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Wet markets in low-and middle-income countries are often reported to 
have inadequate sanitation resulting in fecal contamination of sold produce. 
Consumption of contaminated wet market-sourced foods has been linked 
to individual illness and disease outbreaks. This pilot study, conducted in two 
major wet markets in Dhaka city, Bangladesh during a 4-month period in 2021 
aimed to assess the occurrence and characteristics of Escherichia coli and non-
typhoidal Salmonella spp. (NTS) from tilapia (Oreochromis niloticus) and shrimp 
(Penaeus monodon). Fifty-four individuals of each species were collected. The 
identity of the bacterial isolates was confirmed by PCR and their susceptibility 
toward 15 antimicrobials was tested by disk diffusion. The whole genome of 
15 E. coli and nine Salmonella spp. were sequenced using Oxford Nanopore 
Technology. E. coli was present in 60–74% of tilapia muscle tissue and 41–
44% of shrimp muscle tissue. Salmonella spp. was found in skin (29%) and gills 
(26%) of tilapia, and occasionally in muscle and intestinal samples of shrimp. 
The E. coli had several Multilocus sequence typing and serotypes and limited 
antimicrobial resistance (AMR) determinants, such as point mutations on glpT 
and pmrB. One E. coli (BD17) from tilapia carried resistance genes for beta-
lactams, quinolones, and tetracycline. All the E. coli belonged to commensal 
phylogroups B1 and A and showed no Shiga-toxin and other virulence genes, 
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confirming their commensal non-pathogenic status. Among the Salmonella 
isolates, five belonged to Kentucky serovar and had similar AMR genes and 
phenotypic resistance patterns. Three strains of this serovar were ST198, often 
associated with human disease, carried the same resistance genes, and were 
genetically related to strains from the region. The two undetermined sequence 
types of S. Kentucky were distantly related and positioned in a separate 
phylogenetic clade. Two Brunei serovar isolates, one Augustenborg isolate, and 
one Hartford isolate showed different resistance profiles. This study revealed 
high fecal contamination levels in tilapia and shrimp sold at two main wet 
markets in Dhaka. Together with the occurrence of Salmonella spp., including S. 
Kentucky ST198, a well-known human pathogen, these results stress the need 
to improve hygienic practices and sanitation standards at markets to improve 
food safety and protect consumer health.

KEYWORDS

Salmonella, Escherichia coli, tilapia, shrimp, antimicrobial resistance, whole genome 
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Introduction

Aquaculture production of tilapia and shrimp in Bangladesh has 
experienced significant growth in recent years, driven by increasing 
demands from domestic consumers and export markets (Haque and 
Belton, 2021; Debnath et al., 2023; El-Sayed and Fitzsimmons, 2023). 
However, this expansion has raised concerns regarding antimicrobial 
use (AMU) practices and food safety aspects within the industry. 
Several studies highlighted the widespread and indiscriminate use of 
antimicrobials in tilapia and shrimp farms, with a lack of veterinary 
supervision and adherence to proper dosage and withdrawal periods 
(Thornber et al., 2020; Dewi et al., 2022). This unregulated AMU in 
aquaculture settings has been linked to the emergence and spread of 
antimicrobial resistance (AMR) in bacterial populations, including 
those present in aquatic environments and seafood products, which 
can enter the food chain and potentially represent a risk to humans 
(Lulijwa et  al., 2020; Preena et  al., 2020; Thornber et  al., 2020). 
Furthermore, studies have reported the presence of AMR bacteria, 
such as extended-spectrum β-lactamase-producing Escherichia coli, 
Salmonella spp., and multidrug-resistant Vibrio spp., in aquaculture 
systems and associated products, posing potential risks to human 
health (Hamilton et  al., 2018; Dewi et  al., 2022). Therefore, 
implementing robust food safety measures from culture ponds to 
markets is crucial to ensure the sustainability of tilapia and shrimp 
production and public health safety in Bangladesh.

Wet markets are important points of sales of aquatic food products 
in Bangladesh and, therefore, play a crucial role in food safety. In 
Bangladesh, hygiene issues in these markets have always been a major 
concern. Different factors, including lack of proper sanitation and 
hygiene practices, inadequate storage and handling, lack of quality 
control, and extensive use of chemicals contribute to the challenges. 
Studies have shown that wet markets often have poor hygiene practices 
and facilities (Alam et  al., 2016; Sobuj et  al., 2022). In addition, 
contaminated water may be used to process aquatic produce, leading 
to the potential contamination of such products by fecal organisms, 
such as E. coli and Salmonella spp. (Rocha Rdos et al., 2014; Fernandes 
et al., 2018). These bacteria can cause foodborne illnesses in humans, 

and their presence in aquatic products has been suggested as an 
important source of AMR (Khan et al., 2022; Samad et al., 2023).

The origin of AMR in aquatic products can be  attributed to 
various factors, including AMU in aquaculture, contamination with 
human and animal fecal matter containing AMR bacteria, and cross-
contamination with AMR bacteria during processing and handling 
(Shikongo-Nambambi et  al., 2012; Neela et  al., 2015; Watts et  al., 
2017). The presence of AMR bacteria and associated genes in aquatic 
products raises food safety concerns, especially since aquatic products 
are often consumed with minimal cooking or even in their raw state. 
Resistance genes can subsequently be transferred among bacterial 
populations in the human intestine, leading to the spread of AMR and 
potential treatment failure of bacterial infections in humans (Okon 
et al., 2022).

