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Yeast is one of the important symbiotic flora in the insect gut. However, little is 
known about the gut yeast in Helicoverpa armigera (Lepidoptera: Noctuidae) 
under various dietary conditions. The composition and function of the 
intestinal yeast community also remain unclear. In this research, we explored 
the composition of yeast microorganisms in H. armigera larvae under different 
feeding environments, including apple, pear, tomato, artificial diet (laboratory 
feeding), Urtica fissa, Helianthus annuus, and Zinnia elegans (wild environment) 
using high-throughput sequencing. Results showed that a total of 43 yeast OTU 
readings were obtained, comprising 33 yeast genera and 42 yeast species. The 
yeast genera with a total content of more than 5% were Hanseniaspora (36.27%), 
Moesziomyces (21.47%), Trichosporon (16.20%), Wickerhamomyces (12.96%) 
and Pichia (6.38%). Hanseniaspora was predominant when fed indoors with 
fruits, whereas Moesziomyces was only detected in the wild group (Urtica fissa, 
Helianthus annuus, Zinnia elegans) and the artificial diet group. After transferring 
the larvae from artificial diet to apple, pear and tomato, the composition of 
intestinal yeast community changed, mainly reflected in the increased relative 
abundance of Hanseniaspora and the decreased abundance of Trichosporon. 
Simultaneously, the results of α diversity index indicated that the intestinal yeast 
microbial diversity of H. armigera fed on wild plants was higher than that of 
indoor artificial feeding. PCoA and PERMANOVA analysis concluded that there 
were significant differences in the gut yeast composition of H. armigera larvae 
on different diets. Our results confirmed that gut yeast communities of H. 
armigera can be influenced by host diets and may play an important role in host 
adaptation.
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Introduction

The intestines of all metazoan contain an abundant number of commensal microorganisms 
(Shin et al., 2011; Douglas, 2018). In the long-term co-evolution, insects provide a stable living 
environment and necessary nutrients for gut microorganisms, while gut microorganisms are 
also conducive to the survival of insects, significantly impacting nutritional metabolism (Gong 
et al., 2020), growth and development (Lauzon et al., 2000; Yang et al., 2020), reproductive 
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behavior (Yong et al., 2017), immune disease resistance (Johnston and 
Rolff, 2015; Su et al., 2019), and other life processes of insects, forming 
a mutually beneficial symbiotic relationship (Dillon and Dillon, 2004; 
Shapira, 2016). Gut microorganisms have been widely demonstrated 
to degrade exogenous toxins (Abdelgaffar et al., 2019; Yang et al., 
2020) and affect the transmission efficiency of vector insects (Fukatsu 
and Hosokawa, 2002).

However, bacteria are not the only inhabitants of the insect gut 
(Gurung et al., 2019). Mycobiota, especially yeasts, have been shown 
to be associated with many insects. Yeasts dominate the flora of some 
insects and establish a symbiotic relationship with the host insects 
(Malassigné et al., 2021). It has been found that yeast or yeast-like 
symbionts in insect tissue are involved in amino acid and fatty acid 
metabolic pathways, and yeast deficiency leads to the instability of 
host ecosystem regulation and incomplete metamorphosis (Carvalho 
et  al., 2010; Horgan et  al., 2021). Insects also lack the ability to 
synthesize sterols, multivitamins, and enzymes that degrade plant cell 
wall materials and toxic plant equivalents (Martin, 1979). This 
deficiency can be  compensated for by intestinal symbiotic yeasts 
(Vega, 2005). For example, in the ground-dwelling beetle family 
Silphidae, whose species consume animal carcasses (Scott, 1998), the 
yeast Yarrowia lipolytica and a related species group capable of 
breaking down diverse carbon sources, including hydrocarbons and 
lipids (Miller and Alper, 2019), have been isolated (Kaltenpoth and 
Steiger, 2014). Vogel et al. also suggested that Yarrowia species help 
inhibit the growth of other microbes by producing antimicrobial 
substance (Vogel et al., 2017). Therefore, similar to bacteria (Yuan 
et al., 2021), gut yeast may be the linchpin of the survival mechanism 
of insects on hosts.

