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Mycoplasma pneumoniae causes respiratory tract infections, affecting both 
children and adults, with varying degrees of severity ranging from mild to life-
threatening. In recent years, a new class of regulatory RNAs called long non-
coding RNAs (lncRNAs) has been discovered to play crucial roles in regulating 
gene expression in the host. Research on lncRNAs has greatly expanded our 
understanding of cellular functions involving RNAs, and it has significantly 
increased the range of functions of lncRNAs. In lung cancer, transcripts 
associated with lncRNAs have been identified as regulators of airway and lung 
inflammation in a process involving protein complexes. An excessive immune 
response and antibacterial immunity are closely linked to the pathogenesis 
of M. pneumoniae. The relationship between lncRNAs and M. pneumoniae 
infection largely involves lncRNAs that participate in antibacterial immunity. 
This comprehensive review aimed to examine the dysregulation of lncRNAs 
during M. pneumoniae infection, highlighting the latest advancements in 
our understanding of the biological functions and molecular mechanisms of 
lncRNAs in the context of M. pneumoniae infection and indicating avenues for 
investigating lncRNAs-related therapeutic targets.
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1 Introduction

Mycoplasma pneumoniae, an atypical bacterium, is one of the smallest prokaryotic 
microorganisms without a cell wall (Shimizu, 2015). There are 200 known mycoplasma 
species, including six main species, which can cause human respiratory and reproductive tract 
diseases, among other diseases (Combaz-Söhnchen and Kuhn, 2017; Gómez Rufo et al., 2021). 
M. pneumoniae is one of the main pathogenic mycoplasmas, and it is a significant cause of 
respiratory tract infections. It causes endemic and epidemic primary atypical pneumonia, 
tracheobronchitis, pharyngitis, and asthma worldwide. M. pneumoniae pneumonia is the most 
significant disease associated with M. pneumoniae infection (Shimizu, 2016; Waites et al., 2017; 
Tsai et al., 2021). In addition, M. pneumoniae can cause infections outside the lungs (de Groot 
et  al., 2017) by penetrating host cell membranes and invading respiratory tract mucous 
membranes, resulting in a pronounced inflammatory response outside the respiratory system 
(Poddighe, 2018). The severity of the diseases caused by M. pneumoniae ranges from mild to 
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life-threatening (Waites et  al., 2017). The dominant pathogenic 
mechanisms of M. pneumoniae are direct cytotoxicity and adhesion to 
host cells, immune evasion, and inflammation-induced damage (Jiang 
et  al., 2021). The pathogenic mechanisms of extrapulmonary 
manifestations also involve direct injury mediated by inflammatory 
factors, indirect injury caused by the host immune response, and 
vascular occlusion (Hu et al., 2022).

Genes, which direct an organism’s development and function, 
include sequences with and without protein-coding functions (García-
Andrade et al., 2022). Long non-coding RNAs (lncRNAs) comprise 
>200 nucleotides that do not code for proteins (Mattick et al., 2023). 
LncRNAs are widely expressed and play key roles in gene expression 
regulation. LncRNAs mainly interact with microRNAs (miRNAs), 
mRNAs, DNAs, and proteins, and they can thereby modulate gene 
expression in a variety of ways, e.g., by modulating chromatin function 
or regulating membraneless nuclear body assembly and function 
(Zhang et  al., 2019; Statello et  al., 2021a). LncRNAs are newly 
discovered regulators in many diseases, and there is a growing body 
of literature suggesting a relationship between lncRNAs and 
M. pneumoniae infection (Gu et al., 2020; Sun et al., 2022).

LncRNAs can be used by the host to modulate immune-related 
gene expression in order to resist M. pneumoniae invasion or decrease 
the damage caused by M. pneumoniae invasion, and M. pneumoniae 
can evade immune clearance by modulating the host lncRNAs (Wen 
et al., 2020).

This review summarizes the broad categories and common 
regulatory mechanisms of lncRNAs, the roles of lncRNAs in various 
diseases, and the defense mechanisms involving host cells’ lncRNAs 
against M. pneumoniae infection. It also provides an overview that 
indicates avenues for investigating lncRNAs-related therapeutic 
targets in M. pneumoniae infection and other diseases.

