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Background: Evidence from observational studies and clinical trials suggests 
that the gut microbiota is associated with gynecological diseases. However, the 
causal relationship between gut microbiota and menstrual disorders remains to 
be determined.

Methods: We obtained summary data of gut microbiota from the global 
consortium MiBio-Gen’s genome-wide association study (GWAS) dataset and 
data on menstrual disorders from the IEU Open GWAS project. MR-Egger, 
weighted median, inverse variance weighted, simple mode, and weighted mode 
were used to examine the causal association between gut microbiota and 
menstrual disorders. Thorough sensitivity studies were performed to confirm 
the data’s horizontal pleiotropy, heterogeneity, and robustness.

Results: Through MR analysis of 119 kinds of gut microbiota and 4 kinds of 
clinical phenotypes, it was discovered that 23 different kinds of gut microbiota 
were loosely connected to menstrual disorders. After FDR correction, the results 
showed that only Escherichia/Shigella (p  =  0.00032, PFDR  =  0.0382, OR  =  1.004, 
95%CI  =  1.002–1.006) is related to menstrual disorders.

Conclusion: According to our MR Analysis, there are indications of a causal 
relationship between menstrual disorders and gut microbiota. This finding could 
lead to new discoveries into the mechanisms behind menstrual disorders and 
clinical research involving the microbiota.
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1 Introduction

Menstrual disorders are a common gynecological condition. Irregular menstrual cycles, 
long menstrual cycles, and increased or decreased menstrual blood volume are the main 
related manifestations (Chen W. et al., 2023). It causes considerable worry for women.

During the menstrual cycle, hormone and physiological changes can affect the richness 
and diversity of the urinary and reproductive microbiota (Holdcroft et al., 2023; Cao et al., 
2024). Song et al. investigated vaginal microbiota changes at various periods of the menstrual 
cycle and discovered increased alpha diversity with decreased relative abundance of 
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Lactobacillus spp. and a greater percentage of other bacteria, including 
Peptostreptococcus, Anaerococcus, and Streptococcus species (Chen 
et al., 2017; Song et al., 2020). Research by Krog et al. demonstrated 
that during menstruation, women’s vaginal microbiomes are more 
diverse. Furthermore, they discovered a rise in the non-resident 
bacteria that cause bacterial vaginosis; however, these bacteria 
decreased in the luteal and follicular phases (Krog et  al., 2022; 
Grobeisen-Duque et al., 2023). According to a recent study, multiple 
gut microbiota functional pathways are significantly correlated with 
the severity score of dysmenorrhea symptoms (Chen C. et al., 2023). 
Women with more severe symptoms of dysmenorrhea had higher 
percentages of possibly pro-inflammatory bacteria in their vaginal 
microbiograms and lower percentages of Lactobacillus (Nabeh, 2023).

Some research has also been carried out on the effect of microbiota 
on menstruation. One study reported that deficiencies in the salivary 
and fecal microbiota led to significant changes in menstruation and 
that the diversity of the vaginal microbiota increased during 
menstruation due to the expansion of Lactobacillus during the 
follicular and luteal phases (Krog et al., 2022). Furthermore, microbial 
dysbiosis itself can result in elevated insulin levels and a condition 
known as insulin resistance because it triggers the immune system and 
stimulates the release of several pro-inflammatory cytokines. 
Menstrual issues result from this as it raises androgen production and 
throws off the natural balance between estrogen and progesterone 
(Tremellen and Pearce, 2012; Nabeh, 2023). Thus, menstruation and 
microorganisms are inextricably linked.

In the gastrointestinal system, the gut microbiota plays an 
important role in digestion regulation, but its importance goes much 
beyond that. The structure of the gut microbiota affects the onset and 
progression of metabolic and endocrine diseases (Mukherjee et al., 
2023). Randomized controlled trials of the gut microbiota, as opposed 
to observational studies, may aid in proving causation. Unfortunately, 
due to objective elements such as technology, study methodology, and 
other confounding factors including age, environment, eating habits, 
and lifestyle, screening for strains still has substantial limits in early 
diagnosis and prognosis. It might be challenging to effectively control 
for these factors in observational studies (Sher et al., 2021). There is 
growing evidence that the human gut microbiota plays a role in 
gynecologic diseases (Flores et al., 2012; Lindheim et al., 2017; Parida 
and Sharma, 2019; Zhao et al., 2020; Zhou et al., 2020; Cao et al., 2024; 
Huang et al., 2024). If changes in the composition and/or function of 
the microbiota can be demonstrated to have clinically advantageous 
effects, then using the gut microbiota’s functioning as an alternative to 
pharmaceutical intervention is possible.