E. coli and Salmonella spp. are two major pathogens causing 
serious infections in humans (Havelaar et al., 2015). E. coli causes 
simple gastrointestinal diseases to more severe diseases, while 
Salmonella spp. are responsible for illnesses, such as typhoid/
paratyphoid fever, and non-typhoidal Salmonella spp. (NTS) cause 
food poisoning. The transmission route of E. coli and Salmonella spp. 
to humans is mainly via fecally contaminated water and food. E. coli 
and Salmonella spp. can develop resistance by selective pressures from 
antimicrobials and horizontally through the transmission of different 
mobile elements like plasmids and transposons (Butaye et al., 2006).

In this study, we aimed to develop a pilot genomic surveillance for 
AMR in E. coli and NTS isolated from tilapia and shrimp products 
purchased at wet markets in Dhaka, Bangladesh. Growth-based 
methods and PCR were used for bacterial genus identification and 
their antimicrobial susceptibility was tested by the disk diffusion 
method. Oxford nanopore sequencing was used to characterize the 
genomes of E. coli and Salmonella spp. to confirm their serovars, 
virulence factors, and the genetic basis of resistance. The findings of 
the study provide important insight into the occurrence and 
transmission of antimicrobial-resistant E. coli and Salmonella from 
tilapia and shrimp sold at wet markets. These findings can contribute 
to initiatives aimed at minimizing the risk of transmitting fecal 
bacterial pathogens and AMR along the food chain.
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Materials and methods

Selection of fish and shrimp wet markets

For this pilot surveillance study of AMR, tilapia and shrimp 
specimens were purchased from two wet markets, Karwan Bazar 
wholesale market (KBW), and Karwan Bazar retail market (KBR), 
both located in the middle of Dhaka city. These markets are among 
the largest wholesale and retail wet markets in Bangladesh. 
Additionally, KBW is the main supplier to a range of different retail 
markets in Dhaka.

Collection and processing of fish and 
shrimp samples

The target species were tilapia (Oreochromis niloticus) and tiger 
shrimp (Penaeus monodon), which are commonly sold at the markets. 
Tilapia, ranging between 250 and 300 g, were mostly sold fresh or live 
whereas shrimp, 25–30 g each, were displayed on trays occasionally on 
ice by the traders at the markets. A total of 3 separate visits were made 
to KBR to collect 27 tilapia. During each visit, nine fresh tilapia were 
collected from one vendor; however, the vendor changed between the 
visits. Similarly, four separate visits were made to KBW to collect 27 
fresh tilapia. For shrimp sample collection, two visits were made to 
KBR and two visits were made to KBW to collect 54 shrimp samples 
(27 from KBR and 27 from KBW). During each sampling, samples 
were collected from one single vendor; however, vendors were 
different at every visit. Sample numbers included: KBW: tilapia 
(n = 27), shrimp (n = 27); KBR: tilapia (n = 27), shrimp (n = 27). The 
number of shrimps purchased from each vendor between the visits 
was not the same. A total of 18 and 9 shrimp samples were collected 
during visit 1 and visit 2 at KBW, respectively. In a similar way, the 
same number of shrimp samples (18 and 9 samples) were collected 
during visit 1 and visit 2 at KBR market.

Trained personnel wearing sterile plastic gloves collected the 
samples at the markets, which were individually placed in sterile 
labeled zipper plastic bags kept in insulated boxes containing ice 
packs. Samples were transported to Savar, Dhaka, for further 
processing and analysis in the Animal Health laboratory of the 
Bangladesh Livestock Research Institute (BLRI). The duration time 
from the point of sampling at the market until returning to BLRI to 
start processing the samples was never more than 3 h.

Surface skin swabs, gill, muscle, and intestinal samples were 
obtained from tilapia using standardized methods. A sterile cotton 
swab was used to make three long body swipes while twisting the 
swab to maximize mucus collection along the body (head to tail). 
The outer surface of the fish was then sterilized by wiping a gauze 
pad soaked with 70% ethyl alcohol. Using a sterile scalpel and a 
pair of forceps, the skin was removed and approximately 50 g of 
muscle and 10 g of gills were collected (in excess) from both sides 
of the fish. The liver and other organs were carefully removed, and 
the gut was obtained by cutting it from both extremities from the 
pyloric caeca to the anus.

The outer surface of the shrimp was disinfected as done for tilapia. 
Using sterile scissors or scalpel, the intestine from the hepatopancreas 
to the anus was removed and the content was carefully extruded into 

a sterile falcon tube. After removing the shell, a meat sample for each 
shrimp (approximately 15 g) was collected. The different sample types 
were placed in separate sterile containers or tubes and labeled with 
unique designation numbers. All collected tissues from each specimen 
were processed and analyzed separately. Collected tilapia and shrimp 
specimens were stored at 4°C within two hours upon arrival at 
the laboratory.

Bacterial culture and species identification

Each sample type was analyzed for E. coli and Salmonella spp. 
All the samples were enriched in sterile trypticase soy broth (TSB, 
Oxoid, Hampshire, UK) following a 1:10 ratio. From each tilapia, 
approximately 25 g of muscles and 5 g of gill tissues were used and 
added to 225 mL and 45 mL of TSB, respectively, in separate 
stomacher bags. Approximately, 1 g of tilapia gut consisting of a 
mixture of two pieces of foregut and hindgut was added to 9 mL TSB 
in a 15 mL Falcon tube and the skin swab was placed into a 15 mL 
Falcon tube containing 5 mL of TSB. Ten grams of shrimp muscle 
tissue were added to 90 mL TSB in a stomacher bag and the whole 
intestine of the shrimp was added into a 15 mL Falcon tube 
containing 3 mL of TSB. All the samples were incubated for 18 ± 2 h 
at 37 ± 1°C.

