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Introduction: This study aimed to determine the prevalence and virulome of

Listeria in fresh produce distributed in urban communities.

Methods: A total of 432 fresh produce samples were collected from

farmer’s markets in Michigan and West Virginia, USA, resulting in 109 pooled

samples. Listeria spp. were isolated and L. monocytogenes was subjected to

genoserogrouping by PCR and genotyping by pulsed-field gel electrophoresis

(PFGE). Multi-locus sequence typing (MLST) and core-genome multi-locus

sequence typing (cgMLST) were conducted for clonal identification.

Results: Forty-eight of 109 samples (44.0%) were contaminated with Listeria

spp. L. monocytogenes serotype 1/2a and 4b were recovered from radishes,

potatoes, and romaine lettuce. Four clonal complexes (CC) were identified and

included hypervirulent CC1 (ST1) and CC4 (ST219) of lineage I as well as CC7

(ST7) and CC11 (ST451) of lineage II. Clones CC4 and CC7 were present in the

same romaine lettuce sample. CC1 carried Listeria pathogenicity island LIPI-1

and LIPI-3 whereas CC4 contained LIPI-1, LIPI-3, and LIPI-4. CC7 and CC11 had

LIPI-1 only.

Discussion: Due to previous implication in outbreaks, L. monocytogenes

hypervirulent clones in fresh produce pose a public health concern in urban

communities.
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1 Introduction

Listeria is widely distributed in the environment, such as soil, manure, and water (Zhu
et al., 2017). Due to the high mortality and hospitalization rate of listeriosis (20–30%)
(Radoshevich and Cossart, 2018) and the increasing popularity of farmer’s markets in urban
communities, it is important to understand the prevalence and public health significance
of Listeria spp. in fresh produce associated with this sector of agriculture. Recent studies
have reported 3.1% to 3.9% of fresh produce contaminated with Listeria at farmer’s markets
and supermarkets (Li K. et al., 2017; Scheinberg et al., 2017; Roth et al., 2018). While the
prevalence of L. monocytogenes was generally below 1.9% (Johnston et al., 2006; Korir et al.,
2016; Li K. et al., 2017; Scheinberg et al., 2017), none of the research provided molecular
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information or virulence characteristics of the pathogen from these
types of products, which is critical for microbial risk assessment of
food contamination.

Of 14 serotypes of L. monocytogenes, most are in lineage
I (serotypes 1/2b, 3b, 3c, 4b) and lineage II (serotypes 1/2a,
1/2c, and 3a). Serotypes 4b and 1/2a predominate in human
and food/environment isolates, respectively (Poimenidou et al.,
2018). Lineage III and lineage IV are common in animal sources
(Shen et al., 2013) and comprise serotypes 4a, some 4b strains,
and 4c. L. monocytogenes can be further categorized into clonal
complexes (CCs) based on multi-locus sequence typing (MLST).
CC1, CC2, CC4, and CC6 of serotype 4b are remarkably more
common in human listeriosis than food isolates and considered
hypervirulent clones (Maury et al., 2016). Targeting hundreds
of core genes of the entire L. monocytogenes genome, core
genomic MLST (cgMLST) can determine the relatedness of
isolates to epidemic clones (EC) and demonstrate the clinical
relevance of bacteria (Chen et al., 2016; Li Z. et al., 2017).
So far four major ECs (ECI, ECII, ECIII, and ECIV) have
been identified in L. monocytogenes. ECI, ECII, and ECIV
belong to serotype 4b while ECIII belongs to serotype 1/2a
(Chen and Knabel, 2007).

