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Identifying a list of Salmonella

serotypes of concern to target
for reducing risk of salmonellosis

Tatum S. Katz, Dayna M. Harhay*, John W. Schmidt and

Tommy L. Wheeler

U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal

Research Center, Clay Center, NE, United States

There is an increasing awareness in the field of Salmonella epidemiology that

focusing control e�orts on those serotypes which cause severe human health

outcomes, as opposed to broadly targeting all Salmonella, will likely lead to

the greatest advances in decreasing the incidence of salmonellosis. Yet, little

guidance exists to support validated, scientific selection of target serotypes. The

goal of this perspective is to develop an approach to identifying serotypes of

greater concern and present a case study using meat- and poultry-attributed

outbreaks to examine challenges in developing a standardized framework for

defining target serotypes.
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1 Introduction

In the United States, non-typhoidal Salmonella (NTS) is the leading cause of bacterial

foodborne illness (Centers for Disease Control and Prevention, 2023b) with $4.1 billion lost

to NTS illness yearly (United States Department of Agriculture Economic Research Service,

2023). Despite numerous improvements in the control of Salmonella cross-contamination

in food processing and production environments, NTS illness rates have not decreased

in the last 20 years (Centers for Disease Control and Prevention, 2023c). This indicates

that scientific understanding of NTS throughout affected food production and processing

systems has not reached the level that enables effective control strategies.

A complicating factor in Salmonella control is the diversity of the genus. Consisting

of two species and seven subspecies, Salmonella are further subtyped by serotyping, a

phenotyping method which determines agglutination of the bacteria with antisera to

identify antigenic variants (Grimont and Weill, 2007). Less than 2% of the >2,600 known

serotypes consistently appear in reports on U.S. human infections (Issenhuth-Jeanjean

et al., 2014; Centers for Disease Control and Prevention, 2023d). New information on

genomic differences among Salmonella serotypes (den Bakker et al., 2011; Suez et al., 2013;

Cheng et al., 2019; Rakov et al., 2019; Wang et al., 2020) has led to specifically targeting

Salmonella that pose the greatest risk to human health, rather than broadly managing all

Salmonella contamination. To this end, industry, academia, and government organizations

have begun to focus research efforts on determining which serotypes to target andmethods

for rapidly identifying those serotypes of greater concern (Cohn et al., 2021; Chen et al.,

2022; United States Department of Agriculture Food Safety and Inspection Service, 2022;

Centers for Disease Control and Prevention, 2023a).
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Analysis of epidemiological data may identify Salmonella

serotypes with a greater impact on human health. A key original

epidemiological analysis determined that there were significant

differences among serotypes in their epidemiological outcomes

by analysis of 1996 to 2006 FoodNet data (Jones et al., 2008).

The Jones study presented a unique and practical approach

based on retrospective, epidemiological data, but was limited to

data collected from 10 states (representing 10–15% of the US

population) over 11 years. Furthermore, FoodNet data consists of

sporadic illnesses which are not necessarily part of an identified

outbreak, and are not confirmed to be transmitted by food (Centers

for Disease Control and Prevention, 2021). Given the evolving

Salmonella regulatory landscape and the limitations of the Jones

study, we have revisited this epidemiological analysis using new

data and with a new goal: identification of serotypes to target

for management to improve human health outcomes (which we

will refer to throughout as “serotypes of concern” or SoC). In

our analyses, we focus on salmonellosis outbreaks across the

United States with a confirmed food transmission route utilizing

the CDC’s National Outbreak Reporting System (Centers for

Disease Control and Prevention, 2023d). Accordingly, we present

two different methods for analyzing CDC Salmonella outbreak data

collected between 2009–2021 and attributed to meat and poultry

(8,524 illnesses across 36 serotypes). During these analyses, we

also identified several obstacles that complicate the conclusions

made. The goals of this perspective, therefore, are to (1) suggest

serotypes of concern associated with meat and poultry; (2) outline

some of the obstacles and opportunities in determining SoC using

epidemiological data.