2 Category of lncRNAs

LncRNAs encompass a wide range of transcripts (Djebali et al., 
2012) that exhibit significant diversity in terms of the presence of 
initiation codons, genomic location, and functional roles, making it 
difficult to easily characterize them. They can be broadly categorized 
into three types based on their mechanisms of action: (1) 
transcriptional regulation, (2) post-transcriptional regulation, and (3) 
other (Table  1) (Ma et  al., 2013). The mechanisms of action of 
lncRNAs involved in transcriptional regulation can be  further 
classified as (i) transcriptional interference, (ii) chromatin remodeling, 
and (iii) regulation effect. (The latter involves eRNAs, ncRNA-a1, 
Evf-2RNA, and Alpha-250/Alpha-280) (Table 1) (Ma et al., 2013). The 
mechanisms of action of lncRNAs involved in post-transcriptional 
regulation can be divided into (i) splicing regulation, (ii) translational 
control, lncRNAs that participate in translational control may function 
through binding to translation factors citation or ribosome (Ma et al., 
2013), and (iii) other (the latter involves siRNA, 1/2-sbsRNA1, 21A, 
linc-MD1, IPS1, HULC, and BACE1-AS) (Table 1) (Rintala-Maki and 
Sutherland, 2009). The remaining lncRNAs can be classified into five 
categories based on other regulatory mechanisms: (i) protein 
localization (Watanabe and Yamamoto, 1994), (ii) telomere replication 
(Feng et al., 1995), (iii) RNA interference (Hellwig and Bass, 2008; 
Smekalova et al., 2016), (iv) regulation beyond transcription; unlike 
many other lncRNAs, promoter antisense RNAs (PAS RNAs) were 

initially considered to be merely passive transcription by-products of 
active promoters (Yang, 2022), and (v) translation regulation (Table 1).

3 Conventional lncRNAs regulatory 
mechanism

LncRNAs were initially thought to be merely interfering factors in 
gene transcription, (i.e., acting as accessory products that impede gene 
transcription involving RNA polymerase II), but they were later found 
to play essential roles in various biological activities. Notably, lncRNAs 
participate in transcription but prevent transcription by other 
chromosomes (Cabili et al., 2015).

The lncRNA LINC02159 (which is highly expressed in non-small 
cell lung cancer) forms a complex with Aly/REF export factor 
(ALYREF) through its 5-methylcytosine m5C modified sites and then 
binds to YAP1 mRNA, thereby increasing its stability (Chen et al., 
2023). The lncRNA ADPGK-AS1, which mainly exists in 
mitochondria, is upregulated in artificially induced human M2 
macrophages, and it binds to mitochondrial ribosomal protein 
MRPL35 and thereby promotes the tricarboxylic acid cycle and 
mitochondrial division, resulting in tumor growth (Karger et al., 2023).

The lncRNA MALAT1, also known as non-coding nuclear-
enriched abundant transcript 2 (NEAT2), epigenetically regulates 
gene expression. Highly efficient knockdown of MALAT1 (using zinc 
finger nuclease-based technology) in extensive organization tumor 
cells confirmed that MALAT1 promotes in vitro and in vivo metastasis 
without affecting tumor cell proliferation (Gutschner et al., 2013). 
During extensive tumor cell proliferation, MALAT1 is regulated by 
multiple signaling pathways and has important roles in invasion and 
metastasis (Chen et  al., 2022). MALAT1 regulates the activity of 
serine/arginine (SR) splicing factors, thereby influencing gene 
expression via alternative splicing (Tripathi et al., 2010). MALAT1 is 
also involved in cell cycle regulation, interacting with and promoting 
the cytoplasmic transport of heterogeneous nuclear ribonucleoprotein 
C (hnRNP C) in the G2/M phase, thereby controlling gene expression 
(Yang et  al., 2011). Seven novel lncRNAs have been identified as 
competitive endogenous RNAs. Their abnormal expression leads to 
the widespread expression of tumorigenic genes (Figure 1A).

As shown in the schematic in Figure 1, there are eight conventional 
lncRNAs regulatory mechanisms: (1) transcription interference 
involving transcription from the upstream promoter region of a target 
protein-coding gene (Figure 1A); (2) inhibiting RNA polymerase II or 
inducing chromatin remodeling or histone modification, which 
interferes with target gene transcription (Figure 1B); (3) generating 
complementary double strands involving mRNAs, which interferes 
with mRNA cleavage (Figure 1C); (4) generating endogenous short 
interfering RNAs (endo-siRNAs), which target specific mRNAs (RNA 
interference) (Figure 1D); (5) binding to a specific protein to modulate 
its activity (Figure  1E); (6) forming a ribozyme-protein complex, 
which catalyzes specific reactions (Figure 1F); (7) binding to a specific 
protein to alter its cellular localization (Figure 1G); and (8) producing 
small RNA precursors (Figure 1H).