Listeria pathogenicity island (LIPI) is a key virulence
determinant in Listeria (Disson et al., 2021). LIPI-1 is listeriolysin
O (LLO) island and necessary for intracellular survival and
spread of L. monocytogenes; LIPI-2 is specific to L. ivanovii;
LIPI-3 is listeriolysin S island, important for gastrointestinal
colonization, and commonly associated with lineage I; LIPI-4 is
the most recently identified neurovirulence/placental infection
island (Maury et al., 2016) and strongly associated with the
hypervirulence of CC4. LIPI-4 has been detected in CC4 as well
as emerging clones of human and environmental origin (Lee
et al., 2018). Another virulence feature that is crucial for the
infectious potential of Listeria is the gene clusters responsible for
teichoic acid biosynthesis. Teichoic acids are the most abundant
glycopolymers in Listeria cell wall and play an important role in
biofilm formation, phage susceptibility, antimicrobial resistance,
and virulence (Sumrall et al., 2020). Serotype-specific glycosylation
of teichoic acids mediated by different genes can lead to variation
in virulence potential across clonal groups. Of the most common
genes reported, gltA and gltB are specific for serotype 4b (Lei
et al., 2001). gtcA has been found in serotype 4b and 1/2a (Cheng
et al., 2008). Listeria internalin A encoded by inlA is a key factor
mediating bacterial adhesion and invasion of host cells. Full-
length inlA confers stronger virulence than Listeria harboring a
premature stop codon (PMSC), the latter of which is 10,000-fold
less invasive (Chen et al., 2011). While inlA and inlB are both
important in intestinal and placental barrier invasion, inlB also
plays a critical role in neuroinvasion and bacterial persistence
(Maudet et al., 2022).

Considering the increasing popularity of farmer’s markets
in urban communities, it is critical to understand Listeria
contamination in locally grown fresh produce and their public
health significance. Even though several studies reported the
prevalence of Listeria in fresh produce obtained from farmer’s
markets as discussed above, none described the virulence
characteristics of bacteria. Therefore, this study aimed to determine
the clonal identity and virulome of L. monocytogenes in fresh
produce obtained from multiple farmer’s markets as related to

human infections based on whole-genome sequencing (WGS) and
molecular analysis.

2 Materials and methods

2.1 Sample collection, bacteria isolation,
and identification

A total of 432 fresh produce samples were collected from six
farmer’s markets (A through F) in Michigan and West Virginia
in the summer of 2019. The sites in Michigan were in the metro
Detroit area and those in West Virginia in the Morgantown area.
The two areas were approximately 400 miles apart. Markets A, C,
D, and E mainly sold plant-based products, such as produce, herbs,
beans etc. Markets B and F had a diverse collection of vendors
that sold a large variety of items, including produce, meats, eggs,
spices, etc. Convenient samples were taken from different produce
vendors each week for the entire summer. For Listeria isolation, 50
grams of each vegetable sample was mixed with 450 mL of buffered
listeria enrichment broth (BD, Sparks, MD, USA) and manually
homogenized for 2 min. Three to six individual rinses of the same
category were pooled and resulted in 109 pooled samples (Salazar
et al., 2021; Hitchins et al., 2022). These included 41 leafy greens
(romaine lettuce, collards, celery, basil, and kale), 39 root vegetables
(radish, turnip, carrot, potato, beet, and onion), and 29 seeded
vegetables (cantaloupe, tomato, cucumber, and zucchini).

Bacteria isolation followed the FDA Bacteriological Analytical
Manual (BAM) method. One hundred milliliters of vegetable rinse
were incubated at 30◦C for 4 h for pre-enrichment, followed by
the addition of selective agents, acriflavine (10 mg/L) and nalidixic
acid (40 mg/L), and further incubated for 48 h at 30◦C. The
enriched broth was spread on PALCAM Listeria agar (Remel Inc.,
Lenexa, KS, USA) at 24 h and 48 h of incubation. Plates were
incubated at 30◦C for 24 h before presumptive Listeria colonies
were streaked onto Rapid L’ mono differentiation agar (Bio-Rad,
Hercules, CA, USA). PCR was conducted to identify Listeria spp.,
L. monocytogenes, and L. monocytogenes serotypes 1/2a, 1/2b, and
4b. L. monocytogenes ATCC 51773 was used as positive control.
A no template control was included as well. PCR parameters and
primer sequences were followed as described by Chen et al. (2017).
The Chi-Square test of independence and the Post-Hoc tests were
performed using SPSS v29.0.1 to compare Listeria prevalence in
different sites and the significant association at 0.05 significance
level.