2 Statistical approaches using
epidemiological data

There is no consensus on what constitutes a SoC. The Jones

study, while providing a powerful framework for examining

differences across serotypes by epidemiological data, did not

produce a definitive list of target serotypes (Jones et al., 2008). The

USDA FSIS has identified their most commonly-detected serotypes

Infantis, Enteritidis, and Typhimurium as Key Performance

Indicators (KPIs), yet these together represented just 4.22% of

Salmonella positive FSIS samples from 2020 to 2021, and 26% of all-

cause sporadic illness isolates in 2020 (United States Department

of Agriculture Food Safety and Inspection Service, 2022; Centers

for Disease Control and Prevention, 2023a). Furthermore, much of

the scientific literature on Salmonella virulence and host-pathogen

interaction focuses on two of the highest-incidence serotypes

(Typhimurium and Enteritidis), with little study devoted to other

serotypes that contribute to most human illnesses in the US

each year.

To provide an actionable list of SoC, quantitative validation

is key. We define two major challenges to achieving this list:

first, the list should be complete enough that targeting the

serotypes included would result in decreasing salmonellosis to

meet the DHHS Healthy People 2030 goals (U. S. Department

of Health and Human Services, 2020) but concise enough to be

actionable; and second, the determination of which epidemiological

variables are critical for reducing outbreaks and illnesses. We have

developed two methods for identifying SoC: a machine learning-

based approach and a more classical, outlier-based approach. These

approaches represent two extremes of statistical approaches to this

problem: the machine learning approach is highly flexible and less

constrained by researcher input, while the outlier approach brings

together researcher input and quantitative validation in a simple

decision rule. The results of both approaches were combined to

create a priority SoC list that could be targeted for reducing U.S.

illnesses attributed to chicken, turkey, pork, and beef.

2.1 Epidemiological data

Data representing all 50U.S. states and Puerto Rico were

downloaded from Centers for Disease Control’s National

Outbreak Reporting System (NORS) on 1/18/2023 (Centers

for Disease Control and Prevention, 2023d). This dataset

contained information on the confirmed or suspected food

source, categorized following the Integrated Food Safety Analytics

Collaboration (IFSAC) Food Categorization Scheme (Richardson

et al., 2017), as well as the year of the first illness, the confirmed or

suspected Salmonella serotype(s) responsible, and information on

the outbreak including the number ill, number hospitalized, and

number of deaths. We focus on outbreak-associated cases because

we seek to identify those serotypes which cause systematic illness

(i.e., we can examine source attribution as a variable) compared

to serotypes which cause sporadic cases, where the source is

generally unknown. Following data cleaning, including removal of

observations with missing epidemiological, attribution, or etiology

data, 694 out of 3042 outbreaks remained for analysis across all

attributed sources (Supplementary material).

2.2 Machine learning approach

Detailed methods for both approaches are available in the

Supplementary material, and all data and code generated for

this study is available for free download at https://github.com/

tatumskatz/serotypesOfConcern. Machine learning methods are

especially useful for uncovering previously unnoticed trends and

patterns in complex biological data since minimal assumptions

have to be made about the data generation process (Bzdok et al.,

2018). In this approach, we utilized an agglomerative nesting

hierarchical cluster analysis (AGNES) to categorize serotypes as

SoC or not (Supplementary material). Hierarchical cluster analysis

proceeds by calculating the similarity between observations over

multiple variables, and then using those similarity scores to

group observations. Each observation starts off alone and is

iteratively grouped with others based on distance (Altman and

Krzywinski, 2017). After groups are created, the optimal number

of groups is determined by assessing how similar the observations

in a group are to each other and by maximizing within-group

similarity while minimizing between-group similarity (Altman

and Krzywinski, 2017). Once the optimal number of groups was

determined, we then used expert knowledge to identify the group

which contains the SoC so that any serotype in that group is

classified as a SoC. By using a flexible, pattern-seeking approach
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and allowing the researcher to only provide input at the very

end, this method can potentially reveal new insights in this

complex dataset.