Several studies have recently been conducted to study the 
association between the hormonal variations associated with the 
menstrual cycle and the gut microbiota. Reports claim that estrogen 
affects the gut microbiota in all parts of the body (Vieira et al., 

2017). When women have sufficient estrogen in their bodies, their 
intestinal microbiota exhibits species diversity, with beneficial 
bacteria dominating and the growth of harmful bacteria being 
inhibited. Due to the presence of sex hormone receptors in the 
digestive tract, many healthy women suffer changes in 
gastrointestinal symptoms during the menstrual cycle (Bharadwaj 
et al., 2015; Mohib et al., 2018). For instance, early menstruation is 
characterized by lower stool consistency than mid-menstruation; 
visceral somatic impulses may be perceived more strongly, resulting 
in pain, bloating, and nausea, particularly on the first day of the 
menstrual cycle. In addition, hormonal changes during 
menstruation can lead to alterations in the function and activity of 
the body’s microbiota. This is due to the microbiota’s control over 
steroid hormone levels, including estrogen (Parida and Sharma, 
2019), microbiota can metabolize sex hormones through numerous 
enzymes, such as hydroxysteroid dehydrogenase, which controls the 
balance of active and inactive steroids.

An analytical technique called Mendelian randomization (MR) is 
utilized to determine the causal connection between the observed 
relationships between modifiable exposures or risk factors and 
clinically relevant outcomes. To correlate with SNP outcome 
connections and merge them into a single causal estimate, two-sample 
MR analysis can utilize SNPs (exposure) from independent genome-
wide association studies (GWASs). As the number of GWASs linking 
illnesses and the gut microbiota has risen rapidly (MiBioGen 
Consortium Initiative et al., 2018; Kurilshikov et al., 2021), large-scale 
pooled measurements have become more widespread, allowing 
two-sample MR analysis to have significantly enhanced statistical 
power (Kurilshikov et al., 2021). MR allows us to understand whether 
there is a causal relationship between intestinal flora and menstrual 
disorders, which can inform clinical and research studies.

GWASs have revolutionized the study of complex disease genetics 
by analyzing millions of genetic variants present in the genomes of 
several individuals to determine the connections between genotype 
and phenotype over the past decade (Visscher et al., 2017). A GWAS 
provides an agnostic method for studying the genetic basis of complex 
diseases. The GWAS directory has 427,870 associations and 6,041 
articles as of October 2022.

2 Methods

2.1 Study design

This study is reported following the Strengthening the Reporting 
of Observational Studies in Epidemiology Using Mendelian 
Randomization guidelines (STROBE-MR, S1 Checklist) (Skrivankova 
et al., 2021a,b).

We assessed the causal relationship between 119 microbial 
communities and 4 clinical phenotypes based on a two-sample MR 
analysis. The research process is shown in Figure 1. MR uses genetic 
variation to represent risk factors, and therefore, valid instrumental 
variables (IVs) in causal inference must satisfy three key assumptions: 
(1) Exposure has a direct correlation with genetic variation; (2) There 
is no correlation between genetic variation and potential variables 
between exposure and result; (3) Other than exposure, genetic 
variation has no effect on outcome through other mechanisms 
(Bowden and Holmes, 2019) (Figure 2).

Abbreviations: MR, Mendelian randomization; EFMR (main), Diagnoses-main 

ICD10: N92.0 excessive and frequent menstruation with regular cycle; EFMR 

(secondary), Diagnoses-secondary ICD10: N92.0 excessive and frequent 

menstruation with regular cycle; IM (unspecified), Diagnoses-main ICD10: N92.6 

irregular menstruation, unspecified; EFIM, Diagnoses-main ICD10: N92 excessive, 

frequent and irregular menstruation; GWAS, Genome-wide association study; IVs, 

Instrumental variables; IVW, Inverse variance weighted; FDR, False discovery rate; 

SCFA, Short-chain fatty acid.
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2.2 Exposure data

SNPs from the global consortium MiBio-Gen’s GWAS dataset 
that are associated with the composition of the human gut 
microbiome were used as instrumental variables (IVs). In order 
to investigate the relationship between autosomal human genetic 
variants and the gut microbiome, this multi-ethnic large-scale 
GWAS brought together genotyping and 16 s ribosomal RNA 
gene sequencing data from 18,340 participants. A total of 211 
taxa (131 genera, 35 families, 20 orders, 16 classes, and 9 phyla) 
were included (Long et al., 2023). In our study, we kept only data 
of genus.