2.2 Pulsed-field gel electrophoresis
(PFGE)

Pulsed-field gel electrophoresis was carried out following
the standardized protocol for L. monocytogenes (Graves and
Swaminathan, 2001). Genomic DNA was prepared by mixing
240 µl of standardized cell suspension and 60 µl of 20 mg/ml
lysozyme solution (ThermoFisher Scientific, Wilmington, DE,
USA) followed by incubation at 37◦C for 10 min. Sample plugs
were digested with 25 U of AscI (New England Biolabs, Ipswich,
MA, USA) at 37◦C for 4 h. Plugs were then loaded on 1.2%
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Megabase agarose gel (Bio-rad) and electrophoresed on a CHEF-
DR III apparatus (Bio-rad) using the following parameters: initial
switch time, 4 s; final switch time, 40 s; run time, 22 h; angle, 120 ;
gradient, 6 V/cm; temperature, 14◦C; ramping factor, linear. PFGE
patterns were analyzed using Bionumerics (version 6.6; Applied
Maths, Austin, TX, USA). Indistinguishable profiles were defined as
those demonstrating the same number and sizes of DNA fragments.

2.3 Whole genome sequencing (WGS)

Whole genome sequencing was conducted at Omega
Bioservices (Norcross, GA, USA). Briefly, DNA was extracted
using the E.Z.N.A. R© Bacterial DNA Kit (Omega Bio-tek, Norcross,
GA, USA). The concentration was measured using the QuantiFluor
dsDNA System on a Quantus Fluorometer (Promega, Madison,
WI, USA). A Kapa Biosystems HyperPlus kit (Kapa Biosystems,
Wilmington, MA, USA) was used for the whole-genome library
construction. DNA was fragmented, and ends were repaired, 3’
adenylated, and ligated to adapters. The resulting adapter-ligated
libraries were PCR-amplified. After Illumina indexes were added,
they were pooled for multiplexed sequencing on an Illumina
X10 platform (Illumina, San Diego, CA, USA) using the pair-end
150 bp run format. de novo assembly was performed on Ridom
SeqSphere + v9.0 (Ridom GmbH, Germany) using SKESA 2.4.0
(Souvorov et al., 2018).

2.4 MLST and cgMLST

In silico MLST was performed to identify clonal complex
(CC) and sequence type (ST) on CLC genomic workbench
(Qiagen, Redwood City, CA, USA) using seven housekeeping
genes of L. monocytogenes, including ABC transporter (abcZ),
beta-glucosidase (bglA), catalase (cat), succinyl diaminopimelate
dessucinylase (dapE), d-amino acid aminotransferase (dat),
l-lactate dehydrogenase (ldh), and histidine kinase (lhkA). An
allele number was assigned to the sequence of each allele and CC
determined based on the definition of Ragon et al. (2008) and
the Pasteur MLST database.1 WGS data were further subjected to
cgMLST cluster identification on Ridom SeqSphere + v9.0 (Ridom
GmbH, Germany) (L. monocytogenes cgMLST scheme, 1701 loci)
(Ruppitsch et al., 2015). The cluster distance threshold for the core
genome was 10 allele differences. Epidemic clones of ECI, ECII,
ECIII and ECIV (Chen and Knabel, 2007) were downloaded from
the NCBI website.

2.5 Gene profiling

Virulence genes and antibiotic resistance genes were identified
against the BIGSdb-Lm database (Moura et al., 2016). The heatmap
was generated based on the presence or absence of a virulence gene
using Morpheus matrix visualization and analysis software from
the Broad Institute.2 The WGS data were also screened for stress

1 https://bigsdb.pasteur.fr/listeria/

2 https://software.broadinstitute.org/morpheus/

islands as well as biocide tolerance genes for benzalkonium chloride
(bcrABC, emrCE) and quaternary ammonium compounds (qacA),
which are the most common biocides used for L. monocytogenes.
The coding sequence of inlA was examined to ascertain whether
the isolates carried a complete sequence or a mutation leading
to a PMSC. Nucleotide sequences were aligned with inlA of
L. monocytogenes EGD-e (NCBI: NC_003210.1) as reference.

3 Results

3.1 Prevalence of Listeria and
L. monocytogenes in fresh produce

All six markets had at least one sample positive for Listeria
(Table 1). Site A had the highest Listeria prevalence (100%)
(p< 0.05) and site B the lowest (28.6%, p< 0.05). Listeria spp. were
recovered from 48 samples (44.0%), of which 32 were contaminated
by L. welshimeri, 13 by L. innocua, and three by L. monocytogenes.
All isolates from sites A, D, and E were L. welshimeri. Sites B
and F had three Listeria species identified. L. monocytogenes was
detected in sites B and F, the two markets that sold both vegetables
and animal products such as meat and eggs. The two sites also
had the highest number of samples collected, 49 from B and 34
from F, total accounting for more than 76% of 109 pooled samples.
L. monocytogenes isolates included five each from potato and radish
on site B and two from romaine lettuce on site F. All five isolates
from radish (43a-e) and one from romaine lettuce (V11c) belonged
to serotype 4b and the remaining six from potato (52a-e) and
romaine lettuce (V11a) were identified as serotype 1/2a.