A loopful of enriched broth culture was streaked onto different 
selective and indicative media as follows. E. coli was isolated on eosin 
methylene blue (EMB; Oxoid, Hampshire, UK) agar plates, which 
were incubated at 35–37°C for 18–24 h. Salmonella spp. was isolated 
on xylose lysine deoxycholate agar (XLD; Oxoid, Hampshire, UK) 
plates incubated at 35–37°C for 18–24 h.

Presumptive E. coli colonies on EMB and Salmonella spp. colonies 
on XLD agar were streaked onto nutrient agar (NA, Oxoid, Hampshire, 
UK) to test and ensure purity. The indole test for E. coli and the triple 
sugar iron (TSI) test for Salmonella spp. were done for biochemical 
validation. Isolates were stored at-70°C in 30% glycerol with brain 
heart infusion (BHI; Oxoid, Hampshire, UK) broth. In case the DNA 
extraction from the bacterial isolates was not done on the same day, a 
10 μL loop full of bacterial suspension for each isolate was preserved/
fixed in a 1.5 mL tube containing 500 μL of 100% ethanol with the 
tubes stored at-20°C for future DNA extraction. E. coli ATCC 25922 
and S. enteritidis ATCC 4931 were used as positive controls when 
subculturing on selective agar media and for PCR. All selected isolates 
were Gram-stained following standard procedures. The identity of the 
presumptive E. coli and Salmonella spp. was confirmed by PCR 
(Table 1).

Antimicrobial susceptibility testing (AST)

AST was done using the disk diffusion method following the 
Clinical & Laboratory Standards Institute (CLSI) guideline 
VET01S-Ed5 (CLSI, 2020). Bacterial suspensions were prepared 
in phosphate-buffered saline solution to a 0.5 McFarland standard 
and spread onto Mueller Hinton agar (MH; Oxoid, Hampshire, 
UK) plates. Antimicrobial disks were placed on the surface of the 
MH agar plates, which were incubated at 35–37°C for 18–24 h. 
Disks with the following antimicrobials were used: ampicillin 
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(AMP; 10 μg), azithromycin (AZM; 15 μg), chloramphenicol 
(CHL; 30 μg), cefepime (CEP; 30 μg), cefoxitin (FOX; 30 μg), 
ceftriaxone (CRO; 30 μg), cefuroxime sodium (CXM; 30 μg), 
ciprofloxacin (CIP; 5 μg), gentamicin (GEN; 10 μg), levofloxacin 
(LVX; 5 μg), meropenem (MEM; 10 μg), nalidixic acid (NAL; 
30 μg), nitrofurantoin (NIT; 100 μg), norfloxacin (NOR; 10 μg), 
and trimethoprim-sulfamethoxazole (SXT; 1.25/23.75 μg) (Oxoid, 
Hampshire, UK). Inhibition zones were measured in millimeters 
using the scan inhibition zone reader (Interscience Scan 4,000, 
Interscience, France). Interpretation of the data was done using 
CLSI breakpoints for all antimicrobials except for nitrofurantoin, 
of which the zone of inhibition was measured in accordance with 
the European Committee on Antimicrobial Susceptibility Testing 
(EUCAST) (CLSI, 2020; EUCAST, 2023). Whole genome 
sequencing and bioinformatic analyses.

DNA extraction and purification

A total of 16 E. coli and 14 Salmonella spp. isolates from tilapia and 
shrimp samples were selected for whole genome sequencing and further 
analysis. Bacterial resuspension was pelleted, followed by the removal of 
supernatant (ethanol) via decantation. DNA extraction was performed as 
per the method of (Sokolov, 2000) with some modifications. The pellet 
was resuspended in 500 μL of lysis buffer (50 mM NaCl, 50 mM Tris–HCL 
pH8, 50 mM EDTA, 2% SDS) and incubated at 60°C for 30 min. Then, 
3 μL RNAse A (10 mg/mL) was added to the lysate, followed by incubation 
at room temperature for 10 min. Salting out was performed via the 
addition of 333 μL (2/3 vol) saturated NaCl at 4°C for 5 min. The lysate 
was centrifuged to remove precipitated proteins and lipids and the 
aqueous layer containing the DNA was transferred to a new tube and 
mixed with 100 μL of isopropanol via inversion. Fifteen μl of magnetic 
beads were added and the solution was mixed by inversion, then 
incubated at room temperature for 10 min to promote the binding of 
nucleic acid to the beads’ surface. Beads and DNA were separated from 
the remaining lysate on a magnetic rack and washed twice with 75% 
ethanol. DNA elution from the bead was performed by the resuspension 
of the beads with 50 μL of TE buffer followed by incubation at 50°C 
for 5 min.

A subsample of the extracted gDNA was visualized by 2% agarose 
gel electrophoresis to assess overall DNA integrity and yield. DNA was 
purified and size-selected using 0.5X vol of magnetic beads to remove 
small molecular weight DNA as well as any other carry-over impurities 
from the initial extraction. The DNA was subsequently measured 
using a Denovix High sensitivity kit (Denovix, Wilmington, DE, USA) 
and normalized to approximately 25 ng/μl.