2.3 Outcome data

Summary statistics for menstruation were obtained from a GWAS 
meta-analysis.1 The genetic association data consisted: (1) The 
diagnostic criteria of diagnoses-main ICD10: N92.0 Excessive and 
frequent menstruation with regular cycle (EFMR (main)) containing 
463,010 participants (N = 6,641 cases, 456,369 controls) with a total of 
9,851,867 SNPs; (2) The diagnostic criteria of diagnoses-secondary 

1 https://gwas.mrcieu.ac.uk

FIGURE 1

The flowchart of the study.

FIGURE 2

Three assumptions of MR analysis.
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ICD10: N92.0 Excessive and frequent menstruation with regular cycle 
(EFMR (secondary)) containing 463,010 participants (N = 2,698 cases, 
460,312 controls) with a total of 9,851,867 SNPs; (3) The diagnostic 
criteria of Diagnoses-main ICD10: N92.6 Irregular menstruation, 
unspecified (IM (unspecified)) containing 463,010 participants 
(N = 1,279 cases, 461,731controls) with a total of 9,851,867 SNPs; (4) 
The diagnostic criteria of Diagnoses-main ICD10: N92 Excessive, 
frequent and irregular menstruation (EFIM) containing 361,194 
participants (N  = 8,475 cases, 352,719 controls) with a total of 
12,983,417 SNPs.

All cases and controls were Europeans. The diagnostic criteria for 
these four packets are based on ICD-10 criteria. Ethical endorsement 
was not sought for the study as it only used publicly available GWAS 
summary statistics and did not attempt to identify individual-level 
data. Because this is publicly published data by GWAS, other infections 
and disorders/issues have been ruled out.

2.4 Instrumental variable selection

The gut microbiota served as the exposure, while menstruation 
serves as a result. First, we set up the parameters for identifying IVs 
with a genome-wide significance of p < 1 × 10−5 and a chained 
unbalanced clustering algorithm with an R2 threshold of 0.001 over a 
10,000 kb area to assure independence of IV exposure (R4.3.1 
software; Package: TwoSampleMR; VariantAnnotation; gwasglue). 
Furthermore, we regarded IVs with F-statistics >10 as powerful tools 
and saved them for the analyses that followed in order to prevent the 
bias caused by weak instruments (R4.3.1 software; Package: ieugwasr).

2.5 MR analysis

In order to evaluate the causal link between exposure factors and 
outcome, we utilized MR-Egger, weighted median, inverse variance 
weighted (IVW), simple mode, and weighted mode (R4.3.1 software, 
package: TwoSampleMR; VariantAnnotation; gwasglue). The benefit 
of IVW is that it makes it possible to measure the situation objectively 
and without experiencing horizontal pleiotropy. Therefore, the results 
of multiple IVs are mainly based on the IVW method, supplemented 
by four other methods (Bowden et al., 2015). To ensure that each IV 
was associated with the same effector allele, we excluded palindromes 
and incompatible SNPs when harmonizing exposure and outcome 
statistics, and excluded SNPs linked to exposures that the GWAS 
outcome statistics were unable to match.

Several sensitivity studies were conducted to evaluate the 
results’ robustness (R4.3.1 software, package: TwoSampleMR). 
MR-PRESSO was used to detect polybiotic effect bias and correct 
for polybiotic effects by rejecting outliers, and it has the ability to 
both detect and correct pleiotropy in MR analysis, and get a causal 
effect estimate (Bowden et  al., 2016) and examine whether the 
results are driven by the directional horizontal pleiotropy (Burgess 
and Thompson, 2017). To ascertain whether a single SNP was 
responsible for the causal signal, leave-one-out analyses were 
carried out. The identified causal relationship can be regarded as 
directionally reasonable if the IVs account for more of the exposure 
difference than the outcome difference. We  used Cochran’s Q 
statistics and a two-sample MR package between instruments 

testing for heterogeneity. Evidence of heterogeneity and invalid 
instruments can be  found when Q exceeds the number of 
instruments minus one, or a significant Q statistic at a p-value < 
0.05 can mean the presence of heterogeneity (Greco et al., 2015; 
Bowden et al., 2019). To exclude false positive results, we corrected 
the MR results with the false discovery rate (FDR).