Helicoverpa armigera (Lepidoptera: Noctuidae) is a worldwide 
pest known to infest over 200 host plants, including cotton, tomato, 
pepper, potato, and various other crops and wild plants (Zheng et al., 
2022). It occurs frequently in large crop-growing countries such as 
China, India, and Australia. Cotton bollworm larvae mainly eat the 
buds, flowers and fruits of host plants. After the flower is damaged, the 
plant cannot be pollinated normally, resulting in reduced production 
of cash crops such as tomatoes and cotton and greatly reduced the 
commodity fruit (Tsafack et al., 2013; Gu et al., 2022). Due of its wide 
distribution, omnivorousness, fast reproduction and strong 
adaptability (Fitt, 1989), Helicoverpa armigera has caused huge 
economic losses to global agriculture (Gujar et al., 2021). In 1992, the 
cumulative occurrence of cotton bollworm in various crops in China 
reached 21.92 million hectares, causing direct economic losses of 6 
billion yuan. The widespread use of conventional insecticides could 
lead to many problems, for examples, resistance to conventional 
insecticides, environmental pollution, human health impacts, and 
injury to beneficial insects. In order to reduce the economic losses 
caused by cotton bollworm, countries worldwide began to promote 
the cultivation of genetically modified crops that express the 
insecticidal protein of Bacillus thuringiensis (Bt). By 2012, the global 
area of genetically modified crops had reached 191.7 million hectares 
(James, 2013). However, with the large-scale cultivation of genetically 
modified crops, the frequency of resistance in cotton bollworm has 
significantly increased worldwide (Shelton et al., 2002; Jin et al., 2015; 
Ahmad et al., 2019). Research indicates that the development of cotton 
bollworm resistance is largely attributed to internal microorganisms 
and indigenous gut bacteria increasing the tolerance of larvae to 
B. thuringiensis toxin (Takatsuka and Kunimi, 2000; Dubovskiy et al., 

2016). In addition, the resistance of larvae to the entomopathogenic 
bacterium B. thuringiensis is affected by the maturity of the host 
plants. Martemyanov’s study showed that the negative effects of 
B. thuringiensis were eliminated when the larvae fed on mature leaves 
(Martemyanov et al., 2016). Gut microbial communities play a crucial 
role in the evolution of insect populations resistant to Bt toxins 
(Paramasiva et  al., 2014). Therefore, gut microorganism is an 
important entry point to reveal the adaptation mechanism between 
different hosts of H. armigera.

The composition of the gut microbiota of insects can be affected 
by many factors, such as host species, genotype, diet, and the host 
living environment. Diets with different nutritional compositions can 
affect the longevity of insects (Edgar et al., 2011) and diet is one of the 
most prominent factors in the formation of intestinal microbial 
communities (Harris et al., 2019; Moran et al., 2019). But as far as 
we know, when H. armigera feeds on different fruits and flowers, there 
are no reports on the composition of gut fungal community, especially 
the community of gut yeast. To explore the impact of diets on the gut 
yeast communities of larvaes of H. armigera, we study the composition 
of intestinal yeasts of H. armigera fed on artificial feed, apple, tomato, 
pear (laboratory feeding), Helianthus annuus,Urtica fissa and Zinnia 
elegans (wild environment) by sequencing technology based on D1/
D2 domains of the large subunit rRNA gene (26S rRNA). The results 
revealed the changes of intestinal yeast community in different hosts, 
and speculated the potential relationship between H. armigera and 
intestinal yeast community, which provided a new idea for the 
prevention and control of H. armigera in agriculture.

Materials and methods

Insect sample acquisition

Laboratory-reared cotton bollworms were kept in the artificial 
feed, at 26 ± 0.5°C, 70 ± 10% relative humidity (Rh), and 15H: 9H 
photoperiod (L: D) for more than 3 generations at the College of 
Agriculture, Shehezi University (Yuan et  al., 2021). The 
composition of the artificial feed is shown in Table 1. The fourth-
generation eggs were fed artificial feed to the first instar larvae 
stage, and then transferred to three different fruits (apple, pear, and 
tomato) to the third instar larvae stage. Cotton bollworms that 
continued to be fed artificial feed were used as a control group. See 
Supplementary material 1 for specific feeding processes. Three host 
fruits were collected from the Botanical Garden of Shihezi 
University in 2021. Wild third instar larvae were collected from a 
habitat in Shihezi City (N:44°15′23.14″ E:86°03′9.68″). The larval 
host plants are Urtica fissa, Helianthus annuus, and Zinnia elegans, 
respectively.”

DNA extraction

Third instar larvae were first disinfected with 75% ethanol for 60 s, 
then with 0.5% sodium hypochlorite for 30 s, and finally washed with 
sterile water three times for 60 s (Wang et  al., 2020). Guts were 
dissected with sterile clamp and washed again in sterile phosphate 
buffer saline (1 × PBS; pH:7.4). Thirty guts per treatment were 
collected into sterile centrifuge tubes (Anand et al., 2010), with three 
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replicates per treatments. The FastDNA Spin Kit for Soil (MP 
Biomedicals, UAS) was used to extract the total DNA of samples.