Nanopore library preparation and 
sequencing

Libraries were prepared using the following two rapid barcoding 
sequencing kits. The first kit, SQK-RBK004, was used for low 
throughput, up to 24 samples per library. Approximately 400 ng of 
DNA as measured by Qubit was fragmented according to the 
manufacturer’s instructions (Oxford Nanopore, UK). The barcoded 
samples were pooled in equal ratios to get a final 400 ng of genomic 
DNA and purified using SPRI Bead, followed by ligation of the rapid 
adapter (RAP). The second kit, SQK-RBK110.96, for high throughput, 
96 samples per library, used approximately 50 ng of DNA per sample, 
and then samples were pooled, purified, and ligated with RAP. The 
final pooled library was sequenced on a Flongle flow cell for at least 
12 h to assess index distribution. Base calling and demultiplexing of 
the fast5 files were both performed with Guppy v.5.0.7. Based on the 
index percentage, the tagmented products were re-pooled or 
re-prepped for large-scale sequencing on the MinION flow cell and 
base calling (super accuracy mode) and demultiplexing performed as 
before to generate the final fastq files for each of the samples prepared.

De novo assembly

Raw nanopore reads were adapter trimmed with a qscore of 9 or 
higher using porechop (Wick et al., 2017) and then filtered to retain 
reads longer than 2,000 bp using NanoFilt v2.6.0 (De Coster et al., 
2018). The filtered Nanopore reads were assembled de novo using Flye 
v2.9 (Kolmogorov et al., 2019), followed by one round of polishing 
with racon (Vaser et al., 2017) and another round of polishing with 
medaka v1.4.41. Genome assembly statistics were generated using 
QUAST (Gurevich et  al., 2013). Assessment of the genome 
completeness was done using BUSCO5 (Simão et  al., 2015) and 
identified conserved microbial single-copy genes as listed in the 
bacteria_odb10 database.

Bacterial species identification and 
Salmonella serotyping

Whole genome sequence identification was performed using 
kraken2 to confirm the bacterial species of the sequenced strains 

1 https://github.com/nanoporetech/medaka

TABLE 1 PCR primers used for the identification of E. coli and Salmonella spp.

Primer name Sequence (5′ – 3′) Amplicon size (bp) Reference

E. coli 166 (Heijnen and Medema, 2006)

uidA (F) TAT GGA ATT TCG CCG ATT TT

uidA (R) TGT TTG CCT CCC TGC TGC GG

Salmonella enterica spp. 429 (Malkawi, 2003)

ST11 AGC CAA CCA TTG CTA AAT TGG CGC A

ST15 GGT AGA AAT TCC CAG CGG GTA CTG
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(Wood et  al., 2019). Out of the 16 E. coli and 14 Salmonella spp. 
Isolates from tilapia and shrimp samples that were sequenced, only 15 
E. coli and 9 Salmonella spp. Genomes were further analyzed based on 
DNA quality control (e.g., high genomic completeness) (Tables 2, 3).

The genomes confirmed as Salmonella spp. were further analyzed 
with sistr_cmd and seqsero for confirmation of the serovar (Zhang 
et al., 2015; Yoshida et al., 2016). Where a discordant serovar was 
identified by these two tools, the KMER-based taxonomic assignment 
of kraken2 was used as the third comparison point where the majority 
was taken to decide on the serovar.

In-silico identification of multilocus 
sequence typing (MLST), phylogroup 
analysis, AMR genes and virulence factors

In-silico MLST was performed using the PubMLST database2 
developed by Keith Jolley (Jolley and Maiden, 2010) and the open-
source software (mlst tool) used to interrogate the database3 (Jolley 
et al., 2018). AMR genes were determined in the assembled genomes 
using Resfinder4.1 (Bortolaia et  al., 2020) and AMRFinderPlus 
(Feldgarden et al., 2021). The virulence determinants of E. coli were 
determined using a virulence factor database (Chen et al., 2005) and 
the curated VirulenceFinder database for E. coli (Malberg Tetzschner 
et al., 2020), while Salmonella virulence was determined by looking 
for their Salmonella Pathogenicity Islands (SPIs) (Roer et al., 2016). 
Moreover, E. coli genomes were subjected to phylogroup analysis 
using pathogenwatch4 and clermontyping tools (Beghain et al,. 2018).

Phylogenetic analysis

Salmonella Kentucky was the main serovar determined in the 
analysis. Strains with this serovar were added to publicly available 
S. Kentucky genomes from migratory birds (Card et  al., 2023), 
humans, and poultry in Bangladesh and its neighboring countries, 
such as India (human and sesame seeds), Nepal (human), Pakistan 
(chili), and Myanmar (human) (Supplementary Table S4). The 
phylogenetic analysis was run using as reference genome S. Kentucky 

2 https://pubmlst.org/

3 https://github.com/tseemann/mlst

4 https://pathogen.watch/

strain 201,001,922 (accession number CP028357). For this analysis, 
single-nucleotide variants were called using Snippy version 4.6.05 
under the following parameters: mapping quality of 60, a minimum 
base quality of 13, a minimum read coverage of 4, and a 75% 
concordance at a locus. We aligned core genome single-nucleotide 
variants by using Snippy Core version 4.1.0 for phylogeny inference 
and detected masked putative recombinogenic regions by using 
Gubbins version 2.4.1. A maximum-likelihood phylogenetic tree was 
built using RAxML version/8.2.12 and the generalized time-reversible 
model with 200 bootstraps. The final tree was rooted on the reference 
genome CP028357 and visualized with Microreact.6

Results

Occurrences of E. coli and Salmonella spp. 
in tilapia and shrimp

Surface skin swab, gill, muscle, and intestinal samples from tilapia 
obtained at the KBW and KBR contained E. coli as confirmed by PCR 
in between 30 and 78% of samples analyzed. There was no apparent 
association between the different sample types and the different visits 
to the markets. It is noted that despite muscle tissue samples being 
obtained following disinfection of the skin surface, 60 to 74% of such 
samples contained E. coli indicating cross-contamination during 
sample processing as meat samples normally would be expected to 
be sterile.

