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Objective: Recently, 10 plasmid-mediated mobile colistin resistance genes,
mcr-1 to mcr-10, and their variants have been identified, posing a new threat
to the treatment of clinical infections caused by Gram-negative bacteria. Our
objective was to develop a rapid, sensitive, and accurate molecular assay for
detecting mcr genes in clinical isolates.

Methods: The primers and corresponding TagMan-MGB probes were designed
based on the sequence characteristics of all reported MCR family genes,
multiplex Tagman-MGB probe-based gPCR assays were developed and
optimized, and the sensitivity, specificity and reproducibility of the method were
evaluated. The assay contained 8 sets of primers and probes in 4 reaction tubes,
each containing 2 sets of primers and probes.

Results: The standard curves for both the single and multiplex systems
showed good linearity (R?>0.99) between the starting template amount and
the Ct value, with a lower limit of detection of 10% copies/pL. The specificity
test showed positive amplification results only for strains containing the mcr
genes, whereas the other strains were negative. The results of intra-and inter-
group repeatability experiments demonstrated the stability and reliability of the
newly developed method. It was used to detect mcr genes in 467 clinically-
obtained Gram-negative isolates, which were multidrug-resistant. Twelve
strains containing the mcr genes were detected (seven isolates carrying mcr-1,
four isolates carrying mcr-10, and one isolate carrying mcr-9). The products
amplified by the full-length PCR primer were identified by sequencing, and the
results were consistent with those of the multiplex gPCR method.

Conclusion: The assay developed in this study has the advantages of high
specificity, sensitivity, and reproducibility. It can be used to specifically detect
drug-resistant clinical isolates carrying the mcr genes (mcr-1 to mcr-10), thus
providing a better basis for clinical drug treatment and drug resistance research.

KEYWORDS

colistin, the mcr genes, multiplex TagMan real-time PCR, rapid detection,
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1 Introduction

The growing problem of bacterial drug resistance poses a serious
threat to public health, especially with the emergence of multidrug-
resistant (MDR) organisms posing challenges for the treatment of
nosocomial infections (Lancet, 2022). Polymyxin, a peptide antibiotic,
was withdrawn from clinical use in the 1980s because of its side effects
which included nephrotoxicity and neurotoxicity. The emergence of
MDR organisms and the lack of new antibiotics have led to the
reintroduction of polymyxins as the “last resort “for treating infections
caused by MDR gram-negative bacteria (Trimble et al., 2016; Soman
etal., 2021).

In November 2015, the first plasmid-mediated colistin resistance
gene, mcr-1, was found in Escherichia coli isolated from a pig farm in
China (Liu et al., 2016). Studies have shown that the mcr-1 gene could
be detected in patients, animals, food, and the environment (Liu et al.,
2023; Shahzad et al.,, 2023). Plasmids carrying the mcr-1 gene have
conjugation and transfer abilities, contributing to the stability and
persistence of colistin resistance (Liu et al., 2016). Subsequently, the
mcr-1 gene and its variants have been reported in many countries,
with 113 variants identified in 10 families of the mcr gene. The
coexistence of the mcr genes and other drug-resistance genes increases
the likelihood of the emergence of pan-drug-resistant superbugs
(Karim et al., 2023; Zhang et al., 2023). The prevalence of multidrug
resistance can lead to an increased rate of hospital-acquired infections
with limited treatment options while increasing the length of hospital
stays, mortality, and costs (Strich and Palmore, 2017; Manandhar
etal., 2022).

To further regulate the rational use of antibiotics and prevent the
emergence and widespread occurrence of drug resistance, it is
essential to rapidly detect bacteria carrying the mcr genes and provide
a basis for monitoring and clinical drug treatment. The TagMan minor
groove binder (MGB) probe fluorescence technique, is a quantitative
real-time polymerase chain reaction (QPCR) approach that is currently
the most rapid and reproducible assay for the quantitative and
qualitative detection of nucleic acid molecules; it provides faster
results than conventional PCR methods and often without the use of
high-risk reagents (Kutyavin et al., 2000). The TagMan MGB qPCR
method is widely used in areas such as transgenic and gene expression
studies, and for the detection of infectious and genetic diseases (Wang
etal, 2021; Jin et al., 2022). To effectively detect isolates carrying mcr
genes, we compared all MCR family genes in the database, designed
seven sets of primers and TagMan-MGB probes based on the sequence
comparison results, and introduced the primer and probe sets of 16S
rRNA as an internal control for amplification (Center for Disease
Control and Prevention, 2011). A multiplex probe-based qPCR assay
was developed and optimized to detect all MCR family genes in four
reaction tubes, which was evaluated on a sample set of 467 multidrug-
resistant clinical isolates.