In addition, forest plots, scatter plots, leave-one-out, and funnel 
plots were used to demonstrate that the data are not heterogeneous 
and their stability.

3 Results

3.1 SNP selection

In total, 1,531 SNPs were employed for 119 different bacterial 
species as IVs in accordance with the selection criteria for Ivs. A total 
of 25 results were obtained (Figure 3). The F-statistics for the Ivs were 
all more than 10, respectively. Cochrane’s Q test did not 
reveal any evidence of heterogeneity in the sensitivity analysis 
(Supplementary Table S1). The MR-PRESSO global test (p > 0.05) also 
did not find evidence of a multibiotic effect (Supplementary Table S1). 
Ultimately, after eliminating the polytomous SNPs identified by the 
MR-PRESSO outlier test (p > 0.05) and MR-Egger regression (p > 0.05), 
there was no evidence of horizontal pleiotropy of IVs 
(Supplementary Table S1). The forest plots, funnel plots, leave-one-out 
plots, and scatter plots are shown in Supplementary Figures S1–S4.

3.2 EFMR (main)

This study identified 11 gut microbiota were found to be associated 
with EFMR (main) in IVW (Figure 3). Specifically, IVW estimate 
suggests that Eubacterium eligens group (OR = 0.996, 95%CI = 0.993–
1.000, p = 0.037), Haemophilus (OR = 0.996, 95%CI = 0.994–0.999, 
p = 0.004), Phascolarcto bacterium (OR = 0.998, 95%CI = 0.996–1.000, 
p = 0.048), Cateni bacterium (OR = 0.998, 95%CI = 0.996–1.000, 
p = 0.045), and Blautia (OR = 0.997, 95%CI = 0.994–1.000, p = 0.038) 
had a protective effect on this type of menstrual disorders (Table 1). 
RuminococcaceaeUCG011 (OR = 1.002, 95%CI = 1.000–1.003, 
p = 0.046), DefluviitaleaceaeUCG011 (OR = 1.002, 95%CI = 1.000–
1.004, p = 0.027), Escherichia/Shigella (OR = 1.004, 95%CI = 1.002–
1.006, p = 0.0003), Lachnospira (OR = 1.004, 95%CI = 1.001–1.008, 
p = 0.023), Anaerotruncus (OR = 1.004, 95%CI = 1.001–1.007, 
p = 0.010), and Marvinbryantia (OR = 1.003, 95%CI = 1.000–1.005, 
p = 0.026) had a negative effect on this type of menstrual disorders 
(Table 1).

After FDR correction, the results showed that only Escherichia/
Shigella (p = 0.00032, PFDR = 0.0382, OR = 1.004, 95%CI = 1.002–1.006) 
was related to EFMR (main). The forest plots, funnel plots, leave-
one-out plots, and scatter plots of Escherichia/Shigella proved the 
stability of the results (Figure 4).

3.3 EFMR (secondary)

Our study identified six gut microbiota were found to be associated 
with EFMR (secondary) in IVW (Figure 3). IVW estimate suggests 
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that Desulfovibrio (OR = 0.997, 95%CI = 0.994–1.000, p = 0.043), 
RuminococcaceaeUCG004 (OR = 0.998, 95%CI = 0.997–1.000, p = 0.039), 
and Eubacterium fissicatena group (OR = 0.999, 95%CI = 0.998–1.000, 
p = 0.019) had a protective effect (Table  2). Ruminiclostridium5 
(OR = 1.004, 95%CI = 1.002–1.007, p = 0.003), Prevotella9 (OR = 1.002, 
95%CI = 1.000–1.003, p = 0.021), and Erysipelatoclostridium (OR = 1.001, 
95%CI = 1.000–1.003, p = 0.039) had a negative effect on this type of 
menstrual disorders (Table 2).

After FDR correction, we  did not find a causal relationship 
between gut microbiota and EFMR (secondary).

3.4 EFIM

Six causal associations from gut microbiota to EFIM were 
identified by the IVW method (Figure 3). IVW estimate suggests that 

FIGURE 3

MR results of causal effects between gut microbiota and menstrual disorders. p-value, OR, odds ratio.

TABLE 1 MR results of causal effects between gut microbiota and EFMR (main).

