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Microbial communities, demonstrating dynamic changes in cadavers and 
the surroundings, provide invaluable insights for forensic investigations. 
Conventional methodologies for microbiome sequencing data analysis face 
obstacles due to subjectivity and inefficiency. Artificial Intelligence (AI) presents 
an efficient and accurate tool, with the ability to autonomously process and 
analyze high-throughput data, and assimilate multi-omics data, encompassing 
metagenomics, transcriptomics, and proteomics. This facilitates accurate 
and efficient estimation of the postmortem interval (PMI), detection of crime 
location, and elucidation of microbial functionalities. This review presents an 
overview of microorganisms from cadavers and crime scenes, emphasizes 
the importance of microbiome, and summarizes the application of AI in high-
throughput microbiome data processing in forensic microbiology.

KEYWORDS

forensic microbiology, artificial intelligence, microbiome, postmortem interval, crime 
location

Introduction

Microorganisms, both from cadavers and their surroundings, experience microbial 
succession, which refers to the sequential and orderly change of microbial communities in a 
particular environment over time (Díez López et al., 2022). This has become particularly 
pivotal in forensic investigations, providing insights relevant to the decomposition process, 
postmortem interval, cause of death, and other essential aspects (Ventura Spagnolo et al., 
2019). As advancements in bioinformatics and high-throughput sequencing technologies 
arise, leveraging these microbial communities is increasingly vital. However, the vastness and 
complexity of this data introduce significant challenges (Liao et al., 2023; Dobay et al., 2019), 
making the incorporation of AI methodologies indispensable for efficient and precise analysis 
(Rajkomar et al., 2019; He et al., 2022). This review delves into the landscape of forensic 
investigation in the context of microbiome data, emphasizing the transformative role of AI in 
data interpretation and the potential challenges to address.
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Microbial succession during 
decomposition

Microbial succession refers to the changes in microbial 
populations on and around a corpse over time. Different microbial 
species become dominant at various stages of decomposition, 
reflecting alterations in the available resources and environmental 
conditions (Deel et al., 2021).

1n 1965, Payne (1965) identified several stages of 
decomposition in carrion which is determined by specific physical 
conditions and different types of insect colonization, provided a 
framework for understanding of microbial succession in cadavers. 
The fresh stage of decomposition begins with indigenous 
microorganisms covering the skin, oral cavity, gastrointestinal 
tract and other parts of the body, begin to multiply and spread, 
such as Escherichia coli (Metcalf et al., 2016; Speruda et al., 2022). 
Researchers (Adserias-Garriga et  al., 2017b) analyzed the oral 
swab samples from three corpses and identified Firmicutes and 
Actinobacteria are the predominant phyla in the fresh stage. As 
decomposition progresses, the accumulation of gasses due to 
microbial metabolism causes the cadaver to bloat. Clostridium 
species proliferate, participating in fermentative decomposition 
processes (Hyde et al., 2013). In the active decay stage, leakage of 
decomposition fluids results in the formation of a cadaver 
decomposition island (CDI) referring to a localized area 
surrounding and under a decomposing carcass. Anaerobic 
conditions inside the cadaver change to become more aerobic as 
body cavities burst and allow air to enter. Bacillus and 
Pseudomonas species are bacteria commonly found at this stage 
(Pechal et  al., 2014; Dash and Das, 2022). As decay advanced, 
Acinetobacter, Sphingomonas, and other bacteria adept at 
surviving in lower-nutrient conditions may become more 
prominent. Fungi may become more prevalent as the environment 
becomes less suitable for bacterial growth. Aspergillus, 
Penicillium, and Candida are dominant in the bloated and 
putrefaction stage (Sidrim et al., 2010). The microbial profile in 
this stage can be dominated by soil bacteria, such as Pseudomonads 
and other organisms that are capable of surviving in a nutrient-
depleted environment (Carter et  al., 2007). Toward the 
skeletonization stage, remaining soft tissues are largely depleted, 
the microbiome largely consists of bacteria and fungi in 
CDI. External microbes can interact with the cadaver’s native 
microbes, leading to potential symbiotic relationships, competitive 
interactions, or even the suppression of certain species. 
Environmental factors, like soil type and moisture, influence the 
microbial communities on and within the remains (Adserias-
Garriga et al., 2017a; Taylor et al., 2023). The precise microbial 
succession can depend heavily on environmental, geographical, 
and individual factors.