E. coli confirmed by PCR was found in 41 and 44% of muscle 
tissue and 22 and 33% of intestinal samples from shrimp at the KBW 
and KBR markets, respectively. There were no apparent differences in 
findings during the different visits to the markets.

Salmonella spp. confirmed by PCR was found in 29% of skin 
swabs and 26% of gill samples, but not in muscle tissue and intestinal 
samples, from 27 tilapia fish collected at KBR (Table 2). Salmonella 
spp. was isolated in 7% of skin swabs, 52% of gill samples, and one 
intestinal sample of 27 tilapia fish analyzed from the KBW. No 
muscle tissue and intestinal samples from shrimp obtained at KBW 
contained Salmonella spp. as confirmed by PCR whereas Salmonella 
spp. was isolated and confirmed by PCR in 4/27 (15%) muscle tissue 
and 2/27 (7%) intestinal samples in shrimp obtained at KBR 
(Table 2).

Genomic characterization and 
antimicrobial resistance of E. coli

The genomic characterization (i.e., size, MLST, serovar., 
phylogroup) and antimicrobial resistance patterns and genes of the 15 
E. coli isolates obtained from shrimp and tilapia samples and that 
yielded quality genomes are shown in Table 3. The E. coli isolates from 
shrimp had total genome lengths ranging from 4,725,736 to 4,897,945 
base pairs, whereas the E. coli isolates from tilapia exhibited total 
genome lengths ranging from 3,968,775 to 5,077,851 base pairs (see 

5 https://github.com/tseemann/snippy

6 https://microreact.org/

TABLE 2 Occurrence of Salmonella spp. in tilapia and shrimp.

Tilapia Shrimp

KBW* KBR** KBW* KBR**
Skin 2 (7%) 8 (29%) NA*** NA***

Gill 14 (52%) 7 (26%) NA*** NA***

Muscle 0 (0%) 0 (0%) 0 (0%) 4 (15%)

Intestine 1 (3%) 0 (0%) 0 (0%) 2 (7%)

Sub-total 16 (14%) 16 (14%) 0 (0%) 6 (11%)

Total 38/324 (11%)

* KBW, Karwan Bazar wholesale market, ** KBR, Karwan Bazar retail market, *** NA, Not 
applicable.
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further details in Supplementary Table S1). MLST analysis of the 
isolates from shrimp revealed the presence of 7 sequence types (STs), 
including 3,640, 3,501, 1,662, 398, 196, 155, and 48. Serovar 
classification identified different serovars, such as H49, H19, 
H16-O103, H9-O8, H21-O159, H16-O8/O160, and H16 (Table 3). 
The tilapia isolates also display several different MLSTs. Serovar 
classifications included H7, H9-O49, H7-O18, H19-O8, H26-O8/O80, 
and H12-O28ab (Table 3).

The phylogenetic analysis of isolates from both shrimp and 
tilapia revealed that they belonged predominantly to the 
commensal phylogroups B1 and A (Table  3). The commensal 
nature of these isolates in warm-blooded animals and humans, but 
not in fish, was further underlined by the absence of major 
virulence factors displayed by the known E. coli pathotypes in the 
genomes (Supplementary Table S2). As commensal strains, the 
genome sequences did not contain any clinically important AMR 
genes except for point mutations on the glycerol-3-phosphate 
transporter (glpT) and the polymyxin resistance gene B (pmrB), 
known to be associated with potential resistance to fosfomycin 
and colistin, respectively (Table 3). The isolate BD17 from tilapia 
harbored the resistance genes, blaTEM-1B, qnrS13, and tet(A) 
encoding resistance to beta-lactams, quinolones, and tetracycline, 
respectively. None of the E. coli strains contained any plasmids. 
This isolate displayed phenotypic resistance to ampicillin and 
intermediate resistance to nalidixic acid and cefuroxime sodium 
(Table  3). Several strains showed phenotypic resistance to 
ampicillin (4 strains) and nitrofurantoin (3 strains), and several 
strains showed intermediate resistance to some antimicrobial 
classes, e.g., 13/14 E. coli strains were intermediately resistant to 
cefuroxime sodium. However, no genes associated with such 
resistance and intermediate resistance were identified (Table 3). 

One E. coli strain was resistant to ceftriaxone. Further details on 
the phenotypic resistance are provided in Supplementary Table S5.

Genomic characterization and 
antimicrobial resistance of Salmonella spp.

The genomic characteristics and serovars of the nine Salmonella 
spp. isolates obtained from tilapia samples are shown in Table 4 (see 
further details in Supplementary Table S1). These strains yielded 
quality genomes and were isolated between 12 September and 31 
December 2021. All strains were Salmonella enterica 
subspecies enterica.

Isolate BD25 exhibited a total genome length of 4,774,230 bp and 
belonged to the Augustenborg serovar and the AMR genes detected 
were aac(6′)-Iaa and fosA7, as well as parC:p.T57S mutation. The 
isolate showed intermediate resistance to CXM. Notably, the 
pathogenicity islands SPI-1, SPI-13, SPI-14, SPI-2, SPI-3, and C63PI 
were present, while no plasmids were detected.