Disease type 
(outcome)

Gut microbiota 
(exposure)

Method nSNPs Beta SE p-value OR 95%CI

EFMR (main) Eubacteriumeligens group IVW 8 −0.004 0.002 0.037 0.996 0.993–1.000

RuminococcaceaeUCG011 IVW 8 0.002 0.001 0.046 1.002 1.000–1.003

DefluviitaleaceaeUCG011 IVW 10 0.002 0.001 0.027 1.002 1.000–1.004

Escherichia/Shigella IVW 15 0.004 0.001 0.0003 1.004 1.002–1.006

Haemophilus IVW 10 −0.004 0.001 0.004 0.996 0.994–0.999

Phascolarctobacterium IVW 12 −0.002 0.001 0.048 0.998 0.996–1.000

Lachnospira IVW 7 0.004 0.002 0.023 1.004 1.001–1.008

Catenibacterium IVW 5 −0.002 0.001 0.045 0.998 0.996–1.000

Anaerotruncus IVW 12 0.004 0.001 0.010 1.004 1.001–1.007

Blautia IVW 11 −0.003 0.002 0.038 0.997 0.994–1.000

Marvinbryantia IVW 10 0.003 0.001 0.026 1.003 1.000–1.005
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Eubacterium eligens group (OR = 0.995, 95%CI = 0.992–0.999, 
p = 0.014), Veillonella (OR = 0.997, 95%CI = 0.994–1.000, p = 0.032), 
Lactococcus (OR = 0.997, 95%CI = 0.995–0.999, p = 0.010), and Blautia 
(OR = 0.994, 95%CI = 0.990–0.997, p = 0.001) had a protective effect on 
this type of menstrual disorders (Table 3). Eubacterium brachy group 
(OR = 1.003, 95%CI = 1.000–1.005, p = 0.041) and Enterorhabdus 
(OR = 1.004, 95%CI = 1.000–1.008, p = 0.028) had a negative effect on 
this type of menstrual disorders (Table 3).

After FDR correction, we  did not find a causal relationship 
between gut microbiota and EFIM.

3.5 IM (unspecified)

Two causal associations from gut microbiota to IM (unspecified) 
were identified (Figure  3). IVW estimate suggests that 

FIGURE 4

MR results of causal effects between Escherichia/Shigella and EFMR (main). (A) The forest plot of Escherichia/Shigella on EFMR (main). (B) The funnel 
plot of Escherichia/Shigella on EFMR (main). (C) The leave-one-out plot of Escherichia/Shigella on EFMR (main). (D) The scatter plot of Escherichia/
Shigella on EFMR (main).

TABLE 2 MR results of causal effects between gut microbiota and EFMR (secondary).

Disease type 
(outcome)

Gut microbiota 
(exposure)

Method nSNPs Beta SE p-value OR 95%CI

EFMR (secondary) Ruminiclostridium5 IVW 7 0.004 0.001 0.003 1.004 1.002–1.007

Prevotella9 IVW 12 0.002 0.001 0.021 1.002 1.000–1.003

Desulfovibrio IVW 4 −0.003 0.002 0.043 0.997 0.994–1.000

Erysipelatoclostridium IVW 12 0.001 0.001 0.039 1.001 1.000–1.003

RuminococcaceaeUCG004 IVW 10 −0.002 0.001 0.039 0.998 0.997–1.000

Eubacteriumfissicatena group IVW 7 −0.001 0.001 0.019 0.999 0.998–1.000
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LachnospiraceaeUCG004 (OR = 0.999, 95%CI = 0.997–1.000, p = 0.048) 
and Dialister (OR = 0.998, 95%CI = 0.996–1.000, p = 0.026) had a 
protective effect on this type of menstrual disorders (Table 4).

After FDR correction, we  did not find a causal relationship 
between gut microbiota and IM (unspecified).

4 Discussion

In order to determine the causal link between gut microbiota and 
menstrual disorders, we conducted a two-sample MR analysis in this 
study using gut microbiota summary statistics from the largest GWAS 
meta-analysis carried out by the MiBioGen consortium and 
“Menstrual disorders” summary statistics from the MRC-IEU, NA 
release data. As shown in our results, a total of 23 different kinds of 
gut microbiota have an effect on menstrual disorders 
[Eubacteriumeligens group, Blautia is repeated in EFMR (main) and 
EFIM], of which 12 intestinal flora are protective factors for 
menorrhagia, while the other 11 are risk factors for menorrhagia. 
While 23 groups of bacteria had a tentative association, only 
Escherichia/Shigella had a significant robust effect. After FDR 
correction, only Escherichia/Shigella was causally associated with 
menstrual disorders, as it increases, so does the risk of disease.

