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Efflux pumps as potential targets 
for biofilm inhibition
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Biofilms account for a great deal of infectious diseases and contribute 
significantly to antimicrobial resistance. Efflux pumps confer antimicrobial 
resistance to microorganisms and involve multiple processes of biofilm 
formation. Efflux pump inhibitors (EPIs) are attracting considerable attention as 
a biofilm inhibition strategy. The regulatory functions of efflux pumps in biofilm 
formation such as mediating adherence, quorum sensing (QS) systems, and the 
expression of biofilm-associated genes have been increasingly identified. The 
versatile properties confer efflux pumps both positive and negative effects on 
biofilm formation. Furthermore, the expression and function of efflux pumps 
in biofilm formation are species-specific. Therefore, this review aims to detail 
the double-edged sword role of efflux pumps in biofilm formation to provide 
potential inhibition targets and give an overview of the effects of EPIs on biofilm 
formation.
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1 Introduction

Biofilms are communities of microorganisms embedded within self-produced extracellular 
polymeric substances (EPSs) composed of lipids, amyloids, polysaccharides, extracellular 
DNA, and proteins (Flemming et al., 2023). Biofilms protect microorganisms from unfavorable 
environments such as altered pH, osmolarity, nutrient restriction, and mechanical/shear forces 
(Sun et al., 2013; Bjarnsholt et al., 2018). The distinct properties of biofilms including the 
impermeability, low growth rates, overexpression of efflux pumps, and the existence of 
persister cells enhance antimicrobial resistance greatly (Sharma et al., 2019). Furthermore, 
biofilms also provide an ideal niche for horizontal transfer of antimicrobial resistance genes 
(Mah, 2012). Hence, biofilms impose more challenges to the dissemination of 
antimicrobial resistance.

Approximately 80% of infectious diseases including lung infections, urinary tract 
infections, endocarditis, rhinosinusitis, prostatitis, periodontitis, and caries are caused by 
biofilms (Burmølle et al., 2010). Especially the treatment for medical device-related infections 
has been problematic. Medical device-related infections are caused by the biofilms present on 
medical implants such as orthopedic/dental implants, intravascular/urinary catheters, and 
vascular prostheses (Costerton et al., 2005). These infections are not treatable by conventional 
antimicrobial therapy. As a consequence, the removal of infected medical implants is usually 
required to eradicate infections (Veerachamy et al., 2014). The failure of medical implants and 
mortality attributed to biofilm formation are continuing concerns.

Efflux pumps are membrane proteins encoded by genes located in both chromosomes and 
plasmids. Efflux pumps widely exist in all bacterial species and are able to expel a wide 
spectrum of substrates including antibiotics, biocides, dyes, heavy metals, toxins, and 
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metabolites out of cells. Thus, the overexpression of efflux pumps leads 
to antimicrobial resistance by impeding the intracellular accumulation. 
To date, multidrug efflux pumps are categorized into six families based 
on topology, structure, and energetics: the ATP-binding cassette 
(ABC) superfamily, the major facilitator superfamily (MFS), the 
resistance-nodulation–cell-division (RND) superfamily, the small 
multidrug resistance (SMR) family, the multidrug and toxic 
compound extrusion (MATE) family, and the proteobacterial 
antimicrobial compound efflux (PACE) family (Du et al., 2018). Even 
though hundreds of bacterial efflux pumps have been characterized, a 
myriad of efflux pumps still remain undiscovered.

In addition to antimicrobial resistance, a growing body of 
literature has recognized the involvement of efflux pumps in diverse 
phases of biofilm formation in recent years. The discovery of decreased 
biofilm formation caused by the loss of efflux pumps sheds new light 
on EPIs as biofilm control strategies. Thus, this review summarizes the 
evidence concerning the regulatory effects of efflux pumps and EPIs 
on biofilm formation.

2 Biofilm formation

Biofilm formation is a complicated process involving multiple 
signal transduction pathways. Briefly, four phases are included: (i) 
reversible attachment of microbes to a surface or each other; (ii) 
irreversible attachment to the surface and formation of microcolonies; 
(iii) proliferation of cells and synthesis of EPSs establishing a 
multilayer three-dimensional structure; (iv) detachment and dispersal 
of planktonic cells from mature biofilms to re-build new biofilms 
(Tolker-Nielsen, 2015; Armbruster and Parsek, 2018) (Figure 1). The 
initial phase of biofilm formation could be  influenced by diverse 
factors such as bacterial species, environmental conditions, surface 
characters as well as gene products (Pandey et al., 2022). Additionally, 
microorganism motilities also play a crucial role by facilitating sensing 
and contacting favorable adhered surfaces, translocation, and 
reversible/irreversible adherence of bacterial cells to surfaces (Khan 
et  al., 2020). Conversely, during the growth and mature phase of 
biofilm formation, the inhibition of motilities aids the maintenance of 
bacterial aggregation (Guttenplan and Kearns, 2013). Predominant 
motilities include swimming, swarming, gliding, and twitching 
(Harshey, 2003). Swimming and swarming motilities are largely 

driven by flagella, rotation, and chemotaxis while twitching motility 
relies on type IV pili (Wadhwa and Berg, 2022).

Additionally, QS systems play a pivotal role in biofilm 
development. QS is a communication mechanism between cells to 
cells in response to environmental signals to modulate cell density (Ge 
et al., 2022). The signal molecules are called autoinducers (AIs). The 
generation, diffusion, and exportation of AIs increase concomitantly 
with the rise of cell population. Once the concentration of AIs reaches 
a certain threshold, the AIs initiate binding to cognate receptors 
triggering a coordinated shift of gene expression, which promotes 
biofilm formation and relative virulence (Antonioli et  al., 2018; 
Giannakara and Koumandou, 2022). The AIs of Gram-positive 
bacteria are usually oligopeptides (autoinducing peptides, AIPs), while 
the AIs of Gram-negative bacteria are acyl-homoserine lactones 
(AHLs) or S-adenosyl methionine (SAM)-products (Papenfort and 
Bassler, 2016).