2.2.1 Machine learning results
SoC were identified for meat overall and each commodity. In

all cases, the Ward cluster method outperformed other methods

and so was used to generate all clusters. Optimal number of groups

ranged from 3 for meat overall, beef, chicken, and turkey to 4

for pork. Decision rules for categorizing serotypes as SoC varied

by commodity: for meat overall, beef, chicken, and turkey “more

than one outbreak in at least 2 years”; and for pork, “more than

one outbreak in at least 2 years, or one outbreak with at least 7

hospitalizations in at least 2 years”. The SoC lists also varied by

commodity: SoC for the four commodities and meat overall are

presented in Table 1. Notably, the list for chicken SoC included only

Enteritidis (Supplementary Table 1). Further analysis showed that

the large number of Enteritidis outbreaks attributable to chicken

products appeared to overwhelm other outbreaks so that no

other serotypes are identified. Conversely, commodities with fewer

outbreaks overall, and beef especially, revealed unanticipated SoC

including Dublin and Uganda. Comparisons of the epidemiological

data of these serotypes with established outbreak serotypes such as

Enteritidis and Typhimurium revealed similar values for outbreaks,

illnesses, and hospitalizations within the beef commodity (Table 1,

Figure 1).

2.3 Outlier approach

If the machine learning approach produces a “black box”

decision rule, the outlier approach produces a “clear box” decision

rule. Outliers have no single mathematical definition, but we can

intuitively describe them as observations which are so different

from the rest of the data that they seem to be generated by an

entirely different process (Hawkins, 1980). To define an outlier,

we must have an idea of what “normal” observations are; then, we

can identify abnormal observations (Aggarwal, 2017). By allowing

for an a priori model of a “normal” data generation process (i.e.,

what a “normal” outbreak looks like), we can incorporate expert

knowledge into our SoC definition and still allow quantitative

validation by generating a score for how outlied each “abnormal”

serotype is. Outlier identification is challenging for a variety

of reasons, but we meet a specific challenge for our serotype

list: many outlier tests assume only one or two outliers exist

(Aggarwal, 2017); yet, we do not want to pre-define the number of

outliers. Therefore, we utilized an approach which defines outliers

using quartiles. This method avoids specifying a distribution

(which is challenging given the nature of the data) or number

of outliers and instead calculates how different each observation

is from the rest of the data. For our case study, we used the

average outbreak size and hospitalization:illness ratio to determine

target serotypes. This method is similar, and sometimes identical

to, the way one might use a box-and-whisker plot to identify

outliers (Aggarwal, 2017).

2.3.1 Outlier results
As with the machine learning method, the outlier method

results varied by commodity. Outlier cutoffs for meat overall were

an average outbreak size>60.60 individuals and a hospitalization to

illness ratio of greater than 0.30; for beef and turkey, any serotype

with an average outbreak size and hospitalization to illness ratio

>0 were SoC; for chicken, an average outbreak size >14.50 and a

ratio of >0; for pork, an average outbreak size >24.50 and a ratio

>0.15 were SoC (Supplementary Table 2, Supplementary Figure 2).

Serotypes identified as SoC for the four commodities and meat

overall are presented in Table 1 and Figure 1.

2.4 Generating the serotypes of concern list

To generate our final list of SoC, any serotype that was

identified by either the machine learning approach or the outlier

approach was classified as a SoC (Table 1, Figure 1). Additionally,

serotypes are marked as SoC for a given commodity if either

approach identified it as such for that commodity. Combining the

results of both methods results in a more holistic list, in alignment

with our goals.