Some upregulated lncRNAs play a tumor-promoting role, while 
downregulated lncRNAs in gastric cancer play a tumor-inhibitory role 
(Figure 1B) (Ahmed Shehata et al., 2021). Some lncRNAs can regulate 
protein activity (Figure 1C). SiRNAs or overexpression plasmids were 
transfected (with adequate transfection efficiency) into cells and 
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verified using fluorescent markers (Figure 1D) (Cao et al., 2019). Some 
lncRNAs can form a complementary double strand with mRNA 
(which interferes with mRNA cleavage), and some lncRNAs can 
produce endo-siRNAs under the action of the Dicer enzyme 
(Figure  1E). Many lncRNAs are characteristically expressed in 
polarized tissues and specific cancer types (Xing et al., 2021). They 
form nucleic acid protein complexes with the proteins acting as 
structural components (Figure 1F) (Zhou et al., 2016), thereby altering 
protein localization (Figure  1G). LncRNAs (which are >200 
nucleotides in length) have no protein-coding potential (Figure 1H).

4 LncRNAs in M. pneumoniae 
infection

4.1 LncRNAs in intrapulmonary 
M. pneumoniae manifestations

LncRNAs have the function of modifying cell biology (Statello 
et al., 2021b). LncRNAs can act with mRNAs, DNAs, proteins, and 
miRNAs to adjust gene expression at the epigenetic, transcriptional, 
post-transcriptional, translational, and post-translational levels in a 
variety of ways (Zhang et al., 2019). LncRNAs have many functions, 
including in M. pneumoniae infection, involving both: (1) 
transcriptional regulation, (2) post-transcriptional regulation, and (3) 
others (Table 1) (Wright et al., 2013). The interaction of these three 
regulatory mechanisms plays an important role in the M. pneumoniae 
infection of host cells (Dykes and Emanueli, 2017).

4.1.1 Acute respiratory distress syndrome
LncRNAs are key regulators in respiratory diseases, and they can 

modulate cell growth arrest. The lncRNA GAS5 plays a significant role 
in many inflammatory diseases, including acute lung injury, idiopathic 
pulmonary fibrosis, and M. pneumoniae infection (Yang et al., 2021). 
GAS5 overexpression enhances cellular energy production and 

downregulates the pro-inflammatory cytokines IL-1β and IL-6  in 
human acute monocytic leukemia THP-1 cells (Figure  2A). The 
overexpression of miR-222-3p, which targets and reverses 
M. pneumoniae-induced THP-1 cell energy production, reduces 
M. pneumoniae-induced THP-1 cell viability, and accelerates the 
inflammatory response. GAS5 silencing reduces M. pneumoniae-
induced chondrocyte activity and exacerbates M. pneumoniae-
induced host cell inflammatory injuries. These findings offer new 
targets for treating M. pneumoniae infection (Yang et al., 2021). When 
exposed to host cells, M. pneumoniae upregulates the community-
acquired respiratory distress syndrome acute respiratory distress 
syndrome (ARDS) toxin protein (encoded by the MPN372 gene), 
which is involved in host-cell interactions (Medina et al., 2012).

GAS5 was downregulated in lung epithelial cells treated with 
lipopolysaccharide (which can cause ARDS), suggesting that GAS5 is 
involved in the development of ARDS. The GAS5/miR-200c-3p/ACE2 
signaling axis is involved in the apoptosis of ARDS lung epithelial 
cells. These findings offer new therapeutic targets for ARDS and 
enrich our understanding of the GAS5-mediated regulation of lung 
injury, which is of great significance for understanding the 
pathogenesis of ARDS (Li et al., 2018).

4.1.2 Acute pneumonia
M. pneumoniae lipopolysaccharide can enter human embryonic 

lung WI-38 fibroblasts, induce inflammatory damage, and destroy the 
cells by triggering lncRNA HAGLROS upregulation. M. pneumoniae 
can induce inflammatory damage in WI-38 cells by modulating the 
miR-100/NF-κB axis. HAGLROS upregulation inhibits miRNA-100 
(which therefore no longer targets and suppresses NF-κB3), thereby 
increasing NF-κB activity. HAGLROS knockout prevents NF-κB 
activation and thereby enhances WI-38 cell viability, inhibits 
apoptosis, and mitigates M. pneumoniae-induced cell damage 
(Figure 2A). Reducing the expression of miR-100 activates NF-κB3 
and thereby causes WI-38 cell damage and apoptosis; this effect of 
reducing the expression of miR-100 can be prevented by NF-κB3 

TABLE 1 Conventional functions of lncRNAs.