Isolate BD35, belonging to the Brunei serovar., had a total genome 
length of 4,832,090 bp. MLST analysis revealed ST1794 and the 
presence of the aac(6′)-Iaa gene encoding resistance to 
aminoglycosides. The isolate was resistant to AMP, FOX, LVX, and 
CRO. SPI-1, SPI-13, SPI-2, SPI-3, and C63PI were identified, along 
with the IncFII plasmid. BD37 had also the Brunei serovar. The 
aminoglycoside resistance gene aac(6′)-Iaa was also detected together 
with SPI-1, SPI-13, SPI-14, SPI-2, and C63PI. This isolate was resistant 
to AMP, GEN, and FOX and showed intermediate resistance to other 
antimicrobials. Both isolates contained the IncFII plasmid.

Isolate BD41 belonged to the Hartford serovar. The AMR genes, 
aac(6′)-Iaa and fosA7 (fosfomycin) were present, along with C63PI, 

TABLE 3 Genomic characterization and antimicrobial resistance of E. coli.

Isolate ID Date of 
isolation

Sample 
source

MLST Serovar Phylo 
group

Resistance patterns* AMR genes**

BD08 19/9/2021 Shrimp/muscle 1,662 H16-O103 B1 AMP(I); CXM(I) glpT; pmrB

BD09 19/9/2021 Shrimp/muscle 48 H9-O8 A AMP(R); CXM(I) glpT; pmrB

BD14 19/9/2021 Shrimp/muscle 196 H16-O8/O160 B1 AMP(I); CXM(I) glpT; pmrB

BD01 31/10/2021 Shrimp/muscle 3,640 H49 B1 AMP(I); NAL(I); LVX(I); CXM(I) glpT; pmrB

BD03 31/10/2021 Shrimp/muscle 155 H19 B1 AMP(R); FOX(R); CXM(I) glpT; pmrB

BD13 31/10/2021 Shrimp/muscle 398 H21-O159 A CXM(I) glpT; pmrB

BD23 31/10/2021 Shrimp/muscle 3,501 H16 B1 CXM(R); CRO(I) glpT; pmrB

BD12 12/9/2021 Tilapia/skin 8,349 H7-O18 B1 NIT(R); AMP(I); CXM(I) glpT; pmrB

BD05 17/10/2021 Tilapia/skin und H7-O83 B1 FOX(R); AMP(I); CXM(I) glpT; pmrB

BD19 17/10/2021 Tilapia/skin und H19-O8 B1 AMP(I); CXM(I) glpT; pmrB

BD21 17/10/2021 Tilapia/skin 155 H12-O28ab B1 - glpT; pmrB

BD22 17/10/2021 Tilapia/skin und H19-O8 B1 NIT(R); CRO(R); NAL(I), CXM(I) glpT; pmrB

BD11 12/9/2021 Tilapia/muscle 164 H9-O49 B1 AMP(R); MEM(R); GEN(R); CXM(I) glpT; pmrB

BD17 17/10/2021 Tilapia/muscle 2,165 H7 B1 AMP(R); CXM(I); NAL(I) glpT; pmrB; blaTEM-1B; 

qnrS13; tet(A)

BD20 10/10/2021 Tilapia/muscle und H26-O8/O80 B1 NIT (R), CIP (I), CXM (I) glpT; pmrB

*Antimicrobials; AMP, ampicillin (10 μg); FOX, cefoxitin (30 μg); CRO, ceftriaxone (30 μg); CXM, cefuroxime sodium (30 μg); CIP, ciprofloxacin (5 μg); GEN, gentamicin (10 μg); LVX, 
levofloxacin (5 μg); MEM, meropenem (10 μg); NAL, nalidixic acid (30 μg); and NIT, nitrofurantoin (100 μg); ** glpT (glycerol-3-phosphate) mutations encode resistance to fosfomycin; pmrB 
(polymyxin B) mutations encode resistance to polymyxins; und: undetermined.
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TABLE 4 Genomic characterization of Salmonella enterica isolates from tilapia sold at wet markets in Bangladesh.

Isolate ID Date 
isolation

Sample 
source

ST Serovar SPI* Plasmids Resistance patterns*** AMR genes

BD40 12/9/2021 Tilapia/gills 198 Kentucky C63PI; SPI-1; SPI-2; SPI-3 IncQ1 CIP(R); AMP(R); NAL(R); NOR(R); 

GEN(R); LVX(R); CXM (I)
aac(6′)-Iaa; blaTEM-1B; gyrA (p.S83F); 

sul1; tet(A); aac(3)-Id; aadA7; qacE

BD41 12/9/2021 Tilapia/gills und Hartford C63PI; SPI-1; SPI-2; SPI-5; SPI-13; SPI-14 none - aac(6′)-Iaa; fosA7

BD43 12/9/2021 Tilapia/gills und Kentucky C63PI; SPI-1; SPI-2 IncQ1 CIP(R); AMP(R); NAL(R); NOR(R); 

GEN(R); CRO(I)
aac(6′)-Iaa; blaTEM-1B; gyrA(p.S83F); 

sul1; tet(A); aac(3)-Id; aadA7; qacE

BD25 10/10/2021 Tilapia/gills und Augustenborg C63PI; SPI-1; SPI-2; SPI-3; SPI-13; SPI-14 none CXM(I) aac(6′)-Iaa; fosA7; parC:p.T57S