3.2 Clonal relatedness of
L. monocytogenes

Four unique PFGE patterns were identified in L. monocytogenes
(Figure 1). Isolates of the same serotype fell into the same cluster.
Radish isolates 43a-e of serotype 4b shared the same DNA pattern
and were clustered together with V11c from romaine lettuce.
Similarly, 52a-e of serotype 1/2a from potato were indistinguishable
from each other and clustered together with V11a.

3.3 MLST and cgMLST analysis

Twelve isolates that were subjected to WGS had a sequencing
coverage of 35 × to 50 × and a quality score above 30 (or
base call accuracy 99.9%). Gene sequence data were used for
downstream MLST and cgMLST analysis. In silico MLST revealed
four CCs and STs (Figure 2). A 43a-e and V11c of serotype 4b
(lineage I) belonged to CC1 (ST1) and CC4 (ST219), respectively,
whereas V11a and 52a-e of serotype 1/2a (lineage II) fell under
CC7 (ST7) and CC11 (ST451), respectively. The two isolates
from romaine lettuce were designated as different CCs (CC4
and CC7). The hypervirulent CC1 and CC4 differed by five
alleles out of seven target genes. The four CCs identified by
MLST corresponded to four complex types (CT) by cgMLST
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TABLE 1 Prevalence of Listeria spp. in fresh produce from farmer’s markets.

Site No. of pooled
samples

No. of Listeria +
samples (%)

Listeria spp. (%)

L. welshimeri L. innocua L. monocytogenes

A 6 6 (100) 6 (100) 0 (0) 0 (0.0)

B 49 14 (28.6) 11 (22.5) 1 (2.0) 2 (4.1)

C 6 4 (66.6) 2 (33.3) 2 (33.3) 0 (0.0)

D 4 2 (50.0) 2 (50) 0 (0.0) 0 (0.0)

E 10 3 (33.3) 3 (33.3) 0 (0.0) 0 (0.0)

F 34 19 (55.8) 8 (23.5) 10 (29.4) 1 (2.9)

Total 109 48 (44.0) 32 (29.36) 13 (11.93) 3 (2.75)

FIGURE 1

PFGE dendrogram of L. monocytogenes from fresh produce. ARG denotes antibiotic resistance gene.

(Figures 1, 3). Isolates 43a-e and 52a-e belonged to CT18339 and
CT18340, respectively. Two isolates from romaine lettuce were
split into CT18341 (isolate V11a) and CT18342 (isolate V11c)
and belonged to two distinct clusters (Figure 3). V11a and 52a-
e were in cluster 1. Isolates 52a-e were further divided into two
groups by one allelic difference. V11c and 43a-e were in cluster 2,
along with epidemic clones ECI, ECII and ECIV. Belonging to
different CTs, 43a-e and ECI were closely related bearing only 68
allelic differences out of 1701 target loci. V11c and ECI differed by
969 alleles.

3.4 Virulome and antibiotic resistance
genes

The number of virulence genes ranged from 53 to 70 per
isolate (Figure 4). Identical gene profile existed in isolates 43a-e,
and so did in 52a-e. LIPI-1 was detected in all isolates. The
major difference between lineage I and II was in LIPI-3, LIPI-
4, and genes for teichoic acid biosynthesis. LIPI-3 was detected
in serotype 4b CC1 and CC4. LIPI-4 was carried by CC4
only. Of the four genes for teichoic acid biosynthesis, gtcA
was identified in both serotypes. gltA and gltB were found in
serotype 4b, whereas tagB was contained by serotype 1/2a. Other
virulence factors included internalin genes and those involved in
various steps of infection such as adherence, invasion, intracellular
survival, regulation of transcription and translation, surface protein
anchoring, peptidoglycan modification, immune modification, bile