Function of lncRNAs lncRNAs Reference

Transcriptional regulation

Transcriptional interference
DHFR upstream transcripts, SRG1 RNAs, 7SK snRNA, B2 SINE RNA, 

chromatin remodeling

Ma et al. (2013)
Chromatin remodeling

fbp1, promoter RNAs, Xist, MEG3, GAL10-ncRNA, HOTAIR, HOTTIP, 

COLDAIR

Regulation effect eRNAs, ncRNA-a1, Evf-2RNA, Alpha-250/Alpha-280

Post-transcriptional 

regulation

Splicing regulation MIAT, Malat 1, LUST Rintala-Maki and 

Sutherland (2009) and Ma 

et al. (2013)

Translational control BC1, BC200, snaR, Gadd7, Zeb2, Zeb2NAT

Other siRNA, 1/2-sbsRNA1, 21A, linc-MD1, IPS1, HULC, BACE1-AS

Other

Protein localization MeiRNA, ENOD40 RNA
Watanabe and Yamamoto 

(1994)

Telomere replication TERC Feng et al. (1995)

RNA interference shRNAs or sgRNAs
Hellwig and Bass (2008) 

and Smekalova et al. (2016)

Beyond transcription PAS RNA Yang (2022)

Translation regulation rncs-1 Ma et al. (2013)
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knockout (Figure  2A) (Liu et  al., 2018). During M. pneumoniae-
induced pneumonia, type I alveolar epithelial cells defend against 
M. pneumoniae infection by activating the innate immune response 
(Yamamoto et al., 2012), including the PI3K/AKT/NFκB pathway 
(Yang et al., 2021). The HAGLROS/miR-100/NF-κB axis may be a new 
target for the treatment of M. pneumoniae infection (Liu et al., 2018).

Another lncRNA that can regulate NF-κB activity is NKILA, 
which can exert an anti-inflammatory effect in airway epithelial cells. 
NKILA can mask the phosphorylation motif of I-κB (an inhibitor of 
NF-κB) and thereby prevent I-κB degradation and NF-κB 
translocation (Figure 2B) (Liu et al., 2015; Ke et al., 2018; Wang et al., 
2018; Yu et  al., 2018), inhibiting M. pneumoniae-induced 
inflammatory response genes (Peschke et  al., 2014). NKILA is 
decreased and cytokines (IL-8 and TNF-α) are increased in 
bronchoalveolar lavage fluid from children infected with 
M. pneumoniae and NKILA knockdown in airway epithelial cells 
promotes M. pneumoniae-induced cytokine secretion NKILA exerts 
its anti-inflammatory effect by weakening the negative feedback loop 
of NF-κB signaling that regulates cytokine secretion (Figure  2B) 
(Zhang et al., 2021).

Moreover, downregulation of the lncRNA CRNDE and 
upregulation of miR-141 (which inhibits NF-κB and is targeted by 
CRNDE) inhibit the M. pneumoniae endotoxin-induced apoptosis 
and inflammatory response of human embryonic lung MRC-5 
fibroblasts, thereby promoting cell survival (Figure  2A) (Zúñiga 
et al., 2012).

4.1.3 Asthma
During M. pneumoniae infection, the host can regulate certain 

lncRNAs to inhibit inflammation and apoptosis. Activation of the 
transcription factor NF-κB, which regulates various inflammatory 
response genes, plays a significant role in M. pneumoniae-induced 
airway inflammation. Under normal conditions, NF-κB is bound to 
its inhibitor, I-κB, and remains in the cytoplasm. When stimulated 
by M. pneumoniae lipoproteins, which are recognized by toll-like 
receptors (TLRs), I-κB is phosphorylated and degraded, releasing 
NF-κB; activated phosphorylated NF-κB p65 then enters the nucleus 
and upregulates inflammation-related genes (Zhu et al., 2010). The 
pro-inflammatory mechanism of action of the lncRNA MALAT1 
partially relies on it increasing NF-κB activation (by directly binding 
to it or indirect regulation, i.e., acting as a competitive endogenous 
RNA, competing with miRNAs that target NF-κB mRNA, and thus 
enhancing NF-κB activity). It thereby regulates the M. pneumoniae-
induced inflammatory response (Figure 2B) (Dai et al., 2018; Lei 
et al., 2018). NF-κB upregulates TNF-α, which can damage capillary 
endothelial cells, thereby promoting microthrombosis and leading 
to ischemic necrosis, so TNF-α is associated with pneumonia 
severity (Figure 2B) (Salvatore et al., 2007). MALAT1 knockdown 
inhibits M. pneumoniae-induced NF-κB p65 phosphorylation in 
mouse airway epithelial cells and mouse lung tissue. Thus, the 
regulatory role of MALAT1 in M. pneumoniae infection-induced 
inflammation is closely related to NF-κB activation (Zhang 
et al., 2021).