PCR amplification and high-throughput 
sequencing

Yeast 26S rRNA was amplified using a pair of specific primers: 
NL1F (forward primer) (5′-GCATATCAATAAGCGGA GGAAAAG-
3′) and NL2R (reverse primer) (5′-CTTGTTCGCTATCGGTCTC-3′) 
(Keidser et al., 2012). The target DNA bands were amplified on a PCR 
thermocycler (ABI, California, CA, United  States) with an initial 
denaturation at 98°C for 5 min, followed by 30 cycles of denaturation 
at 98°C for 30 s, annealing at 52°C for 30 s, and extension at 72°C for 
45 s. Final extension was set at 72°C for 45 s. PCR products were 
analyzed using 1.8% agarose gel electrophoresis and finally purified 
using the AxyPrep DNA Gel Extraction Kit (Axygen Biosciences, 
USA). Quantification of the target fragment was performed using the 
QuantiFluor ™-ST (Promega, USA) (Zhang H. et  al., 2018). The 
Illumina MiSeq PE300 platform (Illumina, USA) was used to perform 
paired end sequencing (2 × 300) of qualified libraries according to the 
instructions of Meiji Biomedical Company (Shanghai, China).

Statistical and bioinformatics analysis

The software Trimmomatic (version 0.33, Golm, Germany) was 
used to filter the quality of the original sequence file, and then the 
software cutadapt (version 1.9.1, TU Dortmund, Germany) was used 
to identify and delete primer sequences with high quality readings 
without primer sequences (Bolger et  al., 2014). Through FLASH 
(version 1.2.7, Baltimore, MD, USA) software, the high-quality 
readings of each sample are spliced by overlapping, and the resulting 
splicing sequences are clean reads (Magoč and Salzberg, 2011). We use 
UCHIME (version 4.2) to identify and delete chimera sequences and 
obtain the final valid data as a valid read. According to the sequence 
similarity, the effective Operational Taxonomic Units (OTUs) were 
clustered at 97% similarity level by software USEARCH (version 10.0) 
(Edgar et al., 2011). The classification of each D1 domain of the LSU 
(Ribosomal Large Subunit) rRNA sequence was analyzed by the 
Ribosomal Database Project (RDP) classifier algorithm (version 2.2). 
The confidence threshold used in the NCBI database (National Center 
for Biotechnology Information) was 0.7. Next, we  plotted sparse 
curves to observe the community abundance and sequencing data of 
each sample (Li et al., 2018). Principal Coordinate Analysis (PCoA) 

was performed based on Bray Curtis at the OTU level, and the ‘vegan’ 
and ‘ape’ packages in R (version 4.0.2) were used to analyze the 
similarity or difference of sample community composition (Schloss 
et al., 2009). Difference tests between groups in PCoA were analyzed 
using Analysis of Similarities (ANOSIM) using the vegan package in 
R. Alpha diversity (CHAO1 estimator, ACE index, Shannon diversity 
index, and Simpson index) and yeast abundance were analyzed using 
SPSS 26.0 (IBM, NY, USA) (Zhu et al., 2021). All values are expressed 
as mean ± SE. When p < 0.05, the difference is considered significant, 
and when p < 0.01, the difference is considered extremely significant.

Results

Analysis of 26S rRNA high-throughput 
sequencing

Illumina HiSeq technology was used to sequence 21 samples from 
7 treatments. Following splicing and filtering, a total of 1,296,261 clean 
tags were generated, with an average of approximately 62,727 clean 
labels per sample. Through cluster analysis based on 97% sequence 
similarity, we identified 224 OTUs, including 22 phyla, 47 classes, 92 
orders, 130 families, 164 genera, and 191 species. Specifically focusing 
on yeast, we identified 40,703 total reads and 43 OTUs, spanning 2 
phyla, 9 classes, 12 orders, 20 families, 33 genera, and 42 species. The 
sample Shannon index dilution curve (Figure  1) shows that the 
sequencing depth is saturated, suggesting that the sequencing amount 
is sufficient and increasing the sample size will not produce 
more OTUs.