resistance, and biofilm formation. All isolates had internalin genes
inlABCEFIJKP. No PMSC was detected in inlA. inlG was found
in serotype 1/2a but not 4b. CC7 (isolate V11a) was the only
one carrying inlL but lacking inlC2DH. This isolate also had ami
for adherence that was missing from all other isolates. Another
notable difference was the invasion gene aut that was found in
lineage II whereas its variant (aut_IVb) was carried by lineage
I. Serotype 4b isolates also contained comK, a gene presumably
for biofilm formation and persistence in food processing facilities
(Hurley et al., 2019). V11a was found to harbor stress survival
islet-1 (SSI-1), while none of the other isolates exhibited any stress
islands. Biocide tolerance genes were not detected in any isolates.
All isolates shared the same antibiotic resistance gene profile that
included fosX (fosfomycin), lin (lincomycin), mprF (defensin),
norB (fluoroquinolone), and sul (sulfonamide).

4 Discussion

Listeria are commonly present in the soil of various agricultural
landscapes, thus freshly harvested produce is at a high risk of
contamination (Chapin et al., 2014). Because vegetables sold
at farmer’s markets have gone through limited processing and
packaging procedures, any microbial contamination at farm level
would end up in the final product. The recovery of CC4 (ST219) in
fresh produce in this study is of public health concern. Considering
the hypervirulence potential of this clonal group and the ready-
to-eat nature of fresh produce, it is important to monitor the
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FIGURE 2

CC, ST, and lineage distribution of L. monocytogenes based on MLST. Node size represents number of isolates. Number on the connecting line
represents allelic differences. Node color represents source of isolates: purple (radish), green (romaine lettuce), and brown (potato).

FIGURE 3

Minimum spanning tree of cgMLST analysis. (A) Minimum Spanning Tree (MST) and (B) Neighbor Joining Tree (NJT) illustrating the phylogenetic
relationship based on allelic profiles of L. monocytogenes. MST cluster threshold is 10. Numbers on connecting lines represent the number of allelic
differences between two strains.

prevalence of hypervirulent clones of L. monocytogenes in urban
communities and understand their clinical relevance.

Listeria prevalence in fresh produce varied across previous
studies. Research on farmer’s markets in West Virginia and
Kentucky (Li K. et al., 2017) as well as Pennsylvania (Scheinberg
et al., 2017) both revealed the prevalence of slightly below 4%. An
earlier study conducted in the Washington D.C. area demonstrated
19.7% of fresh produce contaminated with Listeria (Thunberg et al.,
2002). In comparison, our study found Listeria at 44.0% (48 of
109 samples). This high prevalence can be due to the isolation
procedure as most studies (Li K. et al., 2017; Scheinberg et al.,
2017) used individual samples for bacteria isolation whereas others
(Thunberg et al., 2002) and our study used pooled samples. The
overall 2.8% of L. monocytogenes prevalence in this study is in
line with previous research where the contamination level in fresh

produce ranged from 0.66% to 4.7% (Thunberg et al., 2002; Li
K. et al., 2017; Scheinberg et al., 2017; Roth et al., 2018). The
market variation on L. monocytogenes prevalence (p > 0.05) can
be explained by the predominance of samples in markets B and
F, although cross contamination from meat cannot be excluded at
large-scale markets with a diversity of vendors. In fact, multiple
commodities sold at farmer’s markets, including meat, have been
found contaminated with L. monocytogenes (Scheinberg et al., 2017;
Kim et al., 2021). L. welshimeri and L. innocua appeared to be
the most common Listeria species in fresh produce and have been
reported previously (Thunberg et al., 2002).

The detection of L. monocytogenes 1/2a and 4b in fresh produce
indicates a food safety concern given that 1/2a, 1/2b, and 4b are the
top three serotypes responsible for human listeriosis (Liu, 2006).
Isolates from radish and potato can be considered identical clones
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FIGURE 4

Virulence gene profile of L. monocytogenes from fresh produce. • denotes the presence of virulence gene.