2 Materials and methods
2.1 Bacterial strains
Eight clinical multidrug-resistant isolates with whole gene

sequencing were selected for the specific experiment, and information
on the resistance genes of the isolates was obtained with good

Frontiers in Microbiology

10.3389/fmicb.2024.1279186

representativeness (see Table 1 for detailed information on the isolates
and drug resistance). In addition, 467 clinically multidrug-resistant
isolates, collected previously, were used for the overall evaluation of
the assay.

2.2 Design and synthesis of primers and
probes

All available MCR family genes were downloaded from the
Reference Gene Catalog of the National Center for Biotechnology
Information (NCBI), including mcr-1 to mcr-10 genes and their
variants. Partial sequences were compared again using the CLC
sequence viewer 8 (Qiagen Aarhus, Denmark) based on the published
phylogenetic tree results of MCR family genes constructed according
to the maximum likelihood ratio (Ling et al., 2020). Conserved
regions with no mutation points were selected, and standard primers
and Tagman-MGB probes were designed using Primer Express 3.0.1
software according to the principles of multi-PCR primer design
(Hawkins and Guest, 2017). Primers were designed for maximum
coverage of mcr gene variants and using degenerate bases if necessary.
The primer set of 16S rRNA was used as an internal control for
amplification. Primer-Blast was used to evaluate the specificity of the
primers and AutoDimer software was used to assess primer-dimer
production between primer groups (Vallone and Butler, 2004).
Multiple PCR was developed by mixing primer groups according to
the evaluation results. All primers were synthesized by Beijing Tsingke
Biotech Co., Ltd. (Beijing, China).

2.3 Optimization of the reaction system of
multiplex real-time PCR

Before mixing the primers in the multiplex PCR reaction system,
each primer group (including the probe) was individually optimized
for maximal amplification efficiency. Using the recombinant plasmid
as the template, a 25 pL reaction system was developed, and the primer
concentration (100-500nmol/L), TagMan probe concentration
(50-500nmol/L), and annealing temperature (56.6-62.6°C) were
optimized individually. Three replicates were used for each
experiment. The optimal concentrations of primers and probes were
selected according to the Ct values and fluorescence signal intensity
of the amplification curves to ensure that the amplification efficiency
of all targets was between 90 and 110%, with an R* value of >0.985.
Finally, a multiplex PCR reaction optimization system was developed,
and that showed similar Ct values and amplification efficiencies
compared to those for single-duplex PCR. The instrument used for the
experiments was a CFX 96 Connect Real-Time PCR Detection System
(Bio-Rad, United States), and the reagents used were Premix Ex Taqg™
(Probe qPCR) purchased from Takara Biomedical Technology Co.,
Ltd. (Beijing, China).

2.4 Standard curves
After synthesizing the amplified target sequence, it was cloned

into the pUC57 recombinant plasmid and identified by sequencing as
a positive standard. The concentration of the recombinant plasmid
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TABLE 1 Information on clinical multidrug-resistant isolates for specific experiments.

No. | Species Source Drug-resistant genes

1 Pseudomonas aeruginosa N12122 Clinical isolate blaoxa so blaviv.a, blapso, aph(3’)-11b, aacA4, aph(6)-1d, strA, aac(6')-Ib-cr, qgnrVCl, fosA

2 Klebsiella pneumoniae N12106 Clinical isolate blagy 5, aac(6)Ib-ct, aac(3)-11d, aadA16, qnrB6, fosA, arr-3, sull, tet(D)

3 Acinetobacter baumannii N12118 Clinical isolate blaoxa.2 blaoy s AmpC-p-lactamase, blagy.ip, armA, aph(6)-Id, aph(3”)-Ib, mph(E), tet(B), sull
4 Serratia marcescens N12145 Clinical isolate blagee.» blacrxiis blasge, blacrxas aac(3)-11d, aac(6')-Ic