3 Obstacles and opportunities

3.1 Data limitations

Perhaps the most important limitation of our work is that

NORS is a dynamic reporting system (reports can be modified,

added, or removed at any time), so that future analyses may differ

from ours due to the dynamic nature of the database. There are also

limitations in the data available at the time of analysis. Outbreaks

make up on average 10% of documented illnesses (Scallan et al.,

2011; The Interagency Food Safety Analytics Collaboration, 2020),

as such, this analysis does not take illnesses attributed to sporadic

incidence into account, unlike the Jones study (Jones et al., 2008).

Additionally, NORS is a voluntary reporting system and so does

not represent all outbreaks in the U.S. Breaking down the data

by specific source attribution commodities resulted in low sample

sizes for some analyses. Beef and turkey for example, had few

outbreak data (noutbreaks = 37 and 31, respectively) and accordingly,

more serotypes were identified for beef and turkey than chicken

(noutbreaks = 96) and pork (noutbreaks = 63). If these data were

parsed at the level of detail required for a business entity wanting

to take actions in a specific production system, there are even

less data available for analysis. Epidemiological data are naturally

imperfect in that they contain information not just about the

pathogen, but about the host and the environment as well. For

example, Montevideo was identified as a beef SoC, yet the two

largest beef-attributed Montevideo outbreaks can be traced back

to a single caterer with a backyard chicken flock which may

have contributed to the contamination of the beef prepared by

the caterer (North Dakota Department of Health - Division of

Disease Control, 2009). This final issue is challenging to tackle

without parsing all individual outbreak reports, and there is not

information at this level of detail for every outbreak. Researchers
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TABLE 1 Summary statistics for identified serotypes of concern attributed to meat and poultry from the CDC NORS dataset.

Serotype Number of
outbreaks

Number of
illnesses

Number of
hospitalizations

Hospitalization
to illness
ratio

Proportion of
total illnesses

Identifying
approach

Commodity (ML
approach)

Commodity
(outlier

approach)

Enteritidis 65 1,848 204 0.11 0.22 Both Meat overall, beef,

chicken, pork, turkey

Beef, turkey

Typhimurium 24 864 127 0.15 0.10 Both Meat overall, beef, pork,

turkey

Beef, chicken, turkey

I,4,[5],12:i:- 19 751 138 0.18 0.09 Both Meat overall, pork,

turkey

Beef, chicken, pork

Heidelberg 17 1,380 386 0.27 0.17 Both Meat overall, turkey Beef, chicken, turkey

Infantis 9 334 62 0.19 0.04 Both Meat overall Beef, chicken, pork

Newport 13 856 224 0.26 0.10 Both Meat overall, beef Beef, turkey

Uganda 5 67 11 0.16 0.01 Both Beef Beef

Braenderup 8 133 23 0.17 0.02 Outlier Beef, chicken

Muenchen 4 119 6 0.05 0.01 Outlier Beef, turkey

Montevideo∗ 4 441 3 0.01 0.05 Both Meat overall Beef, chicken

Javiana 5 113 46 0.41 0.01 Both Meat overall Chicken, turkey

Reading 3 375 133 0.35 0.05 Both Turkey Meat overall, turkey

Dublin 2 51 16 0.31 0.01 Both Beef Beef

Oranienburg 1 18 2 0.11 0.00 Outlier Beef

Potsdam 1 9 1 0.11 0.00 Outlier Beef

Thompson 5 166 19 0.11 0.02 Outlier Chicken

Saintpaul 3 83 16 0.19 0.01 Both Turkey Chicken, turkey

Hadar 2 51 12 0.24 0.01 Both Turkey Turkey

Schwarzengrund 3 53 0 0.00 0.01 Outier Pork, turkey

Anatum 2 12 1 0.08 0.00 Outlier Turkey

Berta 2 65 8 0.12 0.01 Outlier Pork, turkey

Total 197 7,789 1,216 0.95

∗See additional information in Data Limitations. Bolded serotypes were identified by CDC BEAM as moderate to high illness burden SoC for one or more of the four commodities on 08/29/2023.
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FIGURE 1

Serotypes identified as of concern using the machine learning and outlier approach for beef, chicken, pork, and turkey.

must be careful to be clear about the limits of their data as they

identify SoC.