FIGURE 1

Schematic of conventional lncRNA regulatory mechanisms. (A) Transcription interference involves transcription from the upstream promoter region of 
a target protein-coding gene. (B) Inhibiting RNA polymerase II or inducing chromatin remodeling or histone modification, which interferes with target 
gene transcription. (C) Modulate protein activity. (D) Generating endogenous short interfering RNAs (endo-siRNAs), which target specific mRNAs (RNA 
interference). (E) Binding to a specific protein to modulate its activity. (F) Structural or organizational role, which catalyzes specific reactions. 
(G) Binding to a specific protein to alter its cellular localization. (H) Producing small RNA precursors. The diagrams are original and free of copyright 
restrictions.
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The mechanism by which lower respiratory tract M. pneumoniae 
infections trigger or worsen asthma in children is not completely 
clear (Kumar et al., 2019). Following M. pneumoniae infection in 
children, a small percentage of individuals present with recurrent 
wheezing episodes, and the prevalence of M. pneumoniae infection 
in children with acute asthma has been reported to be 46% (Kassisse 
et al., 2018). M. pneumoniae can induce mucin overproduction by 
inhibiting the transcription suppressor FOXA2 Lung function is 
improved by restoring FOXA2’s transcription suppressor function 
and downregulating goblet cell hyperplasia and metaplasia (GCHM)-
promoting pathways in M. pneumoniae-infected airways in asthma 
patients with abnormal mucin secretion and accumulation in airway 
lumens, which are clinical markers of asthma (Hao et al., 2014). In 
addition, asthma is associated with upregulated MALAT1 and 
downregulated miRNA-216a (which is inhibited by MALAT1, acting 
as a molecular sponge), while the opposite (MALAT1 downregulation 
and/or miRNA-216a upregulation) significantly increases apoptosis 
while significantly decreasing cell proliferation, migration, and 
invasion (Huang J. et al., 2021).

4.2 Immune-mediated mechanisms of 
M. pneumoniae extrapulmonary 
manifestations

M. pneumoniae can cause various extrapulmonary manifestations, 
including those that affect the cardiovascular system, skin, and liver.

The cardiovascular manifestations of M. pneumoniae infection 
(Bakshi et al., 2006) include aortic thrombosis (Flateau et al., 2013) 
and pulmonary thrombosis. M. pneumoniae can directly spread via 
the blood to distant organs and induce local production of cytokines 
and chemokines (TNF-α and IL-8), eventually leading to local 
vasculitis or thrombosis. M. pneumoniae can also indirectly lead to 
systemic hypercoagulability by activating chemical mediators, 
complement, and fibrin D-dimer, which increase the risk of 
thrombotic vascular occlusion (Hu et al., 2022).

The dermatological manifestations of M. pneumoniae infection 
include erythema nodosum [an immune complex-mediated disease 
that primarily affects young women (Kakourou et  al., 2001)] and 
cutaneous leucocytic vasculitis [characterized by perivascular 
neutrophilia reported to be caused by circulating immune complexes 
(Kakourou et  al., 2001; Perez and Montes, 2002)]. Although 
M. pneumoniae cannot infect the squamous cell epithelium, it may 
produce inflammatory bullous lesions due to the transfer of cytokines 
from the respiratory tract to the skin via the blood (Narita, 2016).