5 Escherichia coli N12139 Clinical isolate aac(3)-11d, aph(3”)-Ib, mdf(A), mph(A), sull, sul2, tet(A), dfrA17

6 Enterobacter cloacae N12169 Clinical isolate blargy 15 0gxA, 0gxB, mdf(A), fosA, blawp.s, aac(6’)-Ib-ct, blacry.as

7 Proteus mirabilis N12160 Clinical isolate blargy.y, aadA2, aadA5, aac(3)-11b, aph(3’)-1a, aph(3”)-11b, aph(6)-1d, sull, sul2, dfrA17, tet(]), catl
8 Stenotrophomonas maltophilia N12146 | Clinical isolate Smgnr, blay,, sull, dfrA12, aadA2, aac(6’)-Ib-cr

was determined and converted into copy numbers according to the
following formula:

(6.02x1023)x[’:§x10_9]

Copy number =
Py (DNA length x 660)

The plasmids were 10-fold serially diluted from 10° copies/pL to
10” copies/pL. A 25 pL reaction system was set up according to the
optimized reaction conditions with three replicate wells. The
amplification efficiencies of the single and multiplex systems were also
evaluated, and standard curves were generated.

2.5 Specificity

Eight clinical multidrug-resistant bacteria without the mcr genes
were used for the experiments (see Table 1 for detailed information on
the isolates and drug resistance). Escherichia coli containing the
recombinant plasmid was used as a positive control. Nucleic acids
were extracted using the Qiagen DNA Mini Kit (Qiagen, Hilden,
Germany), following the manufacturer’s instructions. The original
nucleic acid solution was diluted 100-fold for amplification, and
deionized water was used as no template control (NTC). All samples
were analyzed using the multiplex fluorescence gPCR method.

2.6 Sensitivity

The plasmids were 10-fold serially diluted from 10° copies/pL to
10" copies/pL. A 25 pL reaction system was developed according to the
optimized reaction conditions with three replicate wells, and negative
controls. Means and standard deviations (SD) were calculated. The
minimum copy concentration at which a Ct value occurs is usually
considered the limit of detection.

2.7 Reproducibility

To evaluate the stability of the assay, five different concentrations
of standards were prepared ranging from 107 copies/pL to 10° copies/
pL. For intra-group repeatability tests, three wells were repeated for
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each dilution; for inter-group repeatability tests, three reactions were
repeated 1 week apart. Standard deviation and coefficient of variation
(CV) were calculated to analyze intra-and inter-group differences.

2.8 Clinical sample testing

Nucleic acids from 467 clinical multidrug-resistant isolates were
extracted using the Qiagen DNA Mini Kit (Qiagen, Hilden, Germany)
following the manufacturer’s instructions. The extracted nucleic acids
were diluted 100-fold and screened for mcr-1 to mcr-10 genes using
the newly developed multiplex fluorescence qPCR method. For
positive results, PCR amplification was performed using standard full-
length primers, and the products were identified by sequencing. The
results of both methods were analyzed to evaluate the usefulness of
the new method.

3 Results
3.1 Specific primers and probes

The results of the phylogenetic tree of MCR family genes showed
high levels of similarity between the mcr-1, mcr-2, and mcr-6 genes
and between the mcr-9 and mcr-10 genes. Therefore, we designed
primers and probes targeting the amplification of mcr-1/2/6, mcr-3,
mcr-4, mcr-5, mcr-7, mer-8, and mcr-9/10, and introduced the primer
set of 16S rRNA as the internal control for amplification. The results
of sequence alignment are shown in Figure 1. Based on results of the
AutoDimer Check software, the eight sets of primers and probes were
divided into four tubes, each contained two sets of primers and
probes. Sequence information and the grouping of the primers and
probes are shown in Table 2. It is worth noting that there are two
forward primers for amplifying the mcr-1/2/6 gene, and some primers
and probes contain mixed bases.

3.2 Optimization of the reaction system of
multiplex gPCR

After optimization tests, optimal reaction conditions were

obtained for the multiplex PCR system (25uL): 12.5puL Premix Ex
Taq™ (Probe qPCR), 2pL mixed standard primers (10 pmol/L),
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0.25pL FAM-labelled probe (10 pmol/L), 0.5 pL HEX-labelled probe
(10 pmol/ L), 2 pL DNA template and the remaining volume was made
up with deionized water. The optimized amplification program was
95°C for 30s, followed by 40 cycles of 95°C for 5s and 57.8°C for 30s,
with the fluorescent signal collected at 57.8°C. The groups were
prepared by placing primer sets amplifying mcr-1/2/6 and 16S rRNA,
mcr-3 and mcr-9/10, mcr-4 and mcr-7, and mcr-5 and mcr-8 in the
same reaction tube; the concentrations of the primers are detailed in
Table 2. Positive (1 x 10° copies/pL plasmid standard) and no-template
(water) controls were included in each plate.

