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Endophytic bacteria have a complex coevolutionary relationship with their

host macroalgae. Dioecious macroalgae are important producers in marine

ecosystems, but there is still a lack of research on how sex influences their

endophytic bacteria. In this study, the endophytic bacterial communities in

male and female S. thunbergii and their reproductive tissues (receptacles)

were compared using culture methods and high-throughput sequencing. The

endophytic bacterial communities detected by the two methods were different.

Among the 78 isolated strains, the dominant phylum, genus, and species

were Bacillota, Alkalihalobacillus, and Alkalihalobacillus algicola, respectively,

in the algal bodies, while in the receptacles, they were Bacillota, Vibrio, and

Vibrio alginolyticus. However, 24 phyla and 349 genera of endophytic bacteria

were identified by high-throughput sequencing, and the dominant phylum and

genus were Pseudomonadota and Sva0996_ Marine_ Group, respectively, in

both the algal body and the receptacles. The two methods showed similar

compositions of endophytic bacterial communities between the samples of

different sexes, but the relative abundances of dominant and specific taxa

were different. The high-throughput sequencing results showed more clearly

that the sex of the host alga had an effect on its endophyte community

assembly and a greater effect on the endophytic bacterial community in the

receptacles. Moreover, most specific bacteria and predicted functional genes

that differed between the samples from the males and females were related

to metabolism, suggesting that metabolic differences are the main causes of

sex differences in the endophytic bacterial community. Our research is the first

to show that host sex contributes to the composition of endophytic bacterial

communities in dioecious marine macroalgae. The results enrich the database of

endophytic bacteria of dioecious marine macroalgae and pave the way for better

understanding the assembly mechanism of the endophytic bacterial community

of algae.
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1 Introduction

Endophytic bacteria are commonly present in plants and
coevolve with their hosts, playing an important role in host growth,
development and disease resistance. Studying the community
structure of endophytic bacteria in plants is necessary for analyzing
the functions of these bacteria and elucidating endophyte-
host interactions.

Macroalgae are an important component of marine ecosystems
and play a crucial role in material cycling and energy flow.
At present, research on the community structure of endophytic
bacteria in plants mainly focuses on higher terrestrial plants,
and much work has been done on isolating, identifying, and
describing the physiological and biochemical characteristics of
endophytic bacteria, as well as uncovering their interactions with
hosts (Afzal et al., 2019; Ling et al., 2022; Yarte et al., 2022).
In recent years, high-throughput sequencing technology has also
been widely used to obtain a large amount of information on the
endophytic bacterial community in terrestrial plants, includingthe
crops Oryza sativa (Liu Y. et al., 2019), Zea mays (Liu Y. et al.,
2020) and the medicinal plants Panax notoginseng (Zhang C.
et al., 2020) and Gastrodia elata f. glauca (Zheng et al., 2022),
as well as some aquatic plants, such as Lemnaceae, Pontederia
crassipes, Pistia (Pramanic et al., 2023), and Glehnia littoralis (Huo
et al., 2020). There have also been some studies on isolating,
identifying, and describing the physiological activity and function
of algal endophytic bacteria (Song et al., 2015; Zhang, 2017;
Feng et al., 2020; Amri et al., 2023) based on culture methods.
However, Hollants et al. (2011) used the denaturing gradient gel
electrophoresis (DGGE) method to study the endophytic bacterial
community of Bryopsidales (Chlorophyta), and Mei (2019) applied
high-throughput sequencing to investigate the endophytic bacterial
community in Sargassum horneri and Ulva prolifera, but there have
been no studies on the differences in endophytic bacteria between
the different sexes of algae.

There are many factors that can affect the composition of
endophytic bacterial communities, but relevant studies have mainly
been carried out on land plants. Previous studies have shown that
both the external environment and internal factors influence plant
endophytic bacterial composition (Afzal et al., 2019). The number
and species of endophytic bacteria have different distributions in
plants of different habitats (Zhang A. et al., 2020). The reason
why the external environment can influence bacterial composition
is that bacterial metabolic function changes depending on soil
nutrients, contaminants and temperature, which lead to a strong
selection effect on the bacterial population (Zhang et al., 2015).
On the other hand, internal factors such as host plant species,
tissue location and life history stage all have effects on the
endophytic bacterial community (Dastogeer et al., 2018; Mei
et al., 2021). The vertical transmission of endophytic bacteria
enables these bacteria to be transferred between generations of
plants and form a stable symbiotic relationship with plants.
Endophytic bacteria differ among different host plants (Liaqat
and Eltem, 2016), different varieties of the same plant species
(Munir et al., 2020) and even among different seed genotypes
(Liu Y. et al., 2020). There are also differences in endophytic
bacterial communities among different tissues of the same plant,
as confirmed by high-throughput sequencing in Arachis hypogaea

Linn (Li et al., 2021), Zea mays L. (Marag and Suman, 2018),
and Hippophae tibetana (Zhang A. et al., 2021). Additionally,
at different growth stages of the plant, the endophytic bacterial
community will undergo corresponding changes due to alterations
in the internal and external environments (Mahmood et al., 2019;
Song et al., 2020).