Comparison of intestinal gut yeast groups 
of Helicoverpa armigera under different 
hosts

The α diversity index (Table 2) showed that there were differences 
in the community structure of intestinal yeasts in H. armigera fed on 
different diets. The abundance of yeasts in the intestinal tract of 
H. armigera fed on wild plants (UF, S, Z) was notably higher than that 
of the laboratory artificial fruit feeding group (A, T, P). Particularly, 
the abundance of yeasts in the intestinal tract of wild H. armigera fed 
on Zinnia elegans (Z) was significantly higher to the laboratory 
artificial feeding group (CK, A, T, P), with a Chao 1 index of 
17.17 ± 4.37. The richness of UF, S, and Z groups was similar, with no 
significant difference between CK, A, T, and P groups. According to 

TABLE 1 Experimental material information.

Samples Source Hosts Note

UF Wild environment Urtica fissa No

S Wild environment Sunflower (Helianthus annuus) No

Z Wild environment Zinnia elegans No

CK Laboratory feeding artificial feed Cornmeal 220 g, Yeast powder 50 g, Glucose 35 g

P Laboratory feeding Pear Korla Fragrant Pear

T Laboratory feeding Tomato Lycopersicon esculentum var. cerasiforme A.Gray

A Laboratory feeding Apple Malus pumila Mill

UF, S, Z, CK, A, T, and P represent the hosts of H. armigera, where A represents apple; P, pear; T, tomato; CK, artificial diet; UF, Urtica fissa; S, Sunflower; and Z, Zinnia.
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the difference analysis between groups, the Shannon index of the S 
group was the highest, indicating significantly higher yeast diversity 
compared to the A and P groups. However, the diversity of the gut 
yeast population did not change significantly when the cotton 
bollworm was transferred from artificial feed to apple, tomato, 
and pear.

After quality filtering, the representative sequences of OTUs were 
compared with the NCBI reference database to obtain species 
classification information corresponding to each OTU. Subsequently, 

the composition of each sample was quantified at both the genus and 
species levels. At the genus level (Figure 2A), Hanseniaspora (36.27%), 
Moesziomyces (21.47%), Trichosporon (16.20%), Wickerhamomyces 
(12.96%) and Pichia (6.38%) exhibited total relative abundance greater 
than 5%.

Hanseniaspora is an absolutely dominant genus, and its relative 
abundance in artificial feeding samples is generally higher than that 
in wild sampling groups. The highest relative abundance was observed 
in the apple feeding group (A) with a value of 77.05 ± 14.18%. The 
other three groups are: artificial feed feeding group (CK), with a 
relative abundance of 3.97 ± 6.34%; tomato feeding group (T) at 
44.54 ± 11.64%; and pear feeding group (P) at 68.78 ± 41.66%. 
However, this genus was not detected in the UF group. Moesziomyces, 
on the other hand, shows lower relative abundance in the artificial 
feeding samples compared to wild sampling groups. Its highest relative 
abundance in the Z groups was 90.45 ± 10.94%, whereas it was not 
detected in the artificial feeding groups (A, T, P). The relative 
abundance of Trichosporon was higher in the apple feeding group (A) 
and the feed feeding group (CK). Wickerhamomyces exhibits a relative 
abundance of more than 5% in the UF group, at 40.04 ± 51.68%, and 
the relative abundance of Pichia does not show significant differences 
among the seven groups. Notably, the relative abundance of 
Hanseniaspora significantly increases in other groups, while the 
relative abundance of Trichosporon decreases after feeding H. armigera 
from feed to different fruits (Figures 2B,C; Table 3).

In order to count the number of species in multiple samples 
and the information of common and unique species, we drew a 
Venn diagram at the species level (Figure 3). A total of 52 species 

FIGURE 1

Rarefaction curves of insect gut from different samples. Rarefaction curves of OTUs were clustered for a dissimilarity threshold of 3%. Each sample had 
three replicates (Replicates are not specifically shown in the legend, but have been involved in the analysis). Samples abbreviations are as in Table 1.

TABLE 2 Alpha diversity indices of yeast in insect gut from different 
samples.