3.3 Standard curve for single and multiplex
gPCR

The amplification efficiency of primers and probes in single and
multiple systems was evaluated, and the amplification and standard
curves were plotted. Good linearity was observed between the starting
template concentration and the Ct values for the eight sets of primers
and probes in both the single and multiplex systems, with the

10.3389/fmicb.2024.1279186

correlation coefficient R* ranging from 0.9960-0.9997 and
amplification efficiencies between 90 and 110%. The amplification
efficiency of the multiplex qPCR assay is similar to that of a single
qPCR assay, which meets the requirements. A standard curve is shown
in Figure 2.

3.4 Specificity of the multiplex gPCR assay

After uploading the designed primers to the NCBI database for
specific comparison, we confirmed that the primers can only amplify
genes related to mcr. The genomic DNA of Escherichia coli containing
the recombinant plasmid of the mcr gene and eight clinical multidrug-
resistant isolates (see Table 1) were used as templates to verify the
specificity of the developed multiplex qPCR assay. The results showed
that only nucleic acid samples from Escherichia coli containing
recombinant plasmids were positive, while nucleic acid samples from
other clinical isolates and negative controls were negative, indicating
good specificity of the assay. The amplification results are presented in
Figure 3.

TABLE 2 Primers and probes were designed to detect plasmid-mediated colistin resistance genes (mcr-1 to mcr-10).

Tube Target Primers/ Sequence (5'-3) Length Tm Final - Reference
Probes ((s]9)] (°C) concentration
name (nmol/L)
mer-1/2/6-F1 | CTGGGCGCGGATGAGTAT 58.8 200
mer-l mer-1/2/6-F2 | CTGGGTCAAGATGACTAT 497 200
mcr-2 62 This study
mer6 mer-1/2/6-R AGCGTATCH*AGCACATTTTCTTG 58.8 200
A mer-1/2/6-P FAM-ATGTCGATACCGCCAAA-MGB 68 100
165 rRNA-F TGGAGCATGTGGTTTAATTCGA 59.1 200
Control CfD
16SrRNA | 16S rRNA-R TGCGGGACTTAACCCAACA 159 58.6 200
Prevention
168 rRNA-P HEX-CACGAGCTGACGACAR*CCATGCA-BHQ 72 200
mer-3-F GTGATGATGCAAAACGGGATACT 58.9 200
mer-3 mer-3-R TCTTTCTCATAGCCATTCATCGAG 109 585 200 This study
mer-3-P HEX-AGTAAGCCCACGTTGATGT-MGB 70 200
B
mer-9/10-F CCCACGCTGATGTTCCTG 57.1 200
mcr-9
0 mer-9/10-R AAGGCATTK*GTR*TCACGCG 86 55.5 200 This study
mcr-
mer-9/10-P FAM-ATTGGCGAAACGGCAC-MGB 69 100
mer-4-F TGCGTTGTTTTATGTTGCCATT 59 200
mer-4 mer-4-R GTTTTTCAATTCCTTTTCGCACTAT 68 58 200 This study
mer-4-P FAM-TCAATCTACCGCTCTTT-MGB 68 100
C
mer-7-F CGCACTCAACGCCGTCTT 59.6 200
mer-7 mer-7-R GAGCATGGCGTAACTGACGAT 103 58.8 200 This study
mer-7-P HEX-CTTCCGCTGGTTGCT-MGB 69 200
mer-5-F GCAGACGAAGCAAGGGAAGTC 60 200
mer-5 mcr-5-R TCCCCGACAACCAGTACGA 95 58.5 200 This study
mer-5-P FAM-CCGCCGTCCTCGTG-MGB 69 100
D
mer-8-F CGTTCCTTTTCTTTCCACTCTATTTC 58.8 200
mcr-8 mcr-8-R CCCCGCTTATTGTCTGTTGAA 84 58.7 200 This study
mer-8-P HEX-TGTACCAGCAATTATCCT-MGB 69 200

*R=AorGK=G, T;H=A,C, T.
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FIGURE 3
Specificity of the multiplex gPCR assay.