However, host sex is rarely mentioned among the factors
affecting the community structure of endophytic bacteria. In fact,
sex can lead to differences in the morphology, structure and
function of dioecious plants (Tang, 2020; Lu et al., 2021; Zeng et al.,
2022), and there are also some differences in enzyme activity (Chen
et al., 2020), secondary metabolites (Li et al., 2022) and endogenous
hormone levels (Ge et al., 2021), but there have been few studies
on sex differences in endophytic bacteria in plants. Some studies
have revealed differences in epiphytic bacterial communities in
plants of different sexes, such as in Populus cathayana (Liu et al.,
2021), Sargassum thunbergii (Wang et al., 2022b), and Porphyra
haitanensis (Yang et al., 2022). However, for marine macroalgae,
whether sex has an impact on the assembly of endophytic bacterial
communities is still unknown.

Sargassum thunbergii is a common intertidal macroalgae in
coastal China. As the feed of valuable aquaculture organisms and
the preferred plants for marine pastures, there is an urgent need
for artificial cultivation of S. thunbergii. Endophytic bacteria are
closely related to the growth and development of S. thunbergii, and
their study will facilitate its cultivation. S. thunbergii is a typical
dioecious alga with receptacles appearing in the reproduction stage
(Wang, 2007). There are obvious differences in the appearance
and internal structure of female and male receptacles, and
they perform different reproductive functions (Wang et al.,
2007). Whether these differences will lead to differences in
the endophytic bacterial communities between male and female
S. thunbergii and their receptacles and whether host algal sex
will affect the endophytic bacterial community have not yet been
explored.

In this study, the endophytic bacterial community was
compared between males and females of the intertidal macroalga
S. thunbergii and their receptacles from Shandong Peninsula by
culture-dependent and high-throughput sequencing technologies,
aiming at enriching the basic information on the endophytic
bacterial community in marine macroalgae and elucidating the role
of host sex in the assembly of the endophytic bacterial community
in S. thunbergii.

2 Materials and methods

2.1 Sample collection

The algal samples were collected from a 5 m × 100 m
sampling square in the continuous intertidal sea area at Taipingjiao
(120◦21′34.2′′E, 36◦14′58.3′′N) along the coast of Qingdao (China)
on July 21, 2021, during the reproductive period of S. thunbergii,
and then placed in sterile sample bags and brought back to the
laboratory for further processing within 30 min. The sex of the
algae was confirmed in the laboratory by observing the internal
structure of the receptacles using a microscope (Nikon H600L,
Tokyo, Japan).
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2.2 Culture-dependent processing

For the culture dependent test, six strains of S. thunbergii (3
males and 3 females) were used and these samples were from 3
different sampling sties, respectively. The surface of the algae was
disinfected on a clean bench by a method established in the pre-
experiment (75% alcohol for 5 min + 2.5% sodium hypochlorite for
10 min) and finally washed with sterile water 7 times. Then, 0.1 mL
of the final sterile water rinse was collected and spread on Zobell
2216E medium plates. When cultured in a biochemistry incubator
(SPX-150, Wanfeng Instrument Co. Ltd., China) at 25◦C for 48 h,
if no colonies had grown, the surface disinfection of the algae was
considered successful.

On the clean bench, 2 g of male and female body tissues and
their receptacles (picked with sterile tweezers were taken from
disinfected S. thunbergii individuals and transferred to a sterile
mortar). Eight milliliters of sterile seawater were added to grind
the samples into a homogenized suspension. The dilution 100,
10−1, and 10−2 were prepared and 0.1 mL of the suspension
was spread on Zobell 2216E medium plate with three replicates.
Then, the plates were placed in a biochemical incubator at 25◦C
for 48 h. Since the number of colonies of dilution 100 group was
less than thirty while that of dilution 10−1 group was less five
and that of dilution 10−2 group was zero, all colonies grown on
the plates of dilution 100 group were isolated and purified by the
continuous streaking method, and the obtained strains were stored
in stroke-physiological saline solution containing 15% glycerol at
−80◦C.

Bacterial DNA was extracted from the isolated strains using a
TIANamp Bacterial DNA Kit [Tiangen Biotech (Beijing) Co., Ltd.].
The 16S rDNA sequence was then amplified using the forward
primer 27F and reverse primer 1492R, after that sequencing was
conducted by Sangon Biotech (Shanghai) Co., Ltd. The sequencing
results were spliced and compared with the EzBioCloud database.1

The top 10 strains with the closest similarity among the strains
with more than 98% similarity were selected. A phylogenetic tree
was constructed with the sequences through three methods with
MEGA 11.0 software, namely, neighbor-joining (NJ), maximum
likelihood (ML) and minimum-evolution (ME), to determine the
species of the strains.