The importance of microbiome in 
forensic microbiology and the 
limitations of its traditional analysis

The human postmortem microbiome, including the 
thanatomicrobiome (the microbiome of blood, fluids and internal 
organs of cadavers) and epinecrotic microbial communities (the 

microbiome on surfaces of decaying remains), plays an important 
role in forensic investigations (Javan et al., 2016a). Due to the ease 
of sample acquisition, most research has focused on the latter, 
especially in gastrointestinal tract, the oral cavity, and skin (Dash 
and Das, 2022). Hyde et  al. (2013) explored the microbiome 
alterations from aerobic to anaerobic bacteria during the bloat 
stage of decomposition by employing 16S rRNA gene 
pyrosequencing to analyze bacterial samples. Metcalf et al. (2013) 
explored the microbiome extracted from cadavers and their 
surroundings in the process of decomposition to analyze 16S and 
18S rRNA sequences. The study from Pechal (Pechal et al., 2014) 
focused on bacterial communities extracted from buccal cavity 
and skin during the decomposition process, analyzed via 16S 
rRNA gene pyrosequencing and delved into analyzing the relative 
abundance of bacterial taxa in different sampling regions, studying 
the variation in bacterial communities at both phylum and family 
taxonomic levels over a measured physiological time.

However, analyzing microbiome data requires specialized 
bioinformatics expertise, indicating that not all forensic 
laboratories possess the capability to undertake such evaluations. 
Numerous factors, such as sample processing methods and 
sequencing technologies, can influence microbial abundance, 
even though high-throughput sequencing technology is advanced, 
it can sometimes miss microorganisms in low abundance or 
misidentify certain species (Schloss et al., 2009; Johnson et al., 
2019). During the processes of sample extraction and processing, 
there’s the possible introduction of external microbial 
contamination, which can distort analytical results and lead to 
misunderstandings (Salter et al., 2014). Additionally, microbial 
communities comprising hundreds to thousands of species, 
complicate the analysis process. A myriad of analytical methods 
and statistical models, such as random forest models, generalized 
additive models, and generalized linear models, needed to 
be selected approximately to identify significant taxa, constructing 
predictive models using the change of bacterial community 
composition during the decomposition of cadavers require 
meticulous execution and interpretation. Handling and making 
sense of datasets, ensuring the precision of the alignment and 
classification of sequences, and scrutinizing potential taxonomic, 
spatial, and temporal variability in the data also pose significant 
challenges (Metcalf et al., 2013; Pechal et al., 2014).

In conclusion, while microbiome data offers unparalleled 
insights in forensic investigation, the present methods used for its 
analysis need continual improvement.

Application of AI in high-throughput 
microbiome data processing in 
forensic microbiology

As modern high-throughput sequencing technology advances, 
the volume of macrobial data has overtaken the processing 
capabilities of traditional techniques. AI comes forward as 
solutions, particularly in forensic microbiology, where these 
technologies assist in deriving meaningful patterns from extensive 
datasets (Yuan et al., 2023).