3.5 Sensitivity of the multiplex gPCR assay

Three concentration gradients of recombinant plasmid standards,
from 1x 10° copies/pL to 1x 10' copies/pL, were used as templates to
verify the sensitivity of the multiplex qPCR assay. The results showed
that when the template concentration was 10* copies/pL, all primers
and probes showed amplification curves in the three parallel controls,
and when the template concentration was 10" copies/pL, only some of
the primers and probes showed amplification curves in the three
parallel controls. From the perspective of assay integrity, the minimum
detectable limit of multiplex qPCR is 10* copies/pL.

3.6 Reproducibility of the multiplex qPCR

Reproducibility tests were performed using five concentration
gradients of recombinant plasmid standards as templates. The results
showed CVs ranging from 0.12 to 1.34% for intra-group
reproducibility tests and from 0.10 to 1.91% for inter-group
reproducibility, indicating that the developed fluorescent qPCR
method is reproducible. The detailed values are listed in Table 3.

3.7 Identify the specific type of mcr gene

This detection system is sufficient to meet the need for rapid
screening of mcr genes in samples/strains. For further identification
of different mcr gene types, full-length gene amplification can
be performed on samples/strains containing relevant mcr genes,
and the sequencing results of amplified products can be uploaded
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to the NCBI database for comparison to determine specific mcr
gene types.

3.8 Clinical isolate detection

We used a newly developed multiplex qPCR method to screen for
the presence of the mcr gene in 467 multidrug-resistant clinical
isolates. This method detected 7 isolates carrying the mcr-1.1 gene
(6 in Escherichia coli and 1 in Klebsiella pneumoniae), 1 isolate carrying
the mcr-9.1 gene (in Enterobacter cloacae), and 4 isolates carrying the
mcr-10.1 gene (2 in Enterobacter ludwigii and 2 in Enterobacter
asburiae) in clinical strains. The sequencing results of the PCR
products were confirmed to be mcr-related genes by Sanger
sequencing (electrophoresis results in the Supplementary Figure S1),
which were consistent with those of the multiplex qPCR assay. This
suggests that the method can be used to screen for mcr genes in
clinical isolates.

4 Discussion

Enterobacteriaceae exhibit polymyxin resistance through the
acquisition of plasmid-mediated MCR family genes. Many scholars at
home and abroad have developed methods for the detection of mcr
genes including standard PCR (Liu et al., 2016), multiplex PCR for
mcr-1 to mcr-9 genes (Borowiak et al., 2020), SYBR Green fluorescent
qPCR (Mentasti et al., 2021), TagMan fluorescent gPCR (Irrgang et al.,
2016) and other methods. The ring-mediated isothermal amplification
(LAMP) assays for rapid detection of mcr-1 to mcr-5 genes in colistin-
resistant bacteria are available. The LAMP method is highly sensitive
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TABLE 3 Reproducibility assay of TagMan real-time PCR.

10.3389/fmicb.2024.1279186

Plasmid mcr-1/2/6 mcr-9/10
(copies)
CVv Mean CV Mean

107 19.12 0.02 0.12% 19.05 0.07 0.38% 18.39 0.14 0.79% 18.08 026 1.46%
10° 22.09 0.04 0.16% 22.09 0.08 0.35% 21.18 0.04 0.19% 21.00 0.16 0.76%
10° 25.07 0.06 0.23% 25.19 0.09 0.36% 2423 0.04 0.16% 24.12 0.10 0.42%
10¢ 28.32 0.06 0.20% 28.47 0.11 0.37% 27.41 0.09 0.34% 27.47 0.14 0.50%
10° 31.84 0.16 0.51% 31.82 0.03 0.10% 30.82 0.29 0.95% 30.79 0.04 0.14%

Plasmid
(copies)

107 18.34 0.07 0.36% 18.47 0.15 0.83% 19.37 0.06 0.31% 19.29 0.09 0.49%
10° 21.48 0.06 0.26% 21.70 0.32 1.46% 21.10 0.20 0.94% 21.05 0.31 1.46%
10° 24.58 0.15 0.59% 24.83 0.32 1.30% 24.49 0.07 0.29% 24.44 0.10 0.40%
10* 27.99 0.20 0.71% 28.12 0.24 0.85% 27.38 0.18 0.64% 27.44 0.24 0.86%
10° 31.20 0.38 1.22% 31.36 0.38 1.22% 31.06 0.07 0.23% 30.93 0.26 0.84%