2.3 High-throughput sequencing and
sequence processing

On the clean bench, 2 g of male and female body tissues and
receptacles (picked with sterile tweezers in an ice bath) was taken
from the disinfected S. thunbergii individuals, transferred to a
sterile sample tube and stored at −80◦C. DNA extraction and
sequencing were performed by Guangzhou Kidio Biotechnology
Co., Ltd. The samples were labeled Male-ENDO (endophytic
bacteria in the male algal body), Female-ENDO (endophytic
bacteria in the female algal body), M-ENDO-Receptacles
(endophytic bacteria in male receptacles) and F-ENDO-
Receptacles (endophytic bacteria in female receptacles). Each
group had 8 replicates and each sample came from one alga.

1 www.ezbiocloud.net

After genomic DNA was extracted from the samples, the
V3 + V4 region of 16S rDNA was amplified with a specific
primer with a barcode. The primer sequences were 341F:
CCTACGGGNGGCWGCAG and 806R: GGACTACHVGGG
TATCTAAT. Then, the PCR amplification products were cut and
recovered, the purified amplification products were mixed in equal
amounts, the sequencing joints were connected, the sequencing
library was constructed, and high-throughput sequencing was
performed on the Illumina NovaSeq 6000 PE250 platform
(Illumina, San Diego, CA, USA).

2.4 Data analysis

UPARSE software (version 9.2.64_i86linux32) was used to
concatenate and deduplicate sequences, sequences with more than
97% similarity were clustered into an operational taxonomic unit
(OUT), and the SILVA (version 132) database was used to classify
the OTUs. The Chao1, Ace, Shannon and Simpson α-diversity
indices were calculated by QIIME (version 1.9.1.) The significance
of intergroup index comparisons was determined by the Kruskal-
Wallis (KW) test and Welch’s t-test. β-diversity was analyzed using
principal coordinate analysis (PCoA) and the unweighted pair-
group method using arithmetic averages (UPGMA) approach based
on Bray-Curtis distances. According to the OTU classification, the
high-throughput sequencing data were used to cluster the bacteria
at the phylum and genus levels, the species not clearly classified or
with relative abundance less than 1% were classified as “others,”
and a histogram was drawn. Linear discriminant analysis effect
size (LEfSe) software was used to analyze the differences between
groups. The KW rank sum test was performed among samples
from all groups first, and then the Wilcoxon rank sum test was
used to compare the selected species between the two groups.
Linear discriminant analysis (LDA) was used to sort the selection
results and generate the LDA difference analysis diagram, and then
an evolutionary branching diagram was obtained by mapping the
differences onto the classification tree with a known hierarchical
structure. Finally, PICRUSt (version 2.1.4) was used to predict the
function of endophytic bacteria, and the KW test was used to
analyze the significance of functional differences.

2.5 Data availability

The bacterial sequences obtained in this study have been saved
to the National Center for Biotechnology Information (NCBI) with
BioProject IDs: PRJNA830829 and PRJNA830307.

3 Results

3.1 Culturable endophytic bacteria

In this study, a total of 78 bacterial strains were isolated
from male and female S. thunbergii and their receptacles and
their phylogenetic tree is shown in Supplementary Figure 1.
Additionally, the functions of isolated strains reported in previous
studies were listed in Supplementary Table 1.
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Thirty-one bacterial strains were isolated from algal bodies
(19 from males and 12 from females), which belonged to
2 phyla, 7 genera, 14 species, and 1 suspected new species
(Supplementary Table 1A). The dominant phylum, genus, and
species were Bacillota, Alkalihalobacillus and Alkalihalobacillus
algicola, respectively. In addition, 1 phylum (Bacillota), 3 genera
(e.g., Alkalihalobacillus), and 2 species (A. algicola and A. berkeleyi)
were detected in the algal bodies of both sexes. However, 1 phylum
(Pseudomonadota), 3 genera (e.g., Rossellomorea), and 8 species
(e.g., A. hwajinpoensis) were isolated only from the male algal body,
while 1 genus (Mesobacillus) and five species (e.g., A. caeni) were
isolated only from the female algal body (Figure 1).

The culturable endophytic bacteria in receptacles were more
diverse than those in algal bodies. Forty-seven strains (21 from
males and 26 from females) belonging to 3 phyla, 9 genera, 13
species (Supplementary Table 1B), and 3 suspected new species
were also isolated. One phylum (Bacteroidota) and five genera
(e.g., Exiguobacterium) were isolated only from the receptacles
(Figure 1), and the dominant phylum was the same as in the algal
body, but the dominant genus and species changed to Vibrio and
V. alginolyticus, respectively. In addition, various samples shared 1
phylum (Bacillota), 2 genera (Alkalihalobacillus and Halobacillus)
and 1 species (A. algicola), but each kind of sample had specific
bacteria (Figure 1).