3 The effects of efflux pumps on 
biofilm formation

Possible mechanisms by which efflux pumps impact biofilm 
formation mainly include: (i) impacting initial adherence; (ii) 
transporting metabolites and QS system signals; (iii) extruding 
harmful substances; (iv) indirectly mediating biofilm-associated 
genes. Diverse functions confer a double-edged sword role to efflux 
pumps in different stages of biofilm formation. On the one hand, the 
expression of some efflux pumps contributes to biofilm formation by 
promoting the initial adherence of microorganisms and/or the 
production of biofilm-associated extracellular matrix (Baugh et al., 
2012; Richmond et al., 2016; Knight et al., 2018). On the other hand, 
the expression of some efflux pumps has been recognized to alleviate 
biofilm formation by mediating AIs of QS systems and biofilm-
associated gene expression (Lamarche and Déziel, 2011; Zhu et al., 
2011). Although the overexpression of various efflux pumps has 
been identified in biofilms compared to planktic cells, the efflux 
pumps that can cause definitive impacts on biofilm formation are 
less evident. For example, the MdtJ efflux pump (SMR-type), 
responsible for exporting spermidine, plays a role in the stimulation 
and promotion of biofilm formation in Escherichia coli. Nevertheless, 
no alterations in intracellular spermidine concentration and biofilm 

FIGURE 1

Schematic representation of the four phases of biofilm formation: (A) reversible adherence to surfaces; (B) irreversible adherence and formation of 
microcolonies; (C) proliferation of cells and production of EPSs establishing a three-dimensional structure; (D) dispersal of planktonic cells to re-build 
new biofilms.
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formation were detected in the mdtJ deletion mutation 
(Thongbhubate et al., 2021). In this regard, the MdtJ efflux pump is 
not a promising target of EPIs for biofilm inhibition in E. coli. 
Therefore, to pave the way for selecting EPI targets, herein the 
evidence regarding the efflux pumps with definitive impacts on 
biofilm formation will be reviewed (Table 1).

3.1 Positive effects

Previous research has recognized an array of efflux pumps with 
positive effects on biofilm formation by finding attenuated biofilm 
formation caused by the lack of these efflux pumps. In this context, 
these efflux pumps can be  considered as potential EPI targets for 
biofilm inhibition. Generally, the positive effects of efflux pumps 
mainly rely on mediating microorganism motilities and the 
production of biofilm-associated extracellular matrix. Thus, the 
absence of these efflux pumps can compromise the adherence of 
microorganisms and/or the establishment of mature biofilm structures 
thereby leading to diminished biofilm formation. However, the 
mechanisms underlying the positive effects of many efflux pumps on 
biofilm formation have not yet been clearly elucidated.

3.1.1 RND-type efflux pumps
The RND-type efflux pumps are ubiquitous in all domains of life 

and are mainly responsible for antimicrobial resistance in Gram-
negative bacteria. Well-known RND-type efflux pumps include the 
AcrAB-TolC efflux system and related Acr pumps in E. coli, Mex efflux 
systems in Pseudomonas sp., and Ade efflux systems in Acinetobacter 
sp. (Du et al., 2018).

3.1.1.1 Ade efflux systems
The AdeABC and AdeIJK efflux pumps belonging to Ade efflux 

systems are closely associated with antimicrobial resistance in 
Acinetobacter baumannii (Abd El-Rahman et al., 2023). It has been 
demonstrated that the deletion of adeB decreased biofilm formation 
in A. baumannii (Yoon et  al., 2015; Richmond et  al., 2016). 
Consistently, a significant downregulation of type IV pilus genes 
which affect natural transformation, twitching motility, and biofilm 
formation was observed in the adeB deletion mutant (Richmond et al., 
2016). It is noteworthy that the lack of adeB had no influence on the 
number of adherent cells on the mucosal tissue, but the inhibition of 
mature biofilm establishment was found by confocal microscopy. 
These results indicate the positive effect of adeB on the mature phase 
of biofilm formation.

Nevertheless, the expression of adeB in A. baumannii clinical 
isolates has been conflicting. Previous research failed to detect the 
association between the expression of adeB and biofilm formation in 
A. baumannii clinical isolates (Chen et al., 2020; Abd El-Rahman 
et al., 2023). Another study conducted by Kim et al. (2021) revealed a 
negative correlation between the expression level of adeB and biofilm 
formation capacity in A. baumannii clinical isolates (n = 120). 
However, Phe-Arg β-naphthylamide (PAβN), an EPI, significantly 
diminished biofilm formation suggesting the existence of other 
underlying efflux pumps related to biofilm formation in clinical 
isolates (Chen et al., 2020). Although there is little agreement on the 
association between the efflux pump expression and biofilm formation 
in A. baumannii clinical strains, the evidence together indicates the 

discrepancy in efflux pump expression among different strains of the 
same species.

In contrast to previous findings in A. baumannii (Yoon et al., 2015; 
Richmond et  al., 2016), no alterations of biofilm formation were 
detected in the ΔadeB or ΔadeB/adeJ mutants of Acinetobacter 
nosocomialis (Knight et al., 2018). Nevertheless, the single deletion of 
adeJ led to decreased biofilm formation suggesting the positive effect 
of the AdeIJK efflux pump on biofilm formation in A. nosocomialis 
(Knight et al., 2018). Moreover, a remarkable reduction (over 50%) in 
surface motility was observed in the ΔadeJ mutant, while no changes 
in the secretion level of 3-OH C12-HSL, an AI of QS systems, were 
detected (Knight et al., 2018). These findings suggest that the impaired 
biofilm formation caused by the lack of adeJ was associated with 
reduced surface motility but independent of QS systems. Considering 
all of the evidence, it seems that the efflux pump expression related to 
biofilm formation is species- and strain-specific.