due to demonstrating indistinguishable profiles. The one-allelic
difference between 52a-c and 52d-e from potato based on cgMLST
should be negligible as the isolates shared otherwise identical
profiles, including virulence genes and antibiotic resistance genes.
Two genetically distinct clones in romaine lettuce may suggest
different sources of contamination and the variation in virulence
potential, although it is also possible that the two isolates were
from two individual samples before being pooled for bacteria
isolation. All four clonal groups identified in this study have been
implicated in foodborne outbreaks worldwide (Chen et al., 2016).
CC1 was formerly designated ECI because of its previous outbreak
association. Their close connection is reflected by isolates 43a-e of
this study differing from ECI by only 68 alleles. CC4 seemed to
have mainly caused outbreaks in Europe (Dorozynski, 2000; Tasara
et al., 2015; Chen et al., 2016), yet its recovery from local fresh
produce should be highlighted because of its strong association
with the central nervous system and maternal-neonatal listeriosis
(Maury et al., 2016). Future surveillance at a larger scale would
benefit our understanding of the extent of hypervirulent clones in
urban communities. Moreover, while the hypervirulence potential
itself could be a factor for the overrepresentation of CC4 in human
isolates, non-food exposure should be considered as well because
CC4 has been documented in various environmental sources such
as animals and surface water (Lee et al., 2018; Raschle et al., 2021).
CC7 and CC11 have caused multiple US outbreaks (Olsen et al.,
2005; Centers for Disease Control and Prevention, 2011; Jackson
et al., 2011). CC11 in association with maternal-neonatal listeriosis
has been suggested from outbreaks involving pregnant, newborn,
and elderly patients from consuming contaminated deli meat
(Olsen et al., 2005) and Mexican-style cheese (Jackson et al., 2011).
Taken together, fresh produce distributed in urban communities
can be potential sources of Listeria clones with serious public health
implication and requires close monitoring.

At the gene level, LIPI-1 is present in all L. monocytogenes and
considered core virulence genes (Disson et al., 2021). LIPI-3 and
LIPI-4 are critical for lineage I strains. LIPI-3 was carried by CC1
and CC4 of this study. It comprised genes encoding hemolysin
listeriolysin S (llsABDGHPXY) and important for gastrointestinal

colonization. Strongly associated with the hypervirulence of CC4,
LIPI-4 is the most recently discovered pathogenicity island that
encodes cellobiose-type phosphotransferase systems (PTS) and
enhances neural and placental infection. The distribution of genes
involved in teichoic acid biosynthesis is consistent with Listeria
in Swiss surface water (Raschle et al., 2021) where CC1 and CC4
contained serotype 4b-specific gltA and gltB but lacked tagB, a gene
most characterized in Bacillus subtilis (Brown et al., 2013). Because
tagB was one of the genes unique to strong biofilm producers of
L. monocytogenes (Park et al., 2022), the presence in serotype 1/2a
in this study indicates the high potential of biofilm formation by
these isolates. Despite that PMSC is commonly found in Listeria
from food and food production environment (Nightingale et al.,
2008; Li Z. et al., 2017), none of the isolates in this study carried
PMSC, suggesting a full virulence potential.

The five antibiotic resistance genes detected in this study (fosX,
lin, mprF, norB, sul) have been reported from various sources
worldwide, including ready-to-eat meat (Mafuna et al., 2021;
Centorotola et al., 2023), food processing environment (Hurley
et al., 2019; Wieczorek et al., 2020), surface water (Raschle et al.,
2021), and wildlife (Brown et al., 2023). This is not surprising
as Listeria are intrinsically resistant to fosfomycin, many modern
cephalosporins, oxacillin, sulfonamide, and nalidixic acid (Troxler
et al., 2000; Mota et al., 2020; Brown et al., 2023). The genes detected
in this study were either known (fosX) or strongly suggested (lin,
norB, sul) to be intrinsic resistance genes. Because the isolates
in this study were recovered from geographically and temporally
separate occasions, it remains to be tested as to their antibiotic
susceptibility phenotypes as genotypes and phenotypes do not
always coincide. Although antibiotic resistance in general is not
a serious issue in Listeria, multidrug-resistant Listeria do occur
in food (Kayode and Okoh, 2022a,b). Thus, it is important to
monitor the prevalence of antibiotic resistance genes, especially in
hypervirulence clonal groups.

In conclusion, Listeria species are prevalent in vegetables
distributed in urban communities. The presence of
L. monocytogenes clones carrying a range of virulence genes
indicates a potential public health concern. It is critical for urban
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food producers and distributors to control microbial transmission
from the environment and other sources at urban gardens and
farmer’s markets. Given the remarkable clinical significance of
the hypervirulent clones and their recovery in the environment
and animals, future research should focus on understanding the
source of contamination, including wildlife and animal fertilizers,
as well as the contribution of food, animal, and environmental
exposure to listeriosis.
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