Moreover, the culturable endophytic bacteria isolated from
the receptacles were very different between the sexes. The
dominant phylum, genus and species in the male receptacles were
Pseudomonadota, Vibrio, and V. alginolyticus, while in the female
receptacles, they were Bacillota, Alkalihalobacillus, Metabacillus,
and E. profundum, respectively. One phylum (Bacillota), 5 genera
(e.g., Alkalihalobacillus), and 4 species (e.g., A. algicola) were
shared by male and female receptacles. However, many bacterial
taxa could be isolated only from the receptacles of one sex. For
example, Pseudomonadota and Bacteroidota were specific to male
receptacles, while there were no specific phyla in female receptacles.
Additionally, there were two genera (Vibrio and Persicobacter) and
three species (e.g., V. alginolyticus) specific to male receptacles,
while two genera (Exiguobacterium and Bacillus) and nine species
(such as E. profundum) were specific to female receptacles.

3.2 High-throughput sequencing results

Because the DNA extracted from one Male-ENDO sample was
unqualified, the results of 31 samples were ultimately analyzed, and
a total of 3,377,830 sequences were obtained. After mass filtering
and removal of chimeric, chloroplast and mitochondrial sequences,
3,195,870 optimized sequences were obtained. The coverage of all
samples was above 99% (Supplementary Figure 1), indicating that
the sequencing depth covered most of the bacteria in the samples
and the sequencing data were reliable and effective.

3.2.1 α–diversity
The results of α-diversity analysis (Figure 2) revealed

significant differences in the four indices among the four groups
of samples (KW test, P < 0.05). Both the Chao1 and Ace index
results showed that the abundance of bacteria in female algae
was the highest, followed by that in female receptacles, that in
male receptacles and that in male algal bodies. The Shannon and

Simpson indices showed that the bacterial diversity in the algal
body was higher than that in the receptacle. Interestingly, the
four indices were higher in females than in males, indicating that
the abundance and diversity of endophytic bacteria in the female
samples were higher than those in the male samples.

3.2.2 β–diversity
The results of UPGMA and PCoA based on Bray-Curtis

distances (Figure 3) clustered the bacteria from male and female
S. thunbergii and their receptacles, indicating that the samples
in each group were similar, but the differences between groups
were significant (P < 0.01). Notably, the clustering of endophytic
bacteria in male and female receptacles was more obvious than that
in algal bodies, indicating that the differences between male and
female receptacles were larger than those between male and female
algal bodies.

3.2.3 Shared bacteria and specific bacteria
The Venn diagram (Figure 4) showed that the shared bacterial

taxa accounted for the majority in the four kinds of samples. There
were 16 shared endophytic bacteria at the phylum level (Figure 4A),
and the core phyla (with relative abundances higher than 1%)
included Pseudomonadota (39.89–56.03%), Bacteroidota (11.73–
16.70%), Actinomycetota (11.37–30.31%), Planctomycetota (1.13–
3.75%), Verrucomicrobiota (2.68–5.97%), and Cyanobacteria (2.57–
10.52%). At the genus level (Figure 4B), there were 129 shared
genera, and the core genera (with relative abundances higher than
1%) included Sva0996_ Marine_ Group (6.27–13.01%), Loktanella
(4.44–7.46%), Burkholderia Caballeronia Paraburkholderia (1.39–
7.51%), Acinetobacter (1.35–3.66%), Mariactor (2.12–3.23%),
Pseudoruegeria (3.19–4.70%), Granulosicoccus (1.81–3.62%), and
Phormidesmis_ ANTLACV51 (1.23–4.50%).

Each kind of sample also had specific endophytic bacterial taxa.
For instance, there were 5 specific phyla (e.g., Entotheonellaeota
and Halanaerobiaeota) in female algal bodies and only one specific
phylum (Elusimicrobiota) in male algal bodies, but there were no
specific phyla in the receptacles. There were 24 genera specific to
male algal bodies, including Brachybacterium, Oikopleura_dioica,
and Magnetospira, while 48 genera were specific to female algal
bodies, including Macrococcus, Candidatus_Actinomarina,
and Marinobacterium. For the receptacles, there were 25
specific genera in males (e.g., Prevotella_1, Muricauda, and
Erysipelotrichaceae_UCG-007), while 22 genera were specific to
female receptacles (e.g., Shewanella, Minicystis, and Steroidobacter).

3.2.4 Community composition and dominant
endophytic bacteria

The community composition and relative abundance of the
endophytic bacteria in male and female S. thunbergii and their
receptacles are shown in Figure 4. The compositions were similar
among the four kinds of samples, but the abundance of some
bacterial taxa differed obviously. At the phylum level, the top
three phyla in algal bodies were Pseudomonadota, Bacteroidota,
and Actinomycetota, with relative abundances of 54.62, 16.58, and
15.42% in male algal bodies and 56.03, 16.70, and 11.37% in female
bodies, respectively. In receptacles, the top three phyla were the
same, but the order changed to Pseudomonadota, Actinomycetota,
and Bacteroidota, and the abundance of the top three phyla was
39.89, 30.31, and 12.35% in males and 45.72, 24.93, and 11.73% in
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FIGURE 1

Venn diagrams of culturable heterotrophic bacteria of male and female S. thunbergii and their receptacles. (A) Phylum level. (B) Genus level. (C)
Species level.

females, respectively. Notably, Cyanobacteria was ranked fourth in
female algal bodies and the receptacles of both sexes but was ranked
sixth in male algal bodies.