Quality control for raw microbiome data is paramount for 
subsequent analysis. AI techniques, such as deep learning, facilitate 
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automatic detection and correction of sequencing errors, removal 
of low-quality data, and filtration of potential contaminant 
sequences (Knights et al., 2011b; Borgman et al., 2022). Researchers 
integrates deep regression forests (DRFs) with convolutional neural 
networks (CNN) to improve the robustness against erroneous data 
entry and extreme population heterogeneity (Nolte et al., 2023). 
Traditional alignment-based methods can be inefficient with vast 
datasets. AI-driven models can efficiently identify and classify 
microbial sequences, crafting a detailed species abundance profile 
for every sample (Fiannaca et  al., 2018; Reiman et  al., 2021). 
Machine learning models can forecast the functional potential of 
microbial communities, suggesting possible impacts on hosts and 
environments. For instance, random forests or support vector 
machines can predict microbial functional pathways, giving 
forensic indications about the deceased’s lifestyle, health, or 
environmental exposures (Wang M. G. et al., 2022). Deep learning 
models, such as CNNs, allow researchers to identify specific 
biomarkers from microbial data. This could include microbial 
communities or gene expression patterns linked to specific toxin 
exposures (Liu et al., 2023). Microorganism that is stably expressed 
in different postmortem organs can be used as a biomarker(Javan 
et  al., 2016b), and further, a series of dynamically changing 
biomarkers can be combined to accurately predict PMI. A random 
forest regression model based on 18 important genera obtained 
minimal cross-validation error demonstrated good predictive 
performance with a mean absolute error (MAE) of 1.27 ± 0.18 day 
within 36 day of the decomposition process (Cui et al., 2022). For 
forensic investigations, machine learning algorithms based on 
microbial succession can be  combined with classification and 
regression models to accurately predict postmortem interval, the 
authors conducted OTU clustering and taxonomic annotation on 
the sequencing data of epinecrotic communities from cecal feces of 
rats and humans within 30 days after death, and applied the 
recursive feature elimination (RFE) with random forests algorithm 
to find the most effective feature subset. Subsequently, a double-
layer model for PMI prediction was established, which 
discriminated groups of PMI 0–7d and 9–30d using random forest 
(RF), support vector machine (SVM), multi-layer perceptron 

(MLP), and logistic regression (LR) methods, and then the RF 
regression model was conducted to effectively predict PMI (Li 
N. et al., 2023), the researchers (Wang J. et al., 2022) studied the 
microRNAs and circular RNAs in blood samples and used various 
machine learning algorithms to conduct forensic age estimation, 
random forest regression model performed the best performance, 
multimarker approaches based on machine learning can make 
human identification using the skin microbiome more robust 
(Sherier et al., 2021).

In a forensic context, microbiological analysis is usually 
performed based on metagenomic sequencing, which is the most 
commonly used technique, but for samples such as hair or bone that 
DNA is absent or degraded, transcriptomic and proteomic 
approaches may be more applicable (Cláudia-Ferreira et al., 2023). 
However, the correlations and differences between diverse 
microorganisms after human death and their temporal changes, as 
well as the interactions with environmental factors, depict the 
dynamic changes in postmortem microbiome, the present 
approaches are not comprehensive. Multidimensional information 
is often needed to be combined to improve the prediction accuracy, 
for instance, the researchers integrated metabolomics, protein 
microarray electrophoresis, and Fourier transform-infrared 
spectroscopy data, and then analyzed using machine learning 
algorithms, improved the accuracy of PMI estimation, offered a 
panoramic view of the case (Li J. et al., 2023). The application of AI 
in high-throughput microbiome data processing in forensic 
microbiology is summarized in Figure 1.

Artificial intelligence-based 
microbiome analysis for PMI 
estimation

PMI estimation is very important in forensic scenarios. 
Microbial succession, also known as the temporal changes of 
prominent microorganisms during different stages of 
decomposition, making up for the shortcomings of traditional 
methods that relying on physical processes after death, such as the 

FIGURE 1

The application of AI in high-throughput microbiome data processing in forensic microbiology. The human postmortem microbiome and soil 
microbial communities are processed into high-throughput data for artificial intelligence analysis and ultimately used for forensic investigations.
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drop in temperature of corpses and livor mortis, provides an 
important basis for predicting PMI (Deel et  al., 2021). AI 
techniques have become the main analytical method for high-
throughput microbiome data due to its efficiency and robustness 
in handling vast datasets, automatically identifying and correcting 
sequences, and allowing for the combination of multi-omics 
datasets (Fiannaca et al., 2018; Borgman et al., 2022; Li J. et al., 
2023; Nolte et al., 2023).