3.1.1.2 AcrAB–TolC efflux system
The AcrAB–TolC efflux system is able to transport a wide 

spectrum of substrates and is associated with antimicrobial resistance 
in various species including E. coli, Salmonella enterica serovar 
Typhimurium (Salmonella), Enterobacter aerogenes, Klebsiella 
pneumoniae, and Enterobacter cloacae (Blair et al., 2015). It comprises 
three components including an inner membrane protein AcrB, a 
periplasmic adapter protein AcrA, and an outer membrane protein 
TolC (Koronakis et  al., 2004). The effects of AcrAB on biofilm 
formation have been controversially documented. Baugh et al. (2012) 
explored the biofilm formation of multiple efflux mutants including 
RND mutants lacking acrB, acrD, acrEF, mdtABC or mdsABD, MFS 
mutants lacking emrAB or mdfA, a MATE mutant lacking mdtK, an 
ABC mutant lacking macAB, and a tolC mutant in Salmonella. All 
tested mutants showed reduced biofilm formation. The scanning 
electron microscopy results exhibited that the adherence to surfaces 
was not compromised, but mutants failed to form the three-
dimensional structure of biofilm. Congo red assays confirmed the loss 
of the ability to produce curli. Consistently, the production of csgB and 
csgD genes involving curli biosynthesis was downregulated in all 
mutants. Curli are the crucial proteinaceous component of EPSs in 
various species such as E. coli and Salmonella spp. responsible for 
surface attachment and cell aggregation during biofilm formation 
(Barnhart and Chapman, 2006). These findings suggest the positive 
effects of efflux pumps on biofilm formation by modulating the 
production of biofilm-associated extracellular matrix. Later, the same 
team (Baugh et al., 2014) further elucidated that the lack of TolC or 
AcrB resulted in a more significant reduction in biofilm formation 
than lacking AcrA alone in Salmonella. In line with previous findings, 
the compromised biofilm formation resulted from impaired curli 
biosynthesis while independent of cellular hydrophobicity or 
aggregation. AcrD and AcrE are close homologues of AcrB and AcrA, 
respectively (Alav et al., 2021). The substrates of AcrE are similar to 
AcrAB while AcrD mainly contributes to the exporting of 
aminoglycosides and anionic β-lactams (Aires and Nikaido, 2005). 
The study in E. coli also supports earlier results in Salmonella by 
finding that the individual deletion of acrD, acrE, or mdtE significantly 
compromised biofilm formation (Matsumura et al., 2011).

However, these observations have been challenged by a study 
reporting no alterations of biofilm formation following the deletion of 
acrB or both acrA and acrB in Salmonella under normal growth 
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TABLE 1 Effects of efflux pumps on biofilm formation.

Effects on 
biofilm 
formation

Efflux 
pump 
type

Efflux pump Effects of deletion or 
overexpression on 
biofilm formation

Species References

Positive effects

RND

AdeB Reduced by deletion Acinetobacter baumannii
Richmond et al. (2016)

Yoon et al. (2015)

AdeJ Reduced by deletion Acinetobacter nosocomialis Knight et al. (2018)

AcrB and Mdt ABC Reduced by deletion Escherichia coli Yamasaki et al. (2015)

AcrB

AcrD

AcrEF

MdtABC

MdsABD

Reduced by deletion
Salmonella enterica serovar 

Typhimurium

Baugh et al. (2012)

Baugh et al. (2014)

AcrD

AcrE

MdtE

Reduced by deletion Escherichia coli Matsumura et al. (2011)

AcrA and AcrB Enhanced by overexpression Acinetobacter nosocomialis Subhadra et al. (2018)

SmeYZ Reduced by deletion Stenotrophomonas maltophilia Lin et al. (2015)

AreABC

AreDEF

AreGHI

Reduced by deletion Aliarcobacter butzleri Mateus et al. (2021)

AmrAB-OprA Reduced by deletion Burkholderia pseudomallei
Mima and Schweizer 

(2010)

BpeAB Reduced by deletion Burkholderia pseudomallei Chan and Chua (2005)

A1s_0116 Reduced by deletion Acinetobacter baumannii Blaschke et al. (2021)

MFS

NorA Enhanced by overexpression Staphylococcus pseudintermedius Rampacci et al. (2022)

Bcr Reduced by disruption Proteus mirabilis Holling et al. (2014)

EmrA

EmrB
Reduced by deletion Acinetobacter baumannii Lin et al. (2020)

EmrAB

MdfA
Reduced by deletion

Salmonella enterica serovar 

Typhimurium
Baugh et al. (2012)

EmrD

EmrK
Reduced by deletion Escherichia coli Matsumura et al. (2011)

AbaF Reduced by deletion Acinetobacter baumannii Sharma et al. (2017)

Rv1877 Enhanced by expression Escherichia coli Adhikary et al. (2022)

ABC MacAB-TolC Reduced by deletion Acinetobacter baumannii Robin et al. (2021)

MacAB Reduced by deletion
Salmonella enterica serovar 

Typhimurium
Baugh et al. (2012)

SMR EmrE Reduced by deletion Escherichia coli Matsumura et al. (2011)

MATE
MdtK Reduced by deletion

Salmonella enterica serovar 

Typhimurium

Baugh et al. (2012)

Nishino et al. (2006)

