken ileum epithelial cells with increased viability over 90 min L. casei 
strain PUPro3, with a maximum CFUs count of 134, showed the lowest 
adhesion ability. Our findings are consistent with those of literature that 
observed rumen LAB isolates’ adherence increased with incubation 
period (Setyawardani et al., 2014; Jose et al., 2015).

Stay of probiotics in different parts of chicken GIT varies as 
per the pH values of these parts. Generally, pH varies between 2 
and 6.5, i.e., pH values for crop, proventriculus, gizzard, small 
intestine, and large intestine have been reported to be 4.8, 4.4, 
2.6, 6.2, and 6.3, respectively (Svihus, 2014). Keeping in view 
these values, acidity tolerance of present study bacteria was 
estimated at three pH values, i.e., 2, 3, and 5. Maximum survival 
during interval of 3 h was observed in L. delbrueckii strain 
PUPro2 (pH = 2), in L. antri strain PUPro1, L. delbrueckii strain 
PUPro2 and L. casei strain PUPro3 (pH = 3), and in L. casei strain 
PUPro3 (pH = 6). No survival was observed in L. antri strain 
PUPro1 at pH = 6. These results were according to the previous 
research study reporting good survival of L. salivarius and 
L. fermentum at pH = 2.5 for 3 h (Hutari et  al., 2011). Other 
studies have also reported survival of probiotics at the same pH 
(Reuben et al., 2019; Salehizadeh et al., 2020; Gupta et al., 2023). 
These findings confirmed the survival of present study bacteria 
in chicken gut during passage through stomach.

Hydrophobic bile salts play crucial roles in digestive system 
including fat emulsification and resistance against antimicrobials. So, 
when taken orally, probiotics must survive the severe environment of 
small intestine (Olejnik et  al., 2005). In chicken gut, bile salt 
concentration varies, i.e., 0.0085% (caecum), 0.17% (duodenum), and 
0.7% (jejunum). Typical 0.3% bile salt level has been considered in 
many probiotic bile salt tolerance studies (Shokryazdan et al., 2014; 
García-Hernández et al., 2016). The current study’s isolates survived 
in 0.3% bile salts and exhibited enhanced growth after 24 h. In this 
study, L. casei strain PUPro3 had the highest OD value of 0.973 in the 
presence of bile salts. Present finding is in accordance with previous 
literature reporting tolerance to 0.3% concentration of bile salts (Shin 
et al., 2008; Salehizadeh et al., 2020). Our findings also support prior 

research that revealed bile salts increased probiotic proliferation 
(Reuben et al., 2019).

The chicken industry loses a lot of revenue due to zoonotic and 
foodborne disease illnesses (Nallala et al., 2017). Potential probiotics 
need to have antimicrobial activity against such pathogens. All of the 
present study isolates were highly antagonistic to four distinct 
pathogens: Pseudomonas aeruginosa, Bacillus subtilis, Bacillus proteus, 
and Staphylococcus aureus. Antimicrobial activity against P. aeruginosa, 
B. subtilis, B. proteus, and S. aureus was highest for L. delbrueckii strain 
PUPro2, L. casei strain PUPro3, L. casei strain PUPro3, and 
L. salivarius strain PUPro4. This finding is consistent with previous 
study. Our results are also supported by the observation that chicken-
derived probiotics have a broad-spectrum antagonistic impact against 
a wide range of infections (García-Hernández et al., 2016; Oyewole 
et al., 2018).

Antibiotic-resistant genes in probiotic could cause gut infections, 
so antibiotic profiling of isolated bacteria was crucial (Nallala et al., 
2017). All isolates were ecologically benign and showed unique 
inhibitory zones against augmentin, azithromycin, amoxicillin, 
kanamycin, cefadroxil, and velosef. The obtained inhibitory zones had 
diameters between 17.33 mm and 39.33 mm. The literature reports 
antibiotic susceptibility in chicken probiotic cultures against 
antibiotics such as penicillin, ampicillin, chloramphenicol, ceftriaxone, 
and novobiocin supporting our findings (Gueimonde Fernández et al., 
2013; Anandharaj and Sivasankari, 2014; Puniya et al., 2016; Dowarah 
et al., 2018). However, contrary to our findings, the literature also 
reports resistance against kanamycin, aminoglycosides and 
glycopeptides, streptomycin, gentamicin, and vancomycin in 
Lactobacilli (Jose et al., 2015; Zavišić et al., 2023).

According to FAO guidelines, probiotic microbial strains should 
not pose any host safety risks (Borras et al., 2021). Hemolytic activity 
destroys the protective epithelial layer, allowing infections to penetrate 
easily. Non-pathogenic strains must be non-hemolytic (De Vuyst et al., 
2003). None of the isolates tested in this study produced the toxic 
chemical hemolysin, and all were non-hemolytic. Non-hemolytic LAB 
strains have been reported in the literature, which is in line with our 
findings (Chang et al., 2013; Oloyede and Afolabi, 2013; Oyewole 
et al., 2018).

Hypercholesterolemia or high blood cholesterol is a primary cause 
of deaths caused by heart diseases in poultry which can be decreased 
by lowering serum cholesterol (Shehata et  al., 2016). Cholesterol 
lowering potential of isolates was measured using a cholesterol 
liquicolor kit. All of the isolated bacteria showed degradation potential 
toward cholesterol. The L. casei strain PUPro3 was the most effective 
at degrading cholesterol, reducing cholesterol levels from 216.12 to 
192.2 mg/dL. L. antri strain PUP1 degraded cholesterol at a rate of just 
208 mg/dL. These results are consistent with the literature (Miremadi 
et al., 2014; Shehata et al., 2016).

5 Conclusion

Probiotic strains separated from their natural host are more likely 
to establish themselves in the GIT and exert their therapeutic benefits. 
Present study is significant because the bacteria isolated might have 
potential as antibiotic substitutes and broiler productivity boosters. To 
further test and confirm their possible effect on broilers meat quality, 
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they can be cultured for the estimation of CFU production followed 
by their immobilization in approximate quantity on any suitable 
substrate. This will enhance their shelf life. Afterward, these probiotics 
can be fed to broilers through feed supplementation. In addition to 
this, probiotic metabolomics and its integration with proteomics 
might also prove helpful in getting insight into their possible 
contributions to sustainable poultry production.
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