Sample 
ID

Chao1 ACE Shannon Simpson

UF 12.37 ± 3.90ab 15.46 ± 4.22ab 1.27 ± 1.10ab 0.40 ± 0.51ab

S 12.33 ± 2.89ab 12.83 ± 1.63abc 1.95 ± 0.10a 0.15 ± 0.06b

Z 17.17 ± 4.37a 18.62 ± 3.67a 0.66 ± 0.33b 0.72 ± 0.13a

CK 7.83 ± 3.33b 8.45 ± 3.26bc 1.21 ± 0.22ab 0.40 ± 0.11ab

A 10.42 ± 1.51b 6.69 ± 5.89c 0.69 ± 0.27b 0.65 ± 0.16a

T 9.00 ± 1.73b 16.40 ± 7.82ab 1.13 ± 0.14ab 0.40 ± 0.03ab

P 8.33 ± 0.29b 14.23 ± 5.52abc 0.41 ± 0.16b 0.80 ± 0.13a

Each sample had three replicates. Sobs index was the observed species richness, Chao1 and 
ACE indices were used to evaluate species richness, Shannon and Simpson indices were used 
to evaluate species diversity. Larger Simpson index values indicate lower species diversity. 
The values of mean ± SE (standard error) of three samples are shown in the table. The 
different lowercase letters show the significant difference of the same index between different 
treatment samples (Kruskal-Wallis test, p < 0.05). Samples abbreviations are as in Table 1.
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FIGURE 2

Each sample had three replicates. (A) Yeast community analysis diagram of all samples at the genus level. (B) Relative abundance of yeast in laboratory 
feeding samples (LF includes A, T, and P samples) and wild environmental samples (WE includes UF, S, Z samples) at the genus level. (C) Relative 
abundance of yeast at the genus level for each sample.

TABLE 3 The relative abundance of the top five genus.

Sample ID Hanseniaspora Moesziomyces Trichosporon Wickerhamomyces Pichia

UF 0.00 ± 0.00c 13.56 ± 17.50b 10.11 ± 17.41c 40.04 ± 51.68a 3.48 ± 6.01c

S 2.34 ± 4.05c 14.64 ± 10.94b 34.28 ± 6.30b 3.03 ± 5.25b 7.66 ± 7.0b

Z 0.04 ± 0.03c 90.45 ± 10.94a 1.51 ± 1.15c 0.00 ± 0.00b 0.01 ± 0.01c

CK 3.97 ± 6.34c 1.57 ± 2.75b 56.93 ± 12.62a 0.00 ± 0.00b 6.27 ± 10.85b

A 77.05 ± 14.18a 0.00 ± 0.00b 18.32 ± 11.24bc 0.00 ± 0.00b 0.27 ± 0.25c

T 44.54 ± 11.64b 0.00 ± 0.00b 3.37 ± 1.67c 0.57 ± 0.76b 2.35 ± 2.35c

P 68.78 ± 41.66ab 0.00 ± 0.00b 0.42 ± 0.23c 0.00 ± 0.00b 28.92 ± 43.32a

The values of mean ± SE (standard error) of three samples are shown in the table. The different lowercase letters show the significant difference of the same index between different treatment 
samples (Kruskal-Wallis test, p < 0.05). Samples abbreviations are as in Table 1.
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were detected in all intestinal samples. Further analysis revealed 
that there were 12 yeast species in wild and laboratory artificial 
samples (Figure 3A). We also found that each sample had its own 
unique yeast species. At the species level, group Z had the highest 
number of detected species, with 22 species, while group T had the 
lowest, with 10 species (Figure 3B). In all samples, Trichosporon sp. 

and Cutaneotrichosporon curvatum were common species, and 
three unique species-Sympodiomycopsis sp., Pichia occidentalis, 
Clavispora lusitaniae, and Pichia terricola appeared in sample S 
(Table 4).

The results of species difference analysis, based on the phylum 
level, showed that the yeast species in the intestinal samples of wild 
H. armigera were mainly concentrated in Basidiomycetes. In contrast, 
the laboratory feeding samples were predominantly composed of 
Ascomycota (Figure 4A). At the genus level (Figure 4B), there were 
significant differences in 6 genera (p < 0.05) and extremely significant 
differences in 5 genera (p < 0.01) among the 7 groups. Moesziomyces 
and Trichosporon mainly found in UF, S, and Z groups, while 
Hanseniaspora and Trichosporon were primarily detected in CK, A, 
T, and P.

To elucidate the dynamic shifts in the intestinal microflora of 
H. armigera across various hosts, we  selected 10 genera with the 
highest relative abundance for constructing a relative abundance 
cluster heat map. The clustering is based on the similarity in species 
abundance, with horizontal clustering representing sample 
information and vertical clustering indicating species information. 
Wild plants, including Urtica fissa (UF), Zinnia (Z), and sunflower (S), 
exhibit distinct clustering on separate branches. Notably, the gut yeast 
community compositions of H. armigera feeding on pear (P) and 
tomato (T) are highly similar. Moesziomyces emerges as a major 
component in the gut microbiome of H. armigera feeding on Zinnia 
elegans, while the relative abundance of Wickerhamomyces is notably 
higher in the gut of H. armigera feeding on Urtica than in other 
groups. Similarly, Hanseniaspora and Trichosporon exhibit elevated 
relative abundances in the A group (Figure 5).