BD35 ** 28/11/21 Tilapia/gills 1794 Brunei C63PI; SPI-1; SPI-2; SPI-3; SPI-13 IncFII AMP(R); FOX(R); LVX(R); CRO(R) aac(6′)-Iaa

BD37** 28/11/21 Tilapia/gills und Brunei C63PI; SPI-1; SPI-2; SPI-13; SPI-14 IncFII AMP(R); FOX(R); GEN(R); NAL(I); 

CIP(I); CXM(I)
aac(6′)-Iaa

BD42 12/9/2021 Tilapia/skin und Kentucky SPI-1; SPI-2; SPI-5; SPI-13 IncQ1 CIP(R); AMP(R); NAL(R); FOX(R); 

GEN(R); LVX(R); CXM(I)
aac(6′)-Iaa; blaTEM-1B; gyrA(p.S83F); 

sul1; tet(A); aac(3)-Id; aadA7; qacE

BD45 12/9/2021 Tilapia/skin 198 Kentucky C63PI; SPI-1; SPI-2, SPI-3 IncQ1 CIP(R); AMP(R); NAL(R); NOR(R); 

GEN(R); LVX(R); CXM(I)
aac(6′)-Iaa; blaTEM-1B; gyrA(p.S83F); 

sul1; tet(A); aac(3)-Id; aadA7; qacE

BD46 12/9/2021 Tilapia/skin 198 Kentucky C63PI; SPI-1; SPI-2; SPI-3 IncQ1 CIP(R); AMP(R); NAL(R); NOR(R); 

GEN(R); LVX(R); CXM(I)
aac(6′)-Iaa; blaTEM-1B; gyrA (p.D87Y); 

sul1; tet(A); aac(3)-Id; aadA7; qacE

* SPI: Salmonella Pathogenicity Islands; ** from wholesale market (all others from retail market).
***Antimicrobials; AMP, ampicillin (10 μg); FOX, cefoxitin (30 μg); CRO, ceftriaxone (30 μg); CXM, cefuroxime sodium (30 μg); CIP, ciprofloxacin (5 μg); GEN, gentamicin (10 μg); LVX, levofloxacin (5 μg); NAL, nalidixic acid (30 μg) and NOR, norfloxacin (10 μg). 
und: undetermined.
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FIGURE 1

S. Kentucky phylogeny (A) including publicly available genome characteristics of S. Kentucky (B) originating from Bangladesh and surrounding 
countries. The geographical location of strains included from each country is shown on the map (C).

SPI-1, SPI-13, SPI-14, SPI-2, and SPI-5. No plasmids were observed. 
The isolate was fully susceptible to all antimicrobials tested.

Isolates BD42, BD40, BD43, BD45, and BD46, were all the 
Kentucky serovar and exhibited total genome lengths ranging from 
4,887,734 to 4,920,732 bp. These isolates shared similar AMR genes 
including blaTEM-1B, gyrA mutations, sul1, tet(A), aac(3)-Id, and aadA7. 
The isolates showed similar phenotypic resistance patterns, i.e., to 
AMP, CIP, GEN, LVX, NAL, and NOR. Some isolates did also show 
intermediate resistance to other antimicrobials (further details on the 
phenotypic resistance are provided in Supplementary Table S6). SPI-1, 
SPI-2, and SPI-5 were identified, along with the IncQ1 plasmid. Three 
isolates were ST198. They all have the K variant of SGI-1 carrying the 
same resistance genes all on the same contig in each genome. It should 
be noted that the plasmids were detected based on their replication 
proteins not by reconstructing the entire plasmids.

The phylogenetic analysis of the genomes of the five S. Kentucky 
isolates from this study along with publicly available genomes of 
S. Kentucky from Bangladesh and neighboring countries revealed 
different levels of genetic relatedness among the strains circulating in 
the region and most of the isolates in our study (Figure  1, 
Supplementary Table S3). Out of all the tilapia isolates, BD40 had the 
least number of SNPs compared with the non-tilapia isolates (e.g., 30 
SNPs with a migratory bird isolate). BD42 shows the greatest number 
of SNPs compared with BD43 (5,306 SNPs) and all remaining isolates. 
This was followed by BD43. BD42 and BD43 (non-ST198) clustered 
together. The Salmonella isolates from tilapia isolates evolved in one 
phylogenetic cluster from a common ancestor with the migratory bird 
isolates (SRR24520380/64), which have then further diverged with the 

remaining 10 migratory birds’ isolates (see further details on pairwise 
matrix on S. Kentucky Supplementary Table S4).

Discussion

In this study, we assessed the occurrence of E. coli and NTS and 
the AMR of such isolates obtained from tilapia and shrimp products 
at retail, to assess the potential food safety and health risk 
to consumers.