Escherichia/Shigella is an Enterobacteriaceae bacterium that has 
been shown to cause intestinal inflammation and increased intestinal 
permeability when overexpressed, making it a recognized pathogenic 
bacterium (Mukherjee et al., 2023). Its secreted lipopolysaccharide 
induces acute intestinal injury, increases blood–brain barrier 
permeability, and activates neuroinflammation (Dong et al., 2021). 
Some scholars have found that the proportion of Escherichia/Shigella 
and the number of Streptococcus in intestinal growth, whereas the 
number of Akkermansia and Ruminococcaceae decreases in patients 
with Polycystic ovary syndrome (Liu et al., 2022). An increase in the 
number of Escherichia coli and Shigella in the gut microbiome of 
patients with stage IIIIV endometriosis was found (Ata et al., 2019; 

Cao et al., 2024). Escherichia coli can also cause chronic endometritis 
(Cao et al., 2024). To our knowledge, this is the first time Escherichia/
Shigella has been found to negatively affect menstruation. This could 
provide new ideas for future research and treatment of 
menstrual disorders.

Ravel and Brotman proposed the term “gut-vagina axis” in 2016 
(Ravel and Brotman, 2016). In a previous study, 68% of the 63 bacterial 
species that were detected in the vagina or rectum had the same 
genotype, with 44% of the species present in both organs (El Aila et al., 
2009), and species-level Spearman correlation coefficient analysis was 
used to identify individual BV-associated bacteria in the rectum and 
vagina of pregnant women (Fudaba et al., 2021). Oral probiotic strains 
were also found in the vagina (Reid et al., 2001; Morelli et al., 2004; 
Strus et al., 2012; Russo et al., 2018). These findings imply that vaginal 
germs may be able to be preserved in the rectum.

On the other hand, metabolites generated by the microbiota, such 
as short-chain fatty acids (SCFAs), may be viewed as collateral players 
in the gut-vaginal axis. There is no doubt that SCFAs have distinct 
functions in the gut and vagina (Amabebe and Anumba, 2020). While 
SCFAs in the vagina are linked to dysfunctional and pro-inflammatory 
states, SCFAs in the stomach serve advantageous purposes such 
maintaining barrier function (Aldunate et  al., 2015). Due to the 
systemic circulation can carry SCFAs produced by gut bacteria to 
other organs (Dalile et al., 2019), it is possible that SCFAs have a role 
in the vaginal-gut axis. It is believed that vaginal bacteria’s production 
of short-chain fatty acids adds to the dysbiotic environment (Aldunate 
et al., 2015). Excess short-chain fatty acids may be a possible cause of 
cervicovaginal inflammation, according to an in vitro investigation 
(Delgado-Diaz et  al., 2020). Therefore, vaginal microecological 
dysregulation brought on by the flow of short-chain fatty acids from 
the gut to the vagina may cause menstruation abnormalities (Takada 
et al., 2023).

The estrobolome has the ability to deconjugate hepatically 
conjugated estrogens in the gastrointestinal system in addition to 
metabolites. Deconjugated estrogen is then reabsorbed to the systemic 

TABLE 3 MR results of causal effects between gut microbiota and EFIM.

Disease type 
(outcome)

Gut microbiota 
(exposure)

Method nSNPs Beta SE p-value OR 95%CI

EFIM Eubacteriumeligens 

group

IVW 10 −0.005 0.002 0.014 0.995 0.992–0.999

Eubacteriumbrachy 

group

IVW 11 0.003 0.001 0.041 1.003 1.000–1.005

Veillonella IVW 11 −0.003 0.002 0.032 0.997 0.994–1.000

Enterorhabdus IVW 8 0.004 0.002 0.028 1.004 1.000–1.008

Lactococcus IVW 11 −0.003 0.001 0.010 0.997 0.995–0.999

Blautia IVW 12 −0.006 0.002 0.001 0.994 0.990–0.997

TABLE 4 MR results of causal effects between gut microbiota and IM.