The hepatic manifestations of M. pneumoniae infection can arise 
as a result of modulation of T-cell-mediated immune responses by T 
cell immunoglobulin and mucin domain-containing proteins (TIMs) 
expressed on T cells, which can regulate T cell cytokine differentiation 
(Wang et al., 2008). Liver damage can also be caused by inflammatory 
cell activation induced by signaling involving TLR2 and TLR4, which 
are expressed on cell surfaces and can detect and initiate responses to 
extracellular pathogens (Kawasaki and Kawai, 2014; Shimizu et al., 
2014). M. pneumoniae causes acute and severe hepatitis in children, 

FIGURE 2

Mechanisms of lncRNAs defending against M. pneumoniae invasion. (A) In the nucleus: (i) lncRNA CRNDE downregulation, (ii) lncRNA HAGLROS 
downregulation, and (iii) lncRNA GAS5 upregulation inhibit M. pneumoniae-induced inflammatory factor release, thereby preventing damage to host 
cells. (B) In the cytoplasm: (i) downregulated lncRNA MALAT1 inhibits the inflammatory response triggered by M. pneumoniae endotoxin release by 
altering NF-κB activation; MALAT1 regulates NF-κB via three pathways: (a) competing with miRNAs that target NF-κB mRNA, (b) binding to NF-κB, and 
(c) directly resistance to endotoxins (ii) lncRNA NKILA inhibits the inflammatory response triggered by M. pneumoniae endotoxin release by preventing 
the dissociation of NF-κB from its inhibitor I-κB and thereby preventing NF-κB translocation to the nucleus. The diagrams are original and free of 
copyright restrictions.
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which is likely to be immune-mediated and involve both innate and 
adaptive immune responses (Poddighe, 2020).

In summary, the detailed mechanisms underlying the three 
abovementioned types of M. pneumoniae extrapulmonary infection 
are unclear, but it is clear that they generally involve inflammatory 
immune responses (Poddighe et al., 2022).

4.3 LncRNAs and immune-mediated 
mechanisms of M. pneumoniae infection

4.3.1 Intrapulmonary M. pneumoniae 
manifestation

M. pneumoniae adhesion molecules and metabolites can cause 
immune damage to respiratory epithelial cells. M. pneumoniae 
infection decreases CD4+T cell function, which is the primary cause 
of immune dysfunction in patients with M. pneumoniae infection, 
impairing antigen presentation, B-cell maturation, and antibody 
production. M. pneumoniae also disrupts other humoral and 
cellular immune responses (Hu et  al., 2022). During host cells’ 
non-specific immune defense against M. pneumoniae, lncRNAs 
regulate reactive oxygen species production by NADPH oxidase to 
fight M. pneumoniae (Lee et  al., 2020). LncRNAs can also 
be exploited by M. pneumoniae to evade the immune system (Hu 
et al., 2022).

4.3.2 Extrapulmonary in children infected 
(neurological) M. pneumoniae manifestations

M. pneumoniae infection-induced neurological diseases are likely 
to be a result of immune responses to the infection, based on indirect 
immunofluorescence and PCR analysis of cerebrospinal fluid samples 
from patients with these neurological diseases (Poddighe, 2018).

The lncRNA NKILA was downregulated while IL-8 and TNF-α 
were upregulated in children infected with M. pneumoniae. NKILA 
knockdown in vitro promotes the inflammatory effect of 
M. pneumoniae on A549 and BEAS-2B respiratory epithelial cells 
(Zhang et  al., 2021). IL-8 and TNF-α are two well-known 
pro-inflammatory cytokines that play crucial roles in airway 
inflammation and chemotaxis caused by M. pneumoniae (Martin 
et al., 1997).

4.4 LncRNAs/circRNAs in drug-resistant 
M. pneumoniae infection

Both macrolide-resistant and refractory M. pneumoniae infections 
complicate the clinical management of M. pneumoniae pneumonia 
(Tsai et al., 2021). Macrolide-resistant M. pneumoniae harbors a point 
mutation in 23S rRNA domain V (with substitutions mainly detected 
at positions 2063 and 2064) (Yang et  al., 2017). Circular RNAs 
(circRNAs), which are like lncRNAs but form a closed loop (Ashekyan 
et al., 2022), play important roles in gene expression regulation by 
sequestering miRNA targets (acting as molecular sponges) (Meng 
et  al., 2017). The miRNA targets of circRNAs (detected by high-
throughput sequencing) could be  utilized as biomarkers for the 
diagnosis of early-stage refractory M. pneumoniae pneumonia (Huang 
F. et al., 2021).