In the process of utilizing AI for PMI prediction, the first step 
involves conducting high-throughput sequencing for the corpse’s 
microorganisms. Given the inherent noise in sequencing data, 
rigorous quality control, filtration, and annotation are vital to 
ensure the robustness of model (Lee et al., 2022). Deep learning 
methodologies, including CNNs and recurrent neural networks 
(RNNs), have shown promise in analyzing these datasets. With 
CNNs excelling particularly in image processing, data 
representations like operational taxonomic units (OTUs) tables or 
microbial relative abundance heatmaps can be  interpreted as 
“images” with appropriate transformation. Researchers used 
phylogenetic tree to represent spatial relationship, used OTU 
sorted by abundance as input to CNN, and developed machine 
regression model that integrates multiple spatially correlated 
kernels of microbial data with optimal weight sets to improve the 
predictive performance for health outcomes (Li B. et al., 2023). 
Some researchers have also used random forest, support vector 
machine, multilayer perceptron, and logistic regression methods 
based on the relative abundance of taxa at the genus level to 
establish robust classification model (Li N. et  al., 2023). By 
conceptualizing corpse decomposition as a time-series event, 
RNNs are equipped to register the sequential changes in 
microbiome data. Researchers have achieved accurate prediction 
of key bacterial species and environmental factors through a RNN 
model based on dynamically changing microbial data (Thompson 
et al., 2023). These AI models, when trained appropriately, can 
identify patterns in microbiome data that correlate with PMI. The 

process of artificial intelligence-based microbiome analysis for 
PMI estimation is shown in Figure 2.

Researchers initiated the study with high-throughput 
sequencing data of bacterial communities in gravesoil sample 
associated with the decomposition of mouse cadavers, and 
identified temporal patterns of microbial communities, for example, 
the gradual increased abundance of Proteobacteria while the 
decrease of Actinobacteria during the decomposition, then utilized 
a random forest model to predict PMI within 36 days based on the 
microbial succession (Cui et al., 2022). RNNs are widely used in 
modeling microbial community dynamics due to their ability to 
capture complex biological behaviors associated with higher order 
interactions (Baranwal et  al., 2022). The regression model that 
established by random forest algorithm based on intestinal 
microbial community succession of corpses exhibited satisfactory 
performance for PMI estimation (Liu et  al., 2022; Zhang et  al., 
2022). The 16S rRNA sequences with the highest abundance in the 
clustered OTUs were taxonomically annotated, and abundance was 
visualized using non metric multidimensional scaling to 
characterize the temporal changes in the microbial community 
within 30 days during the decay of mouse corpse. There are 
significant differences in the composition of microbial communities, 
especially between the 0–7 day and 9–30 day decomposition stages. 
Therefore, a two-layer model for PMI prediction based on bacterial 
sequences data was developed by combining classification and 
regression models using machine learning algorithms (Li 
N. et al., 2023).

Performance of these models is typically validated using 
independent test sets, and when compared with traditional 
methods, AI models have demonstrated superior prediction 
accuracy (Baranwal et al., 2022; Cui et al., 2022; Liu et al., 2022; 
Zhang et al., 2022; Li N. et al., 2023). It is imperative that the efficacy 
of these models be validated under diverse conditions to ascertain 
their broad applicability. Once optimized, these models can 
efficiently and accurately process data from various forensic cases.