Negative effects

RND AcrE Enhanced by deletion Escherichia coli Bay et al. (2017)

MexEF-OprN Reduced by overexpression Pseudomonas aeruginosa

Favre-Bonté et al. (2003)

Lamarche and Déziel 

(2011)

AdeABC

AdeIJK
Reduced by overexpression Acinetobacter baumannii Yoon et al. (2015)

MFS EmrA Enhanced by deletion Escherichia coli Bay et al. (2017)

MATE MdtK Enhanced by deletion Escherichia coli Bay et al. (2017)

ABC lm.G_1771 Enhanced by inactivation Listeria monocytogenes Zhu et al. (2008)
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conditions (Schlisselberg et al., 2015). The deletion of these efflux 
genes only attenuated biofilm formation under antimicrobial selective 
pressure (Schlisselberg et al., 2015). One possible explanation is that 
in efflux deletion mutants, other efflux pumps were exploited for the 
expelling of antimicrobials leading to a more severe deficiency of 
efflux pumps available for biofilm formation. The results address the 
impact of antimicrobial selective pressure on the expression of efflux 
pumps and indicate the potential of the combined application of EPIs 
and antimicrobials.

AcrR is a repressor of AcrAB in A. nosocomialis (Subhadra et al., 
2018). In the acrR deletion mutant, the upregulation of acrA and acrB 
genes led to increased biofilm formation and invasion in 
A. nosocomialis (Subhadra et al., 2018). Furthermore, the upregulation 
of acrA and acrB genes enhanced motility and upregulated the 
expression of csuC and csuD genes (Subhadra et al., 2018). CsuC and 
csuD genes encode proteins of the CsuA/BABCDE chaperone-usher 
pili assembly system, which is important for the initial adhesion of 
biofilm formation (Kishii et al., 2020). This study revealed the role of 
AcrAB contributing to biofilm formation by promoting the initial 
adherence of biofilm formation. Conflictingly, the single deletion of 
acrB or mdtABC had no impact on biofilm formation in E. coli 
(Yamasaki et al., 2015). However, impaired biofilm formation was 
observed in the mutant lacking both acrB and mdtABC suggesting the 
synergistic function of AcrB and Mdt ABC efflux pumps on biofilm 
formation in E. coli. Additionally, the impact of these efflux pumps on 
biofilm formation is time-dependent. No alteration was found during 
the initial stage, but the maintenance of biofilm formation was 
impaired by the loss of efflux pumps (Yamasaki et al., 2015).

3.1.1.3 SmeYZ efflux pump
SmeYZ, one of the putative RND-type efflux pumps in 

Stenotrophomonas maltophilia, is mainly related to multiple 
physiological functions but not antimicrobial resistance (Crossman 
et al., 2008; Gould et al., 2013). Lin et al. (2015) demonstrated the 
positive effect of SmeYZ on biofilm formation in S. maltophilia. The 
smeYZ deletion mutant failed to produce flagellar structures which are 
essential organelles for microorganism motilities thus leading to a 
defect of biofilm formation. Furthermore, reduced swimming and 
oxidative stress susceptibility were observed in the smeYZ deletion 
mutant during the initial adherence stage. The results imply the 
positive regulatory effect of SmeYZ on the early phase of 
biofilm formation.

3.1.1.4 Are efflux systems
The AreABC, AreDEF, and AreGHI efflux pumps are putative 

efflux pumps in the genome of Aliarcobacter butzleri responsible for 
antimicrobial resistance especially against erythromycin (Isidro et al., 
2020). Mateus et al. (2021) assessed the effects of AreABC, AreDEF, 
and AreGHI on the virulence of A. butzleri. Decreased biofilm 
formation was observed in all the efflux deletion mutants. 
Nevertheless, only the alleviated biofilm formation in the ΔareG 
mutant was found to be  associated with reduced motility. The 
mechanisms of how the other two efflux pumps regulated biofilm 
formation remain unknown.

3.1.1.5 AmrAB-OprA and BpeAB-OprB efflux pumps
AmrAB-OprA, the major efflux pump mediating aminoglycoside 

resistance in Burkholderia pseudomallei, is closely related to the 

MexXY efflux pump in Pseudomonas aeruginosa (Podnecky et al., 
2015). Likewise, the BpeAB-OprB efflux pump in B. pseudomallei, a 
homolog of the MexAB-OprM efflux pump in P. aeruginosa, is not 
only associated with aminoglycoside and macrolide resistance but also 
required for the extracellular transportation of AIs (Chan and Chua, 
2005; Chan et al., 2007). A significant reduction of biofilm formation 
in B. pseudomallei has been observed in the bpeAB deletion mutant 
(Chan and Chua, 2005). Additionally, the lack of extracellular AIs has 
been detected in the bpeAB deletion mutant (Chan and Chua, 2005). 
Later the author further demonstrated that BpeAB-OprB is 
responsible for the extracellular efflux of AIs (Chan et  al., 2007). 
Therefore, the deletion of the BpeAB-OprB efflux pump attenuated 
biofilm formation and relative virulence by blocking AIs (Chan and 
Chua, 2005; Chan et al., 2007).

In contrast, Mima and Schweizer (2010) found no change of 
biofilm formation in the mutant only lacking BpeAB-OprB but 
significantly decreased biofilm formation in the mutants lacking only 
AmrAB-OprA or both AmrAB-OprA and BpeAB-OprB in 
B. pseudomallei. Although the exact pathway remains unclear, this 
study confirmed that the alteration of biofilm formation was not 
associated with AHLs extruding or swimming motility. So far, there 
has been little agreement on the role of BpeAB-OprB in 
biofilm formation.