5 LncRNAs in other diseases

LncRNAs affect cardiovascular development, including the 
embryonic development of the heart and vascular system (Kohlmaier 
et  al., 2023). The lncRNA CARMEN can regulate the fate, 
differentiation, and homeostasis of human cardiac progenitor cells 
(Ounzain et al., 2015). Additionally, lncRNAs serve as key regulators 
in cardiovascular diseases such as arterial hypertension, coronary 
heart disease, and acute myocardial infarction (Correia et al., 2021). 
For example, overexpression of lnc-Ang362 indirectly activates the 
(NF-κB) signaling pathway, which promotes vascular smooth muscle 
cell proliferation and migration, thereby aggravating arterial 
hypertension (Wang et al., 2020). Additionally, upregulation of the 
lncRNA cardiac hypertrophy-related factor (CHRF) in cardiomyocytes 
can upregulate myeloid differentiation primary response 88 (MYD88), 
inducing cardiomyocyte hypertrophy and apoptosis, leading to heart 
failure (Wang et al., 2014).

LncRNAs also regulate the development and differentiation of 
neurons and the nervous system, and they play various pathological 
roles, leading to various neurodegenerative diseases (Nadhan et al., 
2022). In Alzheimer’s disease, the highly upregulated antisense 
lncRNA BACE1-AS stably binds to BACE1, enhancing the production 
of β-amyloid plaques (Zeng et al., 2019). In schizophrenia, the reduced 
expression of the lncRNA MIAT is associated with behavioral changes 
(Ip et  al., 2016). In autism spectrum disorder, the lncRNA 
SYNGAP-AS1 can downregulate SYNGAP1, causing cortical 
functional impairment (Velmeshev et al., 2013). In ischemic stroke, 
the reduced expression of the lncRNA MEG3 activates the Notch 
signaling pathway and thereby promotes angiogenesis (Yan 
et al., 2016).

In cancer, some lncRNAs have been identified as oncogenes, while 
others have been identified as tumor suppressors (Nadhan et  al., 
2022). The lncRNA HOTTIP acts as an oncogene in acute myeloid 
leukemia, where it is abnormally elevated and functions as an 
epigenetic regulator, modulating hematopoietic gene-associated 
chromatin signatures and transcription (Luo et  al., 2019). The 
p53-dependent lncRNA PVT1 inhibits lung cancer by downregulating 
c-Myc (Olivero et al., 2020). The abovementioned lncRNA CHRF 
plays a crucial role in the progression of various tumors, such as 
prostate cancer, by miRNA binding (Gai et al., 2019). The lncRNA 
LUCAT1 is associated with various cancers, including cervical cancer, 
where it exerts oncogenic functions by sequestering miR-181a (Xing 
et al., 2021). Finally, the highly expressed lncRNA NEAT1 sequesters 
miR-155 and upregulates TIM3, which promotes CD8 T cell apoptosis 
and thereby facilitates hepatocellular carcinoma immune evasion and 
development (Yan et al., 2019).

In endocrine diseases such as diabetes and related conditions 
(including diabetic nephropathy, diabetic retinopathy, and diabetic 
neuropathic pain), dysregulated lncRNAs have significant effects 
(Alipoor et al., 2021). For example, the downregulation of the lncRNA 
H19 disrupts mitochondrial fatty acid β-oxidation and leads to fatty 
acid accumulation and insulin resistance (Gui et  al., 2020). The 
lncRNA PVT1 is overexpressed in diabetic nephropathy. PVT1 
silences FOXA1 by directly binding to and stabilizing the histone 
methyltransferase EZH2 to induce trimethylation-based silencing (Liu 
D. W. et  al., 2019). The reduced expression of FOXA1 induces 
podocyte apoptosis, contributing to the progression of diabetic 
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nephropathy. The lncRNA MALAT1 sequesters miR-125b and thereby 
upregulates target genes, promotes neovascularization, and impairs 
vision (Liu P. et  al., 2019). The lncRNA NONRATT021972 is 
upregulated in diabetic neuropathic pain, which it exacerbates by 
upregulating TNF-α and purinergic receptors (P2X) 3 and 7 It 
increases the expression of TNFα as well as purinergic receptors (P2X) 
3 and 7 (Peng et al., 2017).

5.1 Small molecule response induced by 
lncRNAs in M. pneumoniae infection

Neutrophils are one of the cells that respond to inflammation sites 
and play a vital role in killing pathogens (Schenten et al., 2018). The 
inflammatory response caused by neutrophil activation can 
be  triggered by endogenous ligands called damage-associated 
molecular patterns (DAMPs) or actively aerated alarmins (Chan et al., 
2012). Recently, S100A8/9 proteins have been identified as DAMPs 
released by neutrophils and monocytes [which has been proposed to 
be an active process dependent on the microtubule network (Schiopu 
and Cotoi, 2013) or a process involving NETosis (Ehrchen et al., 2009; 
Bianchi et al., 2011)]. The elevation of S100A8/9 increases neutrophils 
in the blood, which can promote the occurrence of atherosclerotic 
disease due to neutrophil accumulations in artery walls (Schiopu and 
Cotoi, 2013).