3.2 Machine learning is not a panacea

As expected, this case study did reveal candidate SoC that

may have been “hidden” by traditional approaches. Many machine

learningmethods are rejected as “black boxes.” That is, themethods

are poorly documented to a degree that no critical analysis can

be performed. This can be remedied by clearly and accurately

explaining the techniques used that resulted in the final output.

Machine learning tools should not be treated as a black box,

rather, we must focus on replicability and clear communication

of research.

3.3 The outlier approach requires many
decisions

Unlike the machine learning approach, the outlier approach

required two major decisions to be made: what variables to use and

how to define an outlier. While these decisions were made using

expert knowledge, we have limited tools to quantitatively validate

them. This may be the greatest weakness of the outlier approach,

but it is also its strength as we can seamlessly incorporate expert

knowledge into our methods.

3.4 Other considerations

In addition to the above obstacles, the issues of what data to

include and the role of pathogen evolution must be considered.

Incidence alone is not enough for the determination of SoCs

because most cases of salmonellosis are self-limiting with at-home

care, and to improve human health we need to target the most

“dangerous” types of Salmonella. Similarly, including death in

the SoC definition may also bias results because salmonellosis is

usually not the only factor contributing to a death outcome—

comorbidities are often present (Cummings et al., 2010). Therefore,

we instead propose the inclusion of a measurement of disease

severity (i.e., hospitalization to infection ratio) or another metric

of pathogenicity other than death in SoC definitions. Furthermore,

while this list of SoC represents a snapshot of the current

Salmonella epidemiological landscape, pathogens are constantly

evolving. For example, the Infantis strain containing the pESI

plasmid has become a highly successful strain that now dominates

the Salmonella isolated from poultry at harvest in the U.S.

(McMillan et al., 2022). In the earlier 20th century, successful

control of serotype Gallinarum likely led to the emergence of

Enteritidis as a dominant serotype in poultry (Rabsch et al.,

2000). When targeting serotypes, we must be cautious to include
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evolutionary models to understand how best to manage them.

Increased surveillance and re-visiting SoC definitions periodically

will be required to help us stay ahead of Salmonella evolution.

Finally, while serotyping has historically been instrumental in

subtyping and understanding the diversity of Salmonella, evidence

suggests that there are important differences even within serotypes

(Cohn et al., 2021; Chen et al., 2022). As we move away from

serotyping as the dominant subtypingmethod and toward genetics-

based subtyping, ensuring “backwards compatibility” of new

methods against SoC is key.

4 Conclusions

Defining a list of Salmonella serotypes to target to improve

public health outcomes is a challenging yet critical task. Current

approaches may oversimplify the true complexity of the Salmonella

problem, leaving us to target only the most common serotypes.

Yet, little evidence exists to suggest that control of the premier

serotypes, such as Enteritidis or Typhimurium, will achieve the

goal of decreasing Salmonella infection in humans. We developed

frameworks for a quantitative, epidemiological method to define

target serotypes for management and control and have produced a

list of serotypes of concern (SoC) for the meat and poultry industry.

The serotypes identified can be utilized by industry to target

specific Salmonella and improves upon existing Key Performance

Indicators by being epidemiologically validated. The development

of rapid testing technologies, which target a suite of Salmonella

serotypes based on shared features, could use this list as validation

to ensure the tool will bring about the desired human health

improvements. Further, using the code generated during this study

and the CDC National Outbreak Reporting system, researchers

and industry alike can tailor this analysis to their specific needs or

update the analysis with new data over time.

New approaches to defining SoC must consider the holistic

scope of host-pathogen-environment interactions, evolution, and

comorbidities in the host while remaining scientifically and

statistically supported. By incorporating these factors into new

definitions of target serotypes, we believe there is great opportunity

for advancing the control of Salmonella for the betterment of

public health.
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