Apart from the efflux pumps described above, increasing novel 
RND efflux pumps with positive effects on biofilm formation have 
been identified. For example, a recent study characterized the function 
of the gene a1s_0116 encoding an RND-type transporter in biofilm 
formation of A. baumannii (Blaschke et al., 2021). In this study, the 
lack of a1s_0116 resulted in deficient surface motility and pellicle 
biofilm formation (Blaschke et al., 2021).

3.1.2 MFS-type efflux pumps
The MFS superfamily, one of the largest transporter families, 

possesses the most diverse transporters with a broad range of 
substrates including metabolites, amino acids, peptides, nucleosides, 
ions, and antibiotics (Saier et al., 2016). NorA, belonging to the MFS 
superfamily, is the major efflux pump conferring intrinsic 
ciprofloxacin resistance to Staphylococcus aureus (Papkou et al., 2020). 
A recent study revealed that the norA overexpression mutant 
enhanced biofilm formation in Staphylococcus pseudintermedius by 
the upregulation of icaA (Rampacci et  al., 2022). The icaA gene 
encodes the polysaccharide intercellular adhesin forming the 
extracellular matrix of staphylococcal biofilm. This work indicates the 
positive regulatory effect of NorA on biofilm formation by regulating 
biofilm-associated gene expression. Furthermore, the elevated biofilm 
formation in this study was abolished by EPIs such as thioridazine and 
reserpine confirming the role of efflux pumps in biofilm formation. 
Another member of the MFS superfamily, the Bcr/CflA efflux system 
is mainly responsible for bicyclomycin, florfenicol, and 
chloramphenicol resistance (Smith et al., 2009). It has been reported 
that the disruption of bcr resulted in compromised biofilm formation 
in Proteus mirabilis by decreasing swimming and swarming motilities 
(Holling et al., 2014).

The EmrAB efflux system confers antimicrobial resistance such as 
nalidixic acid, thiolactomycin, and nitroxoline to Salmonella (Nishino 
et al., 2006) and E. coli (Puértolas-Balint et al., 2020), and contributes 
to colistin resistance in A. baumannii (Lin et al., 2017). In line with 
previous results in Salmonella (Baugh et  al., 2012), the lack of 
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emrA/emrB genes also led to diminished biofilm formation in 
A. baumannii (Lin et al., 2020). Furthermore, an array of MFS-type 
efflux pumps such as EmrD, EmrK, and Rv1877 in E. coli (Matsumura 
et al., 2011; Adhikary et al., 2022) and AbaF in A. baumannii (Sharma 
et al., 2017) have also been characterized to positively regulate biofilm 
formation. However, our understanding of how these efflux pumps 
mediate biofilm formation is notably underdeveloped.

3.1.3 ABC-type efflux pumps
The ABC-type efflux pumps are found in all living organisms 

and are able to extrude diverse substances such as metabolites, 
vitamins, amino acids, lipids, peptides, ions, and antibiotics. The 
MacAB-TolC efflux system (ABC-type) is the major contributor to 
macrolide resistance in several species including E. coli, 
S. maltophilia, K. pneumoniae, and A. baumannii (Kobayashi et al., 
2001; Fitzpatrick et al., 2017; Okada et al., 2017). Similar to the 
structure of the AcrAB–TolC efflux system mentioned previously, 
the MacAB-TolC efflux system is also a tripartite complex where 
MacB acts as an atypical ABC-type transporter, and MacA is an 
adaptor protein (Okada et al., 2017). Robin et al. (2021) observed 
the overproduction of the MacAB-TolC efflux pump in the solid–
liquid biofilm of A. baumannii. Consistently, the deletion of macAB-
tolC decreased the biofilm formation by 33% which accords with 
earlier findings in Salmonella (Baugh et  al., 2012). A variety of 
physiological alterations including reduced cell metabolic activities 
in biofilm, lower tolerance to envelope stress, higher membrane 
fluidity, and downregulation of proteins involving the iron and 
sulfur homeostasis have been observed following the deletion of 
macAB-tolC (Robin et al., 2021). The results suggest the important 
role of the MacAB-TolC efflux pump in the maintenance of 
membrane rigidity, tolerance to high osmolarity conditions, and 
iron and sulfur homeostasis. Thus, MacAB-TolC might promote 
biofilm formation during the mature phase by providing osmotic 
protection and maintenance of iron homeostasis.

3.1.4 Other efflux families
The SMR-type efflux pumps mediate the resistance to both 

antibiotics and commonly used antiseptics (Bay et al., 2008), while 
the MATE-type efflux pumps are the major contributor to the 
resistance towards fluoroquinolones and aminoglycosides (Hvorup 
et al., 2003). Compared with the efflux pumps of other types, the 
members from the SMR and MATE families are less identified to 
have regulatory effects on biofilm formation. As mentioned above, 
the deletion of emrE, a representative member of the SMR family, 
resulted in a significant reduction of biofilm formation in E. coli 
(Matsumura et al., 2011). Likewise, the absence of mdtK, a MATE-
type efflux gene associated with resistance to norfloxacin, led to 
impaired biofilm formation in Salmonella (Nishino et  al., 2006; 
Baugh et al., 2012). Nevertheless, the underlying mechanisms by 
which these efflux pumps mediate biofilm formation are poorly 
understood. The PACE family is the most recently discovered family 
with the identification of its first member, AceI in 2015 (Hassan 
et al., 2015). The PACE family plays a significant role in biocide 
resistance such as benzalkonium and chlorhexidine in Gram-
negative bacteria (Hassan et al., 2018). However, little is known 
regarding the association between the PACE-type efflux pumps and 
biofilm formation.