Sorted at the OTU level by PCoA to compare community 
composition similarities between samples. The abscissa and ordinate, 
respectively, explain the two eigenvalues that contribute the most to 

FIGURE 3

Venn diagram at the species level of samples. (A) Represents laboratory feeding sample (LF includes CK, A, T, and P samples) and wild environmental 
samples (WE includes UF, S, Z samples). (B) Represents each sample. Each circle with different colors in the diagram represents a group; middle core 
numbers represent the number of species common to all groups.

TABLE 4 Exclusive and shared species in all samples.

Sample Only species All shared species

UF Metschnikowia 

pulcherrima

Trichosporon sp.

Cutaneotrichosporon 

curvatumS Sympodiomycopsis sp.

Pichia occidentalis

Clavispora lusitaniae

Pichia terricola

Z Papiliotrema laurentii

Sporobolomyces roseus

Papiliotrema sp.

CK Malassezia sp.

Exophiala lecanii-corni

A Kondoa gutianensis

Candida saitoana

Kazachstania slooffiae

T Wickerhamomyces pijperi

Kurtzmaniella natalensis

P No

Samples abbreviations are as in Table 1.
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FIGURE 4

Species difference analysis of seven samples: (A) Phylum level; (B) Genus level. The y-axis represents the classification levels of species, and the x-axis 
represents the percentage of species average relative abundance in each sample group. Different colors represent different samples. The Kruskal-
Wallis rank-sum test was used to show significant differences (*0.01  <  p  <  = 0.05, **0.001  <  p  <  = 0.01, ***p  <  = 0.001).

FIGURE 5

Cluster heat map of the 10 most abundant genera in the yeasts community. The columns represent the samples and the rows represent the yeasts 
OTUs assigned to the genus level. Dendrograms of hierarchical cluster analysis grouping genera and samples are shown on the left and at the top, 
respectively. Samples abbreviations are as in Table 1.
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the difference between the samples, and the influence degree is 20.89 
and 15.49%, respectively, (Figure  6). PCoA1 has relatively small 
eigenvalues and captures less than 50% of the changes in the input 
data, so it is not considered to be a very successful PCoA. However, 
the results of Adonis analysis (Figure 7) showed that the R2 value 
(R2 = 0.6281, p = 0.001) was greater than 0 and tended to 1, indicating 
that the difference between the sample groups was greater than that 
within the sample group. Among the seven insect gut samples, most 
of the samples in each group clustered together, the three replicates of 
each sample had good reproducibility, and the degree of separation 
between each sample group was better, with an AP-value <0.05 
(p = 0.001), indicating that there were significant differences in 
community composition between groups.

Discussion

Helicoverpa armigera (Lepidoptera: Noctuidae) is an omnivorous 
and highly migratory agricultural pest. The hatched larvae feed on the 
tender leaves, flowers, or fruits of plants (Luo et al., 1999). The growth, 
development, and survival rate of the cotton bollworm are influenced 
by different host plants (Kim and Lee, 2002). In this research, we have 
studied the gut yeast diversity and community composition of 
H. armigera larvae feeding on different wild plants and artificial 
laboratory fruits by high-throughput sequencing. The experimental 
results provided a comprehensive understanding of the relationship 
between H. armigera and its symbiotic yeast. According to our 

experimental data, we can preliminarily conclude that the diversity 
and relative abundance of the gut yeast community of H. armigera are 
affected by the host diet. There is a complex yeast symbiotic 
community in the gut of H. armigera larvae, which provides a 
theoretical basis for comprehending the adaptive mechanism of 
H. armigera and its host plants.

Given the potentially crucial roles of microbial communities in 
insect physiology and development, extensive research has unveiled 
the diversity of microbial communities in insects (Douglas, 2007). 
Some studies indicates that the diversity of fungal communities in the 
insect gut is influenced by a range of complex factors such as the 
insect’s habitat environment, diet, developmental stage, and phylogeny. 
Unlike bacteria, fungi are more strongly influenced by environmental 
factors, such as different diets and geographical locations, than 
physiological constraints (Zhang Z. et  al., 2018; Park et  al., 2019; 
Ludvigsen et al., 2020). A survey of the gut fungal community of 
Bactrocera tryoni (Froggatt), Queensland fruit fly larvae feeding on 
different host fruits revealed that the yeast Pichia had a relative 
abundance of 90% in the larval gut when feeding on loquats and less 
than 1% relative abundance in the gut when feeding on pomegranates 
(Majumder et  al., 2020). Insects from different geographical 
populations typically have distinct gut microbial communities. The 
gut fungal community of beetles (Coleoptera) is also influenced by 
their habitat. There are significant differences in the yeast community 
structure in the guts of beetles between forests and grasslands (Kudo 
et  al., 2019). Reports on the gut microbiota of H. armigera have 
primarily focused on bacteria. The dominant bacterial phylum in the 