6 LncRNAs as targets for treating M. 
pneumoniae infection

LncRNAs in the nucleus (e.g., CRNDE, HAGLROS, and 
GAS5) and cytoplasm (e.g., MALAT1 and NKILA) work together 
to resist M. pneumoniae invasion. Downregulation of CRNDE 
can upregulate miR-141 and thereby inhibit lipopolysaccharide-
induced MRC-5 fibroblast apoptosis and the associated 
inflammatory response (Meng et  al., 2019). HAGLROS 
downregulation ameliorates lipopolysaccharide-induced PI3K/
AKT/NF-κB pathway activation and inflammatory damage in 
WI-38 cells by causing a lack of HAGLROS to compete with 
miRNA-100, leading to NF-κB3 downregulation (Torrealba et al., 
2020). The HAGLROS/miR-100/NF-κB axis may provide a new 
target for the treatment of acute-phase M. pneumoniae 
pneumonia (Fang and Shi, 2022). Highly expressed lncRNA 
GAS5 reduces the inflammatory response and the viability of 
LAMP-1-induced human acute monocytic leukemia THP-1 cells 
by targeting the miR-222-3p/TIMP3 axis (Yang et  al., 2021). 
Downregulated MALAT1 plays a key regulatory role in reducing 
M. pneumoniae-induced inflammation (Zhao et  al., 2016) by 
downregulating NF-κB signaling (Shimizu et al., 2008). NKILA 
inhibits the M. pneumoniae-induced inflammatory response of 
airway epithelial cells by modulating NF-κB (Zhu et al., 2019).

The findings that lncRNAs/circRNAs carried by exosomes in 
breast cancer (BC) regulate breast cancer-related target genes 
(Ashekyan et al., 2022) prompt the question of whether the lncRNAs/
circRNAs/target genes are related to M. pneumoniae infection and 
whether they may represent novel targets for the treatment of 
M. pneumoniae (Tang et al., 2020). LncRNAs have been shown to have 
broad clinical applications, including cancer diagnosis and prognosis 
biomarkers (Ashekyan et al., 2022).

7 Perspectives

Although recent lncRNA sequencing analyses have identified 
potentially key lncRNAs associated with M. pneumoniae pneumonia 
(Huang et al., 2016), their biological roles and function mechanisms 
remain largely unknown (Chen et al., 2018). It is important to determine 
the pivotal molecular mechanisms underlying M. pneumoniae 
pneumonia in order to develop effective treatment strategies (Chen 
et al., 2018). Studying lncRNAs may provide an academic foundation 
for more comprehensive understanding of the molecular mechanisms 
underlying M. pneumoniae pneumonia and for identifying effective 
treatment targets, thereby identifying unconventional strategies for the 
treatment of acute-phase M. pneumoniae pneumonia.

LncRNA regulates cardiovascular development (Correia et al., 
2021) and the development and differentiation of neurons and the 
nervous system (Nadhan et al., 2022). In cancer, some lncRNAs have 
been identified as oncogenes, while others have been identified as 
tumor suppressors (Nadhan et al., 2022). In endocrine diseases such 
as diabetes and related conditions, dysregulated lncRNAs have 
significant effects (Alipoor et al., 2021). LncRNAs play a variety of 
roles in these diseases, which may provide insights into the currently 
unknown roles of lncRNAs in various M. pneumoniae infection states.

8 Conclusion

LncRNAs encompass a wide range of transcripts with significant 
diversity in terms of the presence of initiation codons, genomic 
location, and functional roles. They are newly discovered regulators 
in many diseases, and there is a growing body of literature suggesting 
a relationship between lncRNAs and M. pneumoniae infection. In this 
review, we  broadly classified lncRNAs’ mechanisms of action as 
transcriptional regulation, post-transcriptional regulation, and 
others, and detailed the conventional mechanisms of action of 
lncRNAs. We also discussed lncRNAs’ roles in the pathogenesis of 
four major disease types (cardiovascular diseases, neurological 
disorders, cancers, and the endocrine disease diabetes). Furthermore, 
we  provided insights into lncRNAs’ key protective roles against 
intrapulmonary, extrapulmonary, and drug-resistant M. pneumoniae 
infections. This review serves as a succinct overview and indicates 
avenues for investigating lncRNAs’ roles as novel therapeutic targets.
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