Plasmid
(copies)

107 19.29 0.06 0.29% 18.87 0.36 1.91% 18.9967 0.18824 0.99% 19.05 0.06 0.31%
10° 21.80 0.05 0.21% 21.60 0.18 0.83% 21.1633 0.09074 0.43% 20.83 0.29 1.41%
10° 24.88 0.11 0.44% 24.85 0.16 0.63% 23.8133 0.31943 1.34% 23.81 0.08 0.35%
10* 28.13 0.04 0.13% 28.16 0.08 0.28% 27.1333 0.07234 0.27% 27.12 0.03 0.11%
10° 31.21 0.14 0.43% 31.34 0.17 0.54% 30.64 0.07 0.23% 30.60 0.10 0.32%

Plasmid
(copies)

107 18.33 0.13 0.71% 18.24 0.12 0.64% 18.9967 0.18824 0.99% 19.05 0.06 0.31%
10° 21.43 0.08 0.35% 21.45 0.15 0.70% 21.1633 0.09074 0.43% 20.83 0.29 1.41%
10° 24.81 0.07 0.28% 24.75 0.20 0.79% 23.8133 0.31943 1.34% 23.81 0.08 0.35%
10* 28.22 0.13 0.46% 28.12 0.11 0.37% 27.1333 0.07234 0.27% 27.12 0.03 0.11%
10° 31.24 0.14 0.46% 31.30 0.24 0.76% 30.64 0.07 0.23% 30.60 0.10 0.32%

and specific compared with the standard PCR method. However, due
to the diversity of mcr genes, a single LAMP cannot detect all potential
target genes, which provides incomplete information for nucleic acid
detection. For samples containing more than one mcr gene, which has
been reported in several cases, the sensitivity and specificity of the
multiplex LAMP assay are relatively poor (Zhong et al., 2019). This
situation has been reported many times so far and cannot be ignored
(Zhangetal., 2018; Lu et al., 2020). One study introduced a Quad-PCR
method for rapid and reliable detection of the common mcr-1, mcr-3,
mcr-8, and mcr-10 genes in clinical samples (Hu et al., 2021a). A
multi-PCR assay for the detection of mobile colistin resistance genes
(mcr-1, mcr-3, mcr-8, mcr-10) has also been developed (Hu et al.,
2021b). A recent study has established a rapid, efficient and accurate
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method for recombinase polymerase amplification (RPA) combined
with lateral flow dipstick (LFD) detection, but it can only detect the
mcr-1 gene. But mcr-9 and mcr-10 is also gradually being found in
clinical patients and has spread widely around the world (Carroll et al.,
2019; Ling et al,, 2020; Liu et al., 2021). These methods can only detect
some of the mcr genes, and some of them take a long time to detect.
Therefore, it is essential to develop rapid detection methods that can
cover all of the reported MCR family genes.

In this study, we selected the conserved region of all MCR family
genes as the target sequence, considering all available relevant variant
sequences in NCBI (as of March 2022), and successfully developed a
multiplex fluorescent qPCR assay for the simultaneous detection of
mcr-1 to mcr-10 gene sequences by optimizing the reaction
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amplification system. The results showed that the newly developed
assay is highly sensitive, specific, and reproducible. Using a common
96-well instrument, 24 samples can be detected in a single experiment,
and if a 384-well instrument is used for high-throughput detection,
more strains can be detected simultaneously, which is beneficial for
the processing of large number of samples.

To our knowledge, this is the first multiplex TagMan fluorescence
qPCR assay for all 10 MCR family genes. The assay provides a rapid,
simple, sensitive, and specific technique for monitoring multidrug-
resistant bacteria carrying the mcr gene. During the course of the
study, six newly identified mcr gene variants (mcr-1.35, mcr-1.36, mcr-
3.42, mcr-4.7, mcr-4.8, mcr-5.5) were discovered between April 2022
and November 2023. We found that the mutant base of the new mcr
variants did not appear at the location where we designed the primer,
so these new mcr gene variants could still be specifically amplified
with the existing primer and probe sets. This indicates that the target
sequence is relatively conservative in these variants, and also validates
the reliability of the sequence chosen for our design. We believe that
the new approach may apply to the mcr gene variants that emerge in
the future.
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