Additionally, the dominant genera of endophytic bacteria in
the four kinds of samples were basically the same but differed in
relative abundance. The top three dominant genera in male algal
bodies were Sva0996_marine_group (8.16%). Loktanella (7.46%)
and Burkholderia-Caballeronia-Paraburkholderia (6.37%), while
they were Burkholderia-Caballeronia-Paraburkholderia (7.51%),
Sva0996_marine_group (6.27%), and Loktanella (5.82%) in female
algal bodies. The top three dominant genera in male and female
receptacles were the same, namely, Sva0996_marine_group (males:
13.01%; females: 7.00%), Pseudoruegeria (males: 4.70%; females:
4.70%), and Loktanella (males: 4.44%; females: 4.53%).

3.2.5 Network analysis between bacterial
community

The network analysis (Figure 5) based on the relationship pairs
with the top-50 correlation coefficient showed the specific network

of the endophytic bacterial community in male and female algal
bodies and receptacles of S. thunbergia. The results indicated that
the correlation between the endophytic bacteria in four kinds of
samples was significantly different (P < 0.05). The node number
of endophytic bacteria at genus level in female algal bodies were
larger than in male algal bodies, while the results in receptacles was
opposite.

Compared to the interaction between the endophytes in
different sex algal bodies through the network analysis, 50 nodes
and 1225 edges in the microbial network from S. thunbergia were
found. Also, the endophytes in female S. thunbergia had 56 nodes
and 1540 edges. Algibacter, Marinagarivorans, Pseudophaeobacter,
and Maribacter showed high betweenness in male algal bodies,
which indicated that these microbes were the key nodes of
this sample group. The key nodes of the endophytes in female
algal bodies were Sulfitobacter, Marinagarivorans, Lewinella, and
Phormidesmis_ANTLACV51 with a high level of betweenness.

The interaction between the endophytes in male and female
receptacles of S. thunbergia was also different. The microbial
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FIGURE 2

The α-diversity of endophytic bacterial communities in male and female S. thunbergii and their receptacles. (A) Chao1 index. (B) ACE index. (C)
Simpson index. (D) Shannon index.

network from female receptacles had 40 nodes and 780 edges,
while that from male receptacles had 54 nodes and 1431 edges.
In the microbiome of male receptacles from S. thunbergia,
Aquimarina, Wenyingzhuangia, Maribacter, and Pseudomonas
showed high betweenness centrality in the community
network, while Burkholderia-Caballeronia-Paraburkholderia,
Ilumatobacter, Phormidesmis_ANTLACV51, and Granulosicoccus
were the key nodes of the endophytic microbial community in
female receptacles.

3.2.6 Biomarkers
The LEfSe analysis (Figure 6) revealed the endophytic bacterial

taxa with significant differences between groups (LDA > 4),
namely, biomarkers, and the results indicated that there were many
biomarkers between the four kinds of samples. Alphaproteobacteria
(class), Flavobacteriales (order), and Flavobacteriaceae (family)
were enriched in male algal bodies, while Pseudomonadota
(phylum), Gammaproteobacteria (class), and Pseudomonadales
(order) were enriched in female algal bodies; Microtrichales
(order), Acidimicrobiia (class), and Actinomycetota (phylum) were
abundant in male receptacles, while Cyanobacteria (phylum),
Oxyphotobacteria (class), and Arenicellaceae (family) were
abundant in female receptacles.

In addition, Figures 7A, B. showed the indicator values of
the groups with significant differences (P < 0.01) in abundance
between male and female S. thunbergii and their receptacles at the
phylum and genus levels. The groups showed large differences in
indicator values. Among the indicator species at the genus level,
Planctomicrobium, Anderseniella, and Algitalea were abundant in
the male algal bodies; HIMB11, Lactobacillus, and Marinobacterium
were enriched in the female algal bodies; Rhodococcus and Delftia

were abundant in the male receptacles; and Perspicuibacter,
Aquimarina, and Coraliomargarita were enriched in the female
receptacles. This suggests that the highest frequency or abundance
of endophytic bacteria was not the same between the algal body and
the receptacles or between samples of different sexes.