FIGURE 6

Principal Coordinates analysis (PCoA) based on Bray-Curtis distance method at the OTU level. Samples abbreviations are as in Table 1.
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gut of H. armigera is Actinobacteria (Ranjith et al., 2016). The diversity 
of symbiotic bacteria in the gut of cotton bollworm larvae feeding on 
cotton is greater compared to those feeding on artificial feed (Zhao, 
2021). In our study, variations in the yeast population composition 
were observed when cotton bollworm larvae were transitioned from 
artificial feed to pear, apple, and tomato diets. The yeast diversity in 
the gut of cotton bollworm larvae feeding on wild plants (UF, S, Z) 
surpassed that of the laboratory artificial fruit feeding group (CK, A, 
T, P). Particularly, the yeast diversity in the gut of cotton bollworm 
larvae feeding on Zinnia elegans was notably higher than that of the 
laboratory feeding group.

At the phylum level, the gut yeast population of cotton 
bollworm larvae consuming plants was predominantly composed 
of Basidiomycetes. In contrast, the gut yeast population of 
laboratory-fed cotton bollworm larvae consuming fruits was 
dominated by Ascomycota. At the genus level, Hanseniaspora was 
the predominant genus detected in H. armigera fed on fruits. This 
observation may be attributed to the fact that Hanseniaspora is the 
prevalent yeast genus in the early stages of natural fermentation, 
commonly found on the epidermis of mature fruits, and capable of 
secreting various hydrolases. Certain strains of this genus exhibit 
low ethanol production, facilitating insect digestion of the pulp 
without causing harm to the host insects (Capece et  al., 2005; 
Viana et al., 2009; Hong and Park, 2013). Moesziomyces, belongs to 

the phylum Basidiomycota, is primarily distributed in wild larval 
samples (UF, Z, S), and is rarely detected in laboratory samples. 
This yeast genus was initially isolated from sediment in Lake 
Vanda, Antarctica (Li et al., 2019) and later frequently isolated 
from the surface of plant leaves, serving as a natural source for 
plant resistance against powdery mildew (Liu et  al., 2019). 
Trichosporon exhibit relatively high abundance in artificial feed 
(CK), with a relative abundance similarly to Wickerhamomyces in 
the wild Urticafissa (UF) group. These results strongly suggest a 
certain correlation between the yeast populations in the cotton 
bollworm gut and those on the host, indicating potential 
similarities. The microbial community in the insect gut is 
influenced by the host’s feeding habits, leading to different 
dominant microbial lineages (Ayayee et al., 2016; Vilanova et al., 
2016; Bing et al., 2018; Liu et al., 2020).

Trichosporon spp. and Cutaneotrichosporon curvatum were found 
in all seven treatment samples. Trichosporon spp. are versatile 
organisms that can thrive in diverse environments, including soil, 
wastewater, sediment, wood pulp, and sludge (Mehta et al., 2021). 
They have the capability to utilize their cells or enzyme systems for 
bioremediation, breaking down pollutants and external substances. 
This occurs particularly when using uric acid, ethylamine, aniline, and 
aromatic compounds as the exclusive energy source (Godjevargova 
and Gabrovska, 2003; Bergauer et  al., 2005). Another species, 