3.1.5 TolC
In addition to multiple efflux pumps, several studies have revealed 

that the loss of TolC also contributed to biofilm inhibition. TolC is an 
outer membrane protein channel binding to efflux pumps such as 
MdtABC and AcrAB (RND-type), EmrAB (MFS-type), and MacAB 
(ABC-type) in Gram-negative bacteria (Koronakis et al., 2004; Greene 
et  al., 2018). In different tripartite complexes, the structure and 
function of TolC are similar whereas inner membrane pumps are 
responsible for the determination of substrate specificity (Zgurskaya, 
2009; Yousefian et al., 2021) (Figure 2). Afterward, periplasmic adapter 
proteins accommodate the diversity to facilitate interactions between 
inner membrane pumps and TolC. Finally, the delivered substrates are 
transported passively through the outer membrane channel.

It has been well established that the loss of tolC compromises 
biofilm formation especially in E. coli (Hou et al., 2014; Bay et al., 
2017; Li et  al., 2018; Wang et  al., 2021). The loss of TolC could 
downregulate curli fimbriae biosynthesis thereby abolishing the 
aggregation and adherence during the initial stage of biofilm 
formation (Hou et al., 2014; Li et al., 2018). Nevertheless, owing to the 
pleiotropic functions of TolC involving diverse efflux pumps such as 
EmrAB, AcrAB, AcrEF, and AcrAD in E. coli (Nikaido and Takatsuka, 
2009), existing research failed to discern which efflux pump was 
involved in mediating biofilm formation. Imuta et  al. (2008) 
demonstrated the role of TolC in biofilm formation of 
Enteroaggregative Escherichia coli. In this study, the tolC deletion 
mutant exhibited diminished biofilm formation due to the loss of the 
bacterial surface hydrophobicity and decreased expression of 
aggregative fimbriae. Even though this study ruled out the involvement 
of AcrA in mediating biofilm formation, whether other efflux systems 
participated was not investigated. Future studies are needed to 
decipher the exact mechanisms.

On the other hand, as a consequence of the pleiotropic functions, 
the loss of tolC caused the most significant reduction of biofilm 
formation in E. coli compared with the individual deletion of a variety 
of efflux pumps (Bay et al., 2017). Moreover, controversial outcomes 
were obtained in different growth media. Significantly decreased 
biofilm formation caused by the loss of tolC was only found in rich 
media in contrast to the elevated biofilm formation in minimal media 
(Bay et al., 2017). These results reflect the divergence in efflux pump 
functions derived from distinct growth conditions.

In addition to E. coli, the absence of TolC also resulted in 
alterations of surface hydrophobicity and significantly attenuated 
aggregation leading to the compromised biofilm formation in 
Actinobacillus pleuropneumoniae, which was restored by the gene 
complementation of tolC1 (Li et al., 2016a). Moreover, a significant 
downregulation of the poly-β-1, 6-N-acetyl-D-glucosamine (PGA), 
an important biofilm matrix component of A. pleuropneumoniae was 
revealed in the ΔtolC mutant by confocal microscopy and quantitative 
RT-PCR (Li et al., 2016b).

3.2 Negative effects

On the other aspect, many studies have also revealed the 
negative effects of efflux pumps on biofilm formation by reducing 
AIs and mediating relative gene expression. Bay et  al. (2017) 
investigated the impact of single deletion of various efflux pump 
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genes belonging to different families (RND: acrA, acrB, acrD, acrE, 
and acrF; MATE: mdtK; MFS: emrA and emrB; and SMR: emrE, 
sugE, mdtI, and mdtJ) on biofilm formation in E. coli. The results 
showed that all deletion mutants exhibited similar or enhanced 
biofilm formation compared with the wild-type strain in contrast to 
previous findings in Salmonella (Baugh et  al., 2012), E. coli 
(Matsumura et  al., 2011), and A. baumannii (Lin et  al., 2020). 
Although it is difficult to explain this outcome, the difference might 
partly be  attributed to different methodologies such as growth 
medium and plates. Previous research predominantly quantified 
biofilm formation by the crystal violet staining method. The major 
drawback of this approach is the lack of reproducibility. The results 
differ remarkably from biofilm growth conditions, solvent 
concentrations, and the decolorization time (Pantanella et al., 2013). 
Furthermore, the study conducted by Matsumura et  al. (2011) 
demonstrated that more biofilm was built in hydrophilic polystyrene 
plates compared with hydrophobic ones, which are commonly used 
for biofilm formation evaluation. In the work of Bay et al. (2017), 
biofilms are cultivated in peg lids of the Calgary Biofilm Device. 
Another possible explanation is that some efflux pumps can export 
substrates required for biofilm formation with unique specificity. 
Thus, the loss of such efflux pumps might enhance biofilm formation 
by hindering the expelling of essential substances. Future work is 
needed to unravel the exact substance extruded by efflux pumps and 
underlying pathways. Moreover, this study highlights that some 
efflux pumps mediated biofilm formation in a time-dependent 
manner. For example, the lack of acrE (RND-type); mdtK (MATE-
type); emrA and emrB (MFS-type); emrE and sugE (SMR-type) only 
impacted the early stage of biofilm formation.