The high occurrences of E. coli in skin swabs, gill, muscle, and 
intestinal samples from tilapia and shrimp sold at two main wet 
markets in Dhaka, Bangladesh indicates that fecal pollution and cross-
contamination were common at the markets. The findings of E. coli in 
intestinal samples suggest that the tilapia and shrimp were raised in 
aquatic systems with fecal pollution, as E. coli is not part of the normal 
intestinal flora in fish and shrimp (Mohamed Hatha et  al., 2003; 
Duran and Marshall, 2005; Vu et  al., 2018), which contrasts with 
livestock such as in poultry and pigs (Dang and Dalsgaard, 2012; 
AbuOun et al., 2020; Islam et al., 2023). E. coli in muscle tissue may 
indicate cross-contamination, e.g., from the fish surface, during 
collection of the muscle tissue with other tissues before analysis. E. coli 
may also have entered the muscle tissue, e.g., from the fish gut and 
surface; however, this seems only to occur under highly stressed 
environmental aquatic conditions (Dang and Dalsgaard, 2012). It 
should be noted that the likelihood and levels of fecal contamination 
at markets may show seasonal variations, e.g., as a result of flooding 
and decreased hygiene conditions at markets.
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On the contrary, there is no apparent explanation of the frequent 
finding of Salmonella spp. in gill and skin samples and their isolation 
in muscle tissue and intestinal samples, but the two latter samples are 
less likely to be  fecally contaminated, e.g., during handling of the 
tilapia at the markets as opposed to surface skin and gills. While fish 
do not normally have Salmonella as part of their natural flora, they can 
become passive carriers (Fernandes et  al., 2018). Reporting of 
Salmonella spp. in different types of seafood is relatively common due 
to fecal cross-contamination during handling and processing, but 
different serovars have also been found in the skin, gills, muscle, 
intestine, and feces of live fish (Fernandes et al., 2018; Baniga et al., 
2019; Hounmanou et al., 2020, 2022).

The five Salmonella Kentucky strains analyzed in this study carried 
the SGI1-K island; all had an In4-type class 1 integron that contained 
only one cassette array and an adjacent mercury resistance module. 
Other studies have also found such a type of class 1 integrons in 
S. Kentucky as well as in other serovars (Levings et al., 2007; Doublet 
et  al., 2009). The SGI-K island harbored resistance genes such as 
aac(6′)-Iaa, blaTEM-1B, sul1, tet(A), aac(3)-Id, and aadA7 that confer 
resistance to aminoglycosides, tetracycline, sulphonamide, and 
narrow spectrum beta-lactam antibiotics. The set of genes present in 
these strains is, however, different from that reported in a previous 
study (Hawkey et al., 2019); for instance, the presence of blaTEM1 on the 
SGI-K is uncommon. This may be attributed to the plasticity of the 
genomes that allows for the loss or gain of segments by homologous 
recombination and which is responsible for the development of 
several variants of SGI1 in Salmonella (Hawkey et al., 2019; Jibril et al., 
2021). Moreover, on the SGI-K island of the strains, the resistance 
genes were located on the IS6 transposon as were also found in recent 
poultry isolates in Nigeria (Jibril et al., 2021), showing the potential 
distribution of resistance through these islands via various 
mobile elements.

The identification of SPI-1, SPI-2, and SPI-5 in S. Kentucky, as 
well as an IncQ1 plasmid, further highlights the genetic diversity and 
potential for horizontal gene transfer among these isolates. Notably, 
three of the isolates were found to belong to ST198. Of particular 
interest are the strains BD42 and BD43, which branched separately 
on the phylogenetic tree. This finding suggests the presence of distinct 
genetic lineages or recent evolutionary events contributing to the 
diversification of S. Kentucky strains in the study area as can already 
be  observed in the distinctive SPIs compared to the other 
three strains.

When comparing our strains to publicly available genomes of 
S. Kentucky from countries around Bangladesh, we observed different 
levels of genetic relatedness among the strains circulating in the 
region and most of the isolates in our study. This suggests a potential 
regional dissemination of S. Kentucky strains and emphasizes the 
importance of continued surveillance and molecular epidemiological 
studies to monitor the spread and evolution of this pathogen. Since 
S. Kentucky is rarely isolated from fish, these findings support fecal 
contamination from human or animal origin at the wet markets 
where the samples were obtained. Nevertheless, fish can 
be asymptomatic carriers, where Salmonella spp. have been isolated 
from surface tissues, muscle, and intestine (Fernandes et al., 2018; 
Baniga et al., 2019; Hounmanou et al., 2020, 2022). In Bangladesh, 
S. Kentucky has also been reported in poultry and migratory birds 
(Card et al., 2023), which show close relatedness with the isolates 
from this study.

Conclusion

Our study showed a high level of fecal contamination with 
common findings of commensal E. coli in different sample types of 
tilapia and shrimp sold at two main wet markets in Dhaka. Together 
with the occurrence of Salmonella spp. in several products, e.g., 
S. Kentucky ST198, a well-known human pathogen, stresses the need 
to improve hygienic practices and sanitation standards at markets as 
well as in people’s homes to improve food safety and protect 
consumer health. Transmission of AMR bacteria to humans can 
occur directly through the consumption of or contact with 
contaminated products, posing a significant public health concern. 
Further genomic epidemiological analysis and disease burden 
estimations are needed in Bangladesh to assess the contribution of 
seafood to the overall occurrence of human salmonellosis as well as 
AMR problems in humans.

Scope statement

Retail wet markets in low- and middle-income countries are often 
reported to have inadequate sanitation resulting in fecal microbial 
contamination. Such contamination of sold produce with 
antimicrobial resistant (AMR) bacteria can be  a potential risk to 
public health. In this study, we conducted a pilot genomic surveillance 
for antimicrobial resistant E. coli and nontyphoidal Salmonella spp. 
isolated from tilapia and shrimp products purchased at two largest wet 
markets in Dhaka using Oxford nanopore sequencing. The study's 
results provide important insights into the prevalence and 
transmission of antimicrobial-resistant E. coli and Salmonella in tilapia 
and shrimp sold at wet markets. This has the potential to play a crucial 
role in efforts aimed at reducing the risk of transmitting fecal bacterial 
pathogens and antimicrobial resistance throughout the food chain.
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