Disease type 
(outcome)

Gut microbiota 
(exposure)

Method nSNPs Beta SE p-value OR 95%CI

IM (unspecified) LachnospiraceaeUCG004 IVW 7 −0.001 0.001 0.048 0.999 0.997–1.000

Dialister IVW 4 −0.002 0.001 0.026 0.998 0.996–1.000
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circulation. When circulating estrogen reaches the distal epithelium 
of the vagina, it modifies the physiological traits of the cells that line 
the vagina, including the generation of mucus and glycogen. Since 
glycogen can be a vital source of energy for Lactobacilli, increased 
glycogen promotes Lactobacillus dominance in the vagina (Witkin, 
2018; Linhares et al., 2019; Takada et al., 2023). Therefore, the number 
of Lactobacillus in the vaginal microbiota can be influenced by the 
number of bacteria in the gut microbiota that metabolize estrogen.

Evolutionary studies suggest that genes encoding the enzymes 
that catalyze the metabolism of dopamine, norepinephrine, and 
serotonin may have been passed from bacteria to host cells during the 
course of evolution (Iyer et al., 2004). Hormone receptors have even 
been detected on some microorganisms (Lyte, 1993; Nabeh, 2023). 
Escherichia coli growth depends on the transfer of iron from 
transferrin to bacteria, which is facilitated by catecholamines (Lyte 
et al., 2003). This suggests that microorganisms also interact with 
neurohormones, and we therefore speculate that Escherichia/Shigella 
may cause premenstrual dysphoric disorders by affecting 
neurohormone secretion, leading to menstrual disorders.

Fungus is also an integral part of the human body. A major 
member of the human fungal community has been identified as 
Candida albicans (Bradford and Ravel, 2017). Candida albicans can 
change from a commensal to a pathogenic condition when the 
human immune system is compromised, the intrinsic microbiota is 
dysregulated, or the mucosal gut barrier is compromised (Vergidis 
et  al., 2016; Pappas et  al., 2018). It has been proposed that, to 
differing degrees, at different phases of biofilm formation, Candida 
and Escherichia coli mutually govern the growth of biofilms (Bandara 
et al., 2009). Escherichia coli lipopolysaccharides directly regulate the 
production of in vitro biofilms, Candida species in particular, 
stimulating the growth of Pseudohyphae tropicalis and Nearly 
Naked Yeast, and inhibiting the growth of Pseudohyphae Duchenne. 
This stimulatory/inhibitory effect may be  brought about by 
modifications in the number of cells inside the formed biofilm, 
modifications in cellular activity, or modifications in both (Bandara 
et al., 2009).

Cytoplasmic estrogen receptors found in certain species of 
Candida enable direct transcriptional responses to host hormones 
(Skowronski and Feldman, 1989). It has been demonstrated that 
estrogens interfere with neutrophil chemotaxis to the vaginal 
epithelium (Lasarte et al., 2016), and inhibit Th17 cell differentiation 
(Chen et  al., 2015), resulting in increased host susceptibility to 
pathogens such as Candida. A hyperestrogenic state and raised vaginal 
pH are hallmarks of the premenstrual luteal phase, which is frequently 
linked to symptomatic Candida vaginitis (Galask, 1988). Researchers 
found that estrogen signaling increases Candida albicans’ adherence 
to vaginal epithelial cells (Tarry et al., 2005). Therefore, Escherichia coli 
may have an effect on estrogen through Candida albicans, which needs 
to be verified by experimental and clinical trials.

In conclusion, we  conducted a thorough analysis of the 
connections between various menstruation disorders and the gut 
flora. Our findings indicated that EFMR (main) had five positive 
and six negative causal directions; EFMR (secondary) had three 
positive and three negative causal directions; EFIM had four 
positive and two negative causal directions; and IR had two positive 
causal directions. After FDR correction, the results showed that 
only Escherichia/Shigella was related to menstrual disorders. The 
methods by which the gut microbiota mediates the development of 
menstruation problems may become clearer with the help of this 

study. Future scholars could target Escherichia/Shigella for research 
on menstrual disorders.

5 Weak point

The research has certain shortcomings. First, there were no data 
available at the species level and only a small number of instrumental 
variables included in the GWAS gut flora statistics. Secondly, we were 
not able to ascertain if the exposures and outcomes included in this 
study had overlapping participants in the GWAS data. Third, just the 
genus level of analysis was done on bacterial taxa. Fourth, a number 
of gut microbiota were not included in the IV selection phase due to 
our criterion, which may have caused some results to be overlooked.
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