The MexEF-OprN efflux pump, belonging to the RND family, is 
responsible for transporting fluoroquinolones, chloramphenicol, and 
trimethoprim (Juarez et  al., 2018). P. aeruginosa mutants 
overexpressing mexEF-oprN displayed impaired swarming motility 
and biofilm formation by reducing AHLs (Favre-Bonté et al., 2003; 
Lamarche and Déziel, 2011). Lamarche and Déziel (2011) found the 
extracellular accumulation of 4-hydroxy-2-heptylquinoline (HHQ) in 
the cultures and the intracellular insufficiency of HHQ in the mutants 
overexpressing mexEF-oprN. In addition, the synthesis of the 
Pseudomonas Quinolone Signal (PQS) was greatly compromised 
(Lamarche and Déziel, 2011). HHQ is the precursor of PQS, a main 
AI of QS systems in P. aeruginosa. These findings indicate that the 
failure of PQS synthesis was due to the rapid exportation of HHQ out 
of cells by the MexEF-OprN efflux pump. The capacity of MexEF-
OprN to extrude HHQ was further confirmed by finding that the 
inactivation of MexEF-OprN using an EPI increased intracellular 
concentrations of HHQ and decreased extracellular concentrations of 
HHQ in supernatants. Consistently, the inactivation of MexEF-Opr 
by the EPI or the deletion of mexE encoding the MexEF-OprN efflux 
pump restored PQS syntheses and biofilm formation (Lamarche and 
Déziel, 2011). Taken together, the evidence suggests the negative effect 
of MexEF-OprN on biofilm formation by the disruption of 
AI synthesis.

In addition to the inhibitory effect of adeB deletion on biofilm 
formation in A. baumannii, Yoon et  al. (2015) also revealed the 
negative effects of AdeABC and AdeIJK efflux pumps on biofilm 
formation by impacting the initial attachment. The diminished biofilm 
formation in A. baumannii has been observed in adeABC and adeIJK 
overexpressing mutants (Yoon et  al., 2015). In these mutants, the 

FIGURE 2

Schematic presentation of six families or superfamilies of multidrug efflux pumps and the energy sources: the resistance-nodulation–cell-division 
(RND) superfamily, the ATP-binding cassette (ABC) superfamily, the major facilitator superfamily (MFS), the multidrug and toxic compound extrusion 
(MATE) family, the small multidrug resistance (SMR) family, and the proteobacterial antimicrobial compound efflux (PACE) family. The ABC-type efflux 
pumps are energized by ATP hydrolysis, while the efflux pumps from other families are driven by the proton motive force. In Gram-negative bacteria, 
the RND-, ABC-, and MFS-type efflux pumps frequently form tripartite complexes comprised of inner membrane pumps, periplasmic adapter proteins, 
and the outer-membrane protein channel to span both the inner and outer membranes. The ABC-and MFS-type efflux pumps can also function in 
single-component forms. IM, inner membrane; OM, outer membrane.
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downregulation of CsuA/B and CsuC, and the FimA fimbrial proteins 
responsible for initial adherence, surface colonization, and 
microcolony formation during the early stage of biofilm formation has 
been found by the proteomic analysis (Sivaneson et  al., 2011). 
Furthermore, the expression of the diaminobutyrate-2-oxoglutarate 
aminotransferase (DABA-AT) was also downregulated in the mutants 
overexpressing adeABC and adeIJK. DABA-AT plays a role in the 
biosynthesis of DAP, a polyamine required for A. baumannii surface-
associated motility (Skiebe et  al., 2012). These results collectively 
suggest the impact of AdeABC and AdeIJK on the early stage of 
biofilm formation in A. baumannii.

Furthermore, some efflux pumps negatively regulate biofilm 
formation by modulating the relative gene expression. Zhu et  al. 
(2008) characterized the role of the lm. G_1771 gene encoding a novel 
ABC-type transporter in Listeria monocytogenes as a negative 
regulator of biofilm formation. In 2011, the same team (Zhu et al., 
2011) further illuminated the function of the lm. G_1771 gene. The 
transcriptomics analysis demonstrated that this gene involved the 
biofilm formation signal pathway by regulating the genes encoding 
cell surface proteins, cell surface anchor proteins, and 
transcriptional regulators.

4 The effects of EPIs on biofilm 
formation

EPIs are substances with properties of blocking efflux pump 
activities. In the past decades, there has been a surge of interest in 
searching for EPIs to reverse antibiotic resistance and inhibit biofilm 
formation (Fiamegos et  al., 2011; Kalia et  al., 2012). EPIs can 
be classified by distinct action modes such as repression of efflux 
genes, remodeling substrates, blocking active efflux pump assembly, 
and inhibiting uptake of efflux pumps. Within this category, carbonyl 
cyanide m-chlorophenylhydrazone (CCCP), 1-(1-napthylmethyl)-
piperazine (NMP), and PAβN are the most extensively studied EPIs 
with precise action modes. CCCP is an ionophore with the capacity 
to block proton motive force leading to the inhibition of RND-type 
efflux pumps. Given this action mode, CCCP not only inhibits the 
activities of efflux pumps but also influences the metabolite activity of 
bacteria. Therefore, it remains disputable that the effects of CCCP on 
biofilm formation or antibiotic resistance derive from efflux pump 
inhibition or the influence on metabolite. PAβN and NMP are also 
broad-spectrum inhibitors of RND efflux pumps, but act by directly 
binding to efflux pumps such as the AcrAB-TolC efflux system in 
E. coli (Chevalier et al., 2004) and the MexAB-OprM efflux system in 
P. aeruginosa (Renau et al., 1999). Good inhibitory effects of PAβN 
and CCCP on biofilm formation have been revealed in many species 
such as A. pleuropneumoniae (Li et al., 2016a), Salmonella (Baugh 
et al., 2012), E. coli (Kvist et al., 2008; Baugh et al., 2014), K. pneumoniae 
(Kvist et al., 2008), P. aeruginosa (Liu et al., 2010; Baugh et al., 2014), 
S. aureus (Kvist et al., 2008; Baugh et al., 2014), and Pseudomonas 
putida (Kvist et al., 2008). Recently, a study also demonstrated the 
effectiveness of PAβN on the inhibition of biofilm formation in 
Carbapenem-resistant P. aeruginosa (CRPA) clinical isolates (Li et al., 
2022). However, the single application of NMP showed relatively poor 
activity on biofilm inhibition (Kvist et al., 2008). Both PAβN and NMP 
possess toxicity to mammalian cells rendering challenges to their 
clinical use.