3.2.7 Prediction of functional genes of
endophytic bacteria

Based on PICRUSt2, the gene functional abundance of
the endophytic bacteria in male and female S. thunbergii and
their receptacles was predicted. The results showed significant
differences among the 4 groups of samples (Figure 8). At the
secondary level, there was a significant difference (P < 0.01)
in the function of 27 out of 33 genes among the 4 kinds of
samples. These functions included five categories: metabolism,
genetic information processing, cellular processes, organismal
systems, and environmental information processing. At the third
level, there was a significant difference (P < 0.05) among the
four kinds of samples in 151 out of 169 gene functions. Among
them, 109 out of 151 gene functions were related to metabolism,
such as xenobiotic biodegradation and metabolism (18 types),
carbohydrate metabolism (15 types), amino acid metabolism (13
types), and lipid metabolism (12 types), and others included
environmental adaptability, infectious diseases, and cell motility.
Another interesting finding was that the abundance of predicted
genes with significant differences in female receptacles was higher
than that in males, but in the algal bodies of the two sexes,
the abundances of predicted genes with significant differences
were basically the same, and both were lower than those in the
receptacles.
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FIGURE 3

The β-diversity of endophytic bacterial communities in male and female S. thunbergii and receptacles. (A) Results of the unweighted pair-group
method with arithmetic mean (UPGMA) approach. (B) Results of principal coordinate analysis (PCoA).

4 Discussion

4.1 Composition of the endophytic
bacterial community in S. thunbergia

The results of both culture and high-throughput sequencing
in this study showed that the endophytic bacterial species were
very rich in S. thunbergii and their receptacles. Among the strains
isolated from algal bodies, Bacillota dominated at the phylum
level, which was consistent with the results of studies on terrestrial
plants (Webster et al., 2020). However, the results at the genus
level and species were different from those in terrestrial plants,
with most of the detected bacteria being saline-alkali tolerant or
salt tolerant bacteria (Supplementary Table 1), such as A. algicola
(Ivanova et al., 2004), A. berkeleyi (Patel and Gupta, 2020),
A. caeni (Patel and Gupta, 2020), R. aquimaris (Wang et al.,
2023), F. halophilus (Sharma et al., 2016), H. faecis (Zhang et al.,
2019), and H. kuroshimensis (Shi et al., 2020), indicating the
adaptation of algal endophytic bacteria to the marine environment.

It was interesting that the dominant species was A. algicola,
which was an algae-dweller with alginolytic abilities and a lot
of other isolated endophytic bacteria such as H. kuroshimensis
(Shi et al., 2020), V. alginolyticus (de Souza Valente and Wan,
2021), and P. diffluens (Nikolaeva et al., 1999) were also alginic
acid-dissolving bacteria. In addition, there were many bacterial
species involved in material metabolism, included P. caeni (Baker
et al., 1998) with multiple metabolic functions, M. jeotgali (Green-
Ruiz et al., 2008) and S. horikoshii (Gupta et al., 2020) related
to heavy metal absorption, etc. These results indicated that the
metabolic relationship between endophytes and hosts, especially
the metabolism of algal derived substances by endophytes, which
was very important in the relationship between endophytes and
hosts. Moreover, there are also some beneficial endophytic bacteria
which were beneficial to the host, including antibacterial B. Safensis
(Zhang Z. et al., 2020) and B. xiamenensis (Amna et al., 2020),
as well as M. indicus (Falkenberg et al., 2023), which induced
host metamorphosis, indicating that there was a very complex
relationship between endophytic bacteria and host algae.
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FIGURE 4

Venn diagram and relative abundance of endophytic bacteria in algal bodies and receptacles of male and female S. thunbergii. (A,C) Phylum level.
(B,D) Genus level.

In addition, our study revealed that endophytic bacteria were
more abundant in the receptacles than in the algal bodies, with
five genera isolated only in the receptacles. These genera were rich
in functions; for example, Exiguobacterium, which is adapted to
extreme environmental conditions such as salt and alkali (He et al.,
2012; Zhang et al., 2013), the biodegrading bacterium Persicobacter
(Han et al., 2012), and Vibrio (de Souza Valente and Wan, 2021),
which is a common pathogen in marine organisms.

The high-throughput sequencing results showed that the core
phyla of endophytic bacteria in S. thunbergii were Pseudomonadota,
Bacteroidota, and Actinomycetota, which were similar to those
in terrestrial plants (Fadiji et al., 2020) and rice seeds (Feng
et al., 2023). However, there was a significant difference in the
core genera of endophytic bacteria in S. thunbergii compared
with terrestrial plants and the other macroalgae S. horneri and
U. prolifera (Mei, 2019). This indicated that the species specificity
of host algae is an important factor determining the composition
of endophytic bacterial communities. The core endophytic bacteria
in S. thunbergii included the genus Sva0996_marine_group, which
is related to the metabolism of alga-derived substances (Orsi
et al., 2016), the dimethylsulfoniopropionate (DMSP) degrader
Loktanella (Sun et al., 2020), and pollutant-degrading bacteria, such
as the phenanthrene (PHE)-degrading bacterium Acinetobacter
(Li et al., 2017), the polyaromatic hydrocarbon (PAH)-degrading
bacterium Pseudoruegeria (Yuan, 2008), and the hydrocarbon-
degrading bacteria Granulosicoccus (Rizzo et al., 2019) and
Robiginitomaculum (Verhoeven et al., 2017). In addition, there
were some bacteria that can promote and inhibit the growth of
algae, such as Burkholderia-Caballeronia-Paraburkholderia (Wu