FIGURE 7

Adonis analysis account for the sample differences by different grouping factors. The ‘Between’ boxes refer to differences between groups, while the 
others represent differences within their respective groups.
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Cutaneotrichosporon curvatum, exhibits the capacity to utilize 
unconventional carbon sources for oil production and is proficient in 
lipid accumulation (Péter et al., 2019). Several yeast species found in 
the wild samples display special function. Metschnikowia pulcherrima 
demonstrates the ability to produce various acidic proteases and 
microbial lipids (Li et al., 2021). Additionally, Papiliotrema laurentii in 
group Z stands out as an oleaginous yeast with a diverse range of 
metabolic carbon sources, enabling the production of enzymes and 
high lipid concentrations (de Almeida et  al., 2022). Similarly, 
Sporobolomyces roseus can produce zeatin (Streletskii et al., 2019) and 
degrade amino acids (Moore et  al., 1968). Papiliotrema has been 
reported to be resistant to heavy metals (Nguyen et al., 2020). These 
biological functions possibly supply essential nutrients for the growth 
of cotton boll larvae or aid the host in detoxification processes. 
Different yeast species appeared in the gut of cotton boll larvae under 
different feeding conditions. This difference could be a result of wild 
larvae adapting to the constantly changing natural environment, 
including factors such as sunlight, temperature, moisture, and food 
availability. The larvae may require a greater presence of symbiotic 
yeasts with specific functions to help them withstand 
external adversities.

PCoA analysis revealed variations in the composition of gut yeast 
populations. Interestingly, we observed no significant difference in the 
structure of intestinal yeast microflora between the groups fed 
tomatoes (T) and pears (P) (Permonova: R2 = 0.275, p = 0.3). A daring 
hypothesis to elucidate this observation is that tomatoes and pears 
share certain similar nutrients, potentially amino acids or acids, 
fulfilling the growth requirements of cotton bollworm larvae (Shao 
et  al., 2011). It is well-established that the composition of gut 
microbiota is influenced by both plant secondary metabolites and the 
nutritional needs of the host (Myers et al., 2006; Blanco et al., 2007; 
Muhammad et al., 2017). Insects’ host are influenced by many factors, 
including environmental conditions, dietary maturity, host volatiles, 
and so on, all of which indirectly affect the composition of the insect 
gut symbiotic microbial community. There is a close relationship 
between the three (insect, insects host and the insect gut symbiotic 
microbial community).

Controlling H. armigera in China poses significant challenges, 
with current methods relying on chemical pesticides and the 
cultivation of Genetically Modified (GM) crops. However, people 
are gradually realizing that these methods confer stronger 
resistance to insects. Transgenic pest control strategies involving 
the modification of microorganisms (Paratransgenesis) have been 
proposed. In this strategy, genetically engineered microorganisms 
colonize the insect gut and produce effector molecules that target 
and kill pests. For instance, research has integrated genes 
expressing lytic peptides into yeast, creating an eco-friendly bait 
system targeting termites. The engineered yeast spreads widely in 
the social insect population, and the expressed lytic peptides kill 
protozoa in the gut within 4 weeks, followed by termite mortality 
within 6 weeks (Sethi et al., 2014).

Another innovative strategy is RNA interference (RNAi), a reverse 
genetic approach with potential applications in pest control. Yeast, 
commonly found on the surface of many fruits and constituting a 
major part of the microbial communities in various insect species, 
makes it highly attractive to insects. Murphy et al. (2016) utilized 
genetically modified baker’s yeast to feed Drosophila suzukii, delivering 
species-specific dsRNA. After feeding on this “yeast biopesticide,” the 

survival rate of Drosophila larvae, as well as the mobility and 
reproductive capacity of the adults, was reduced (Murphy et al., 2016). 
There are also relevant experiments using fungi as feeding stimulants 
to increase insecticide ingestion. For example, the combination of 
sucrose with Saccharomyces cerevisiae or Aureobasidium pullulans can 
serve as ingestion stimulants, enhancing the efficacy of 
Cyantraniliprole and Spinosad (Knight et al., 2015). Yeast can also 
serve as an adjuvant for biopesticides. Yeast isolated from the gut of 
Cydia pomonella larvae can enhance the activity of Cydia pomonella 
granulovirus (CpGV), significantly increasing the mortality rate of 
newly hatched larvae (Knight and Witzgall, 2013). Fungi that are 
attractive to insects can be  directly used for pest monitoring, 
forecasting, and lure-and-kill strategies. For instance, the yeast 
Candida utilis has been used as bait to trap adult vinegar flies (Daane 
and Johnson, 2010).

In conclusion, our research findings confirm that the gut yeast 
community of cotton bollworm larvae is influenced by the host’s diet. 
Variations in dominant yeast species occur with different host diets, 
and transitioning cotton bollworm larvae from artificial feed to apple, 
pear, and tomato diets induces changes in yeast population abundance. 
These alterations likely contribute to mutual adaptation with the host. 
Understanding the composition of the gut yeast population in cotton 
bollworms is crucial due to the physiological and ecological functions 
of symbiotic yeast. This knowledge lays the foundation for developing 
targeted pest control technologies based on symbiotic yeast 
(Berasategui et al., 2016).
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