FIGURE 2

The process of artificial intelligence-based microbiome analysis for PMI estimation. Processing high-throughput data from human postmortem 
microbiome, after clustering and taxonomic annotation, selecting the best performed feature subset, and ultimately establishing a model for PMI 
estimation.
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AI in predicting crime location based 
on microbial data

Unlike geographical location that represent a “broader area”, the 
place of death specifically refers to the exact location where a person 
has died, and estimating the crime location is essential in forensic 
investigations. Researchers (Karadayı, 2021) have demonstrated by 
analyzing soil samples extracted from simulated murder scenes that 
microorganisms, especially fungal DNA allowed to identify 
evidence samples and crime scene samples at phylum and class and 
genus and species level. The microbial profiles from soil and water, 
alongside distinctive microbial communities found in specific 
environments (such as urban versus rural areas, or forests versus 
deserts), can significantly aid in determining the location of death. 
Additionally, integrating microbiome data with other environmental 
factors—like temperature, humidity, and regional vegetation—
enhances the accuracy of these determinations.

A corpse in a distinct environment might assimilate specific 
microbial communities, identifiable through high-throughput 
sequencing (Fierer and Jackson, 2006). Pechal et al. (2014) proposed 
that varying soil types, each with its unique microbial attributes, 
could be used to infer if a body was relocated after death, indicates 
that the microbial profile of a corpse is influenced by its immediate 
environment. Techniques like CNN are adept at extracting pivotal 
features from microbiome data, potentially tying them to the 
environment of the corpse. Researchers compared the diatom 
populations in the lung tissue of drowning rats with the diatom 
profiles in different sites of rivers established through CNN models, 
in order to infer the location of drowning (Zhang et al., 2021). By 
training a deep learning model to identify microbial patterns from 
specific environments, one can predict the likely location of the 
body based on its microbial composition. For instance, if a model 
is adept at distinguishing between microbial patterns of forests and 
deserts, it could potentially predict whether a body was located in 
a forest or a desert based on its microbial profile (Knights et al., 
2011a). The researchers established a prediction model based on 
deep learning approach (Long Short Term Memory (LSTM)) by 
integrating weather variables and seasonal factors, which achieved 
higher performance in predicting microbial quality in drinking 
water (Mohammed et al., 2021). Although in its infancy, preliminary 
studies suggest that microbiome data can provide insightful leads 
about the place of death.

Conclusion

AI models significantly enhance traditional microbiome analysis 
by adeptly managing the variability and intricacies of microbial 
communities. They also reduce errors in sequence alignment and 
classification. In forensic microbiology, particularly, deep learning 
has revolutionized the processing of high-throughput microbiome 
data. These AI models are not only efficient in handling large volumes 
of data but have also notably improved the precision in estimating the 
PMI and crime location. Machine learning models, such as random 
forests and support vector machines, are instrumental in predicting 
microbial functional pathways. This capability provides valuable 
forensic insights into the lifestyle, health, or environmental exposures 
of the deceased. Furthermore, AI’s proficiency in integrating data 

from various fields—metagenomics, transcriptomics, and 
proteomics—offers a comprehensive understanding of microbial 
functionalities in forensic contexts.

However, this field still faces significant challenges that need 
addressing. Precise AI models necessitate a substantial amount of 
high-quality, diverse microbiome samples, each meticulously 
annotated with environmental data. Although AI models demonstrate 
high accuracy rates, their internal mechanisms often remain opaque. 
The development of more interpretable models is critical, as they 
need to elucidate their predictive processes and decisions—
particularly important in forensic contexts where the rationale 
behind conclusions must be  clear and justifiable. Moreover, AI 
models must undergo rigorous validation under diverse conditions 
to confirm their broad applicability in various forensic scenarios. The 
current lack of standardization and repeatability in AI-driven 
microbiome analysis in forensics poses a considerable challenge. To 
overcome this, the development of standardized protocols is essential, 
alongside ensuring uniformity in data collection and processing. As 
the intersection of forensic microbiology and AI continues to 
progress, addressing these challenges will be vital for the reliable and 
effective application of these technologies in forensic science.
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