As the action modes of many EPIs remain unclear, they can also 
be categorized into nature and synthesis according to their origins 
(Sharma et al., 2021). Several natural EPIs originating from plants 
have been characterized to contribute to biofilm control. For example, 
baicalin, a natural flavonoid compound extracted from roots of 
Scutellaria baicalensis, possesses antibacterial, antiviral, and immune-
enhancing activities (Moore et al., 2016). It has been demonstrated 
that baicalin reduced biofilm formation in Staphylococcus 
saprophyticus by inhibiting the MsrA efflux pump (ABC-type) (Wang 
et al., 2019). 4′,5′-O-dicaffeoylquinic acid (4′,5′-ODCQA), a plant EPI 
separated from Artemisia absinthium, was able to diminish biofilm 
formation in S. aureus and Enterococcus faecalis by inhibiting 
MFS-type efflux pumps (Fiamegos et  al., 2011). 4-allyl-2-
methoxyphenol (eugenol) is a natural phenolic bioactive component 
extracted from clove oil, nutmeg, and basil (Ferreira et al., 2017). Sen 
et al. (2023) investigated the impact of eugenol on inhibiting efflux 
pumps and biofilm formation in 10 azole-resistant Aspergillus 
fumigatus (ARAF) isolates collected from 245 Aspergillus 
environmental samples. The confocal laser scanning microscopy 
results showed that the eugenol treatment caused a loss of extracellular 
matrix of ARAF biofilm. Additionally, the expression of MFS-type 
efflux genes such as MDR1, MDR4, erg11A, and MedA was 
downregulated following the eugenol treatment compared with 
untreated isolates. Xanthone, a heterocyclic polyphenolic molecule, 
possesses both natural derivatives originating from higher plants, 
lichens, fungi, and marine products and synthesis derivatives (Pinto 
et al., 2021). In addition to multiple activities including antitumor, 
anticoagulant, antiplatelet, anti-inflammatory, antimalarial, 
antimicrobial, hepatoprotective, and antioxidant, the biofilm 
inhibitory effect of xanthones has also been characterized recently 
(Durães et al., 2021). However, the synthesis of natural EPIs remains 
a main obstacle due to the complex and bulky structure.

In order to circumvent potential problems of searching for novel 
EPIs, there have been attempts to select EPIs from available drugs. For 
example, thioridazine, an antipsychotic drug, is able to inhibit the 
MFS-type efflux pumps in S. aureus and the RND-type efflux pumps 
in A. baumannii (Kaatz et al., 2003; Piddock, 2006; Kvist et al., 2008; 
Ahmadi et al., 2022). Nzakizwanayo et al. (2017) assessed the potential 
of fluoxetine and thioridazine as EPIs to control crystalline biofilm 
formation in P. mirabilis associated with the Bcr/CflA efflux system 
(MFS-type). Both EPIs significantly decreased crystalline biofilm 
formation on catheters in P. mirabilis by reducing swimming and 
swarming motilities. In addition to P. mirabilis, significantly decreased 
biofilm formation caused by thioridazine has also been observed in 
other species including P. aeruginosa, E. coli, K. pneumoniae, S. aureus, 
and P. putida (Kvist et al., 2008; Nzakizwanayo et al., 2017). Especially 
the combined application of thioridazine and PAβN showed 
remarkable biofilm inhibitory effects (up to 99% reduction) (Kvist 
et al., 2008). In Zimmermann et al. (2019), reported that the first 
approved drug, nilotinib, a tyrosine kinase inhibitor, significantly 
abolished the biofilm formation combined with ciprofloxacin at 
clinically viable concentrations by inhibiting the NorA efflux pump 
(MFS-type).

Although the effectiveness of EPIs on biofilm inhibition has been 
demonstrated in many species, there are still several hurdles on the 
way to clinical use of EPIs as a promising biofilm inhibition strategy. 
From an economic perspective, improving antimicrobials in use is 
more attractive than developing a new chemical entity for 
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pharmaceutical companies (Lomovskaya and Bostian, 2006). 
Additionally, the toxicity issue of EPIs is a great challenge for clinical 
use. The potential strategies include the combination of EPIs and 
antimicrobial compounds, local utilization, and application of EPIs on 
medical devices (Dawan et al., 2022). Furthermore, earlier studies 
have indicated that the definitive biofilm formation is a synergistic 
result of multiple efflux pumps. Once one of the efflux pumps is 
inhibited, the expression of other efflux pumps can be upregulated for 
compensation by a feedback mechanism (Blair et al., 2015; Liu et al., 
2017). Thus, it is estimated that the combination of diverse EPIs 
renders better activity (Kvist et al., 2008). Future investigations on the 
combination of diverse EPIs or EPIs and other antimicrobial agents 
are recommended.

5 Conclusion

A good understanding of efflux pump functions in biofilm 
formation is of great importance for selecting EPI targets. Although 
the regulatory effects of many efflux pumps on biofilm formation 
have been characterized, the precise mechanisms by which these 
efflux pumps mediate biofilm formation are not fully understood. 
Especially the role of some efflux systems such as Acr, Ade, and 
EmrAB in biofilm formation is still controversial. Additionally, 
previous research suggests that the expression of efflux pumps in 
biofilm formation differs among strains, species, and growth 
conditions such as media and antimicrobial selective pressure. The 
question about how condition factors influence the expression of 
efflux pumps remains unanswered. Furthermore, what is known 
about the effects of efflux pumps on biofilm formation is largely based 
on efflux mutants using standard strains. There is a paucity of relative 
information on clinical strains. Future efforts are needed to fully 
clarify these problems.
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