et al., 2022), Enhydrobacter (Dartora et al., 2016), and Maribacter
(Ghaderiardakani et al., 2019). This indicated that the composition
of endophytic bacteria was closely related to the external
environment and host alga. Interestingly, these endophytic bacteria
were also abundant in S. thunbergii (Wang et al., 2022a), which
is consistent with the findings of studies on S. horneri and
U. prolifera (Mei, 2019), indicating that the endophytic bacteria and
epiphytic bacteria in macroalgae have a common source and close
connection.

4.2 The differences in endophytic
bacterial communities between male
and female S. thunbergii and their
receptacles

Previous studies paid little attention to the differences in
endophytic bacterial communities between hosts of different sexes,
and similar studies have not been carried out in macroalgae.
However, the results of both the culture method and high-
throughput sequencing in this study revealed differences between
endophytic bacteria in algal bodies and receptacles of hosts of
different sexes.

The results of both methods showed a difference in the
endophytic bacterial community between male and female
S. thunbergii and their receptacles. Although the dominant bacteria
of female and male algal bodies were basically the same, some
species could be isolated from only a single sex. Interestingly,
some endophytes isolated from algae of different sexes, although
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FIGURE 5

The network analysis of endophytic bacteria in algal bodies and receptacles of male and female S. thunbergia at genus level (P < 0.05). (A) Male algal
bodies. (B) Female algal bodies. (C) Male receptacles. (D) Female receptacles. Node color corresponds to genus taxonomic classification. Edge color
represents positive (red) and negative (blue) correlations.

not the same species, performed similar functions. For example,
H. trueperi with antibacterial activity was isolated from male
algae (Chen et al., 2010), while B. safensis (Zhang Z. et al.,
2020), which were isolated from female algal bodies, also have
antibacterial properties. There have been many relevant studies on
endophytic bacteria isolated from different plant organs (Wang
et al., 2021; Zhang A. et al., 2021). However, the differences
in culturable bacteria among different reproductive tissues of
dioecious plants have not been reported. This study revealed that
the dominant endophytic bacteria differed between the male and
female receptacles of S. thunbergia. For example, V. neocaledonicus,
the dominant bacterium isolated only from the male receptacles,
has been reported as a pathogen and has the ability to prevent
oxygen from entering rusted biofilm (Moradi et al., 2018). The
dominant genus Alkalihalobacillus in female receptacles has a
degradation function (Song et al., 2023).

The results of high-throughput sequencing of the specific
taxa more clearly showed the differences in endophytic bacterial
communities between sexes. The endophytic bacteria of samples
from different sexes included specific phyla and genera, and
most of them were metabolism-related bacteria. For example,
among the specific bacterial phyla in the female algal bodies,
Entotheonellaeota has the ability to synthesize bioactive substances
(Ho et al., 2021), Armatimonadota and Planctomycetota can
decompose and utilize complex polysaccharides (Wang et al.,

2015), Nitrospirota is associated with N metabolism (Daims et al.,
2015), and Marinimicrobia_SAR406_clade is associated with the
dark fixation of dissolved inorganic carbon (DIC) (Guerrero-Feijóo
et al., 2018). The only specific phylum in the male algal bodies
was Elusimicrobiota, which consists of nitrogen-fixing bacteria
(Zheng et al., 2016; Méheust et al., 2020). Interestingly, there
were no specific phyla in either male or female receptacles. At
the genus level, the results were more striking. For example, the
specific genera in male and female algal bodies were still related
to metabolism. The specific genera in male algal bodies included
the alginate-degrading bacterium Brachybacterium (Wang M.
et al., 2018), phosphorus-solubilizing bacterium Psychrobacillus
(Chiba et al., 2022), carotenoid-producing bacterium Flavicella
(Teramoto and Nishijima, 2015), and Rubricoccus (Nakajima et al.,
2017), which contains rhodopsin-producing genes and plays an
important role in energy conversion. Interestingly, there were
also some gut metabolic bacteria present, such as Lentisphaera
(related to pentose metabolism) and Dialister (Louis et al., 2014)
(related to propionic acid production). In addition, the group
also included the autotrophic bacterium Magnetospira involved in
CO2 fixation (He, 2014). The number of specific genera in the
female algal bodies was much greater than that in the male algal
bodies, and their functions were more diverse. However, most of
them were involved in nutrient cycling and metabolism, such as
Macrococcus (Mazhar et al., 2018), with the highest abundance,
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FIGURE 6

Biomarker analysis of male and female S. thunbergii and their receptacles. The cladogram shows the phylogenetic structure of the microbiota. The
circles that radiate from inside to outside represent taxonomic levels from phylum to genus, and each small circle represents an individual taxon.
The diameter of the circles is proportional to the relative abundance. The linear discriminant analysis (LDA) scores indicate significant differences in
bacterial taxa (LDA score >4.0). (A) Cladogram. (B) LDA score chart.

FIGURE 7

Indicator value analysis of endophytic bacteria in male and female S. thunbergii and their receptacles at the phylum and genus levels (P < 0.01). (A)
Phylum level. (B) Genus level.

Frontiers in Microbiology 10 frontiersin.org

https://doi.org/10.3389/fmicb.2024.1334918
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-15-1334918 March 12, 2024 Time: 16:37 # 11

Zhao et al. 10.3389/fmicb.2024.1334918

FIGURE 8

Functional prediction of genes of endophytic bacteria in male and female S. thunbergii and their receptacles. (A) Level 2. P < 0.01. (B) Level 3.
P < 0.05 (KW rank sum test).

which can promote carbohydrate and amino acid metabolism;
bacteria involved in sulfur metabolism, including Marinobacterium
(Fuse et al., 2000), Desulfatitalea (Pang et al., 2021), Halanaerobium
(Ravot et al., 2005), and Sva0081_sediment_group (Fan et al., 2018);
bacteria involved in nitrogen metabolism, including Pirellula (Han
et al., 2019), Costertonia (Kwon et al., 2006) and Gemmatimonas
(Park et al., 2017); and complex compound-degrading bacteria,
including SM1A02 (Zheng et al., 2020), and Chryseolinea (Milkereit
et al., 2021). Interestingly, many bacteria have been reported in
human and animal intestines, such as Cloacibacterium (Nouha
et al., 2016), Prevotella_9, Prevotella_2 (Liu Z. et al., 2020),
and Ruminococcaceae_UCG-005 (Gebeyew et al., 2021), which
showed the various metabolic capacities of endophytic bacteria
specific to female algal bodies. In addition, Fusobacterium is an
opportunistic anaerobic pathogen (Castellarin et al., 2012), and
Geodermatophilus has significant antioxidant capacity and can
resist multiple environmental stresses (Hongmin et al., 2015).
Additionally, there were phototrophic/heterotrophic bacteria of
Candidatus_Actinomarina that absorb and assimilate dissolved
organic matter (DOM) (Xie Z., 2018) and RB41 bacteria important
for controlling carbon circulation (Stone et al., 2021).

The differences in specific genera of endophytic bacteria
were more apparent in the receptacles. The specific genera
with the highest abundance in male receptacles were almost
all intestinal bacteria, including Prevotella_ 1 (Liu Z. et al.,
2020), Erysipelotrichaceae_ UCG-007 (Guo et al., 2020),
Shuttleworthia (Jin-Shun et al., 2017), Defluviitaleaceae_U
(Yang et al., 2020), Faecalibacterium (Heinken et al., 2014),
Rubellimicrobium (Xie D., 2018), Ruminococcus_2 (Ma et al., 2022),
Candidatus_Saccharimonas (Cao et al., 2022), and Terrimicrobium

(Qiu et al., 2014). They also included the specific pathogenic
bacteria Peptococcus (Bourgault et al., 1980) and Roseomonas
(Rihs et al., 1993). However, in the female receptacles, there were
many pathogenic bacteria, such as Legionella (Machner and Isberg,
2006), Mycobacterium (Palomino, 2009), and Kocuria (Basaglia
et al., 2002). The bacterial genus Promicromonospora specific to the
female receptacles also has antagonistic effects against Fusarium
oxysporum and can produce antioxidants. It was particularly
interesting that Steroidobactor (Fahrbach et al., 2008) was the first
known bacteria to grow on estradiol (C-18) and testosterone (C-
19), while Minicystis (Garcia et al., 2014) could produce steroids.
In addition, there were few degrading bacteria in the receptacles
of both sexes, and the degrading bacteria in the male receptacles
were the phenol-degrading anaerobic bacterium Thermicanus (Qi,
2021) and the sulfate-degrading bacterium Desulfobulbus (Samain
et al., 1986). The female receptacles included the polyethylene
degrader Brevibacillus (Stone et al., 2021), biopolymer degrader
Tepidisphaera (Jiang et al., 2020) and various macromolecular
degraders such as Luteimonas (Lin et al., 2020; Zhou et al., 2021).
Moreover, there were alga-soluble bacteria (Muricauda) in the male
receptacles (Shi et al., 2012), while there were algicidal bacteria
[Kordia (Sohn et al., 2004) and Saprospira (Furusawa et al., 2003)]
in the female receptacles.

The results of LEfSe analysis also showed that the genera with
high indicator values were different between the sexes and were
mainly related to metabolism. For example, Planctomicrobium, the
bacterium with the highest indicator value in male algal bodies,
can participate in the degradation of biopolymers in plant and
fungal cell walls (Kulichevskaya et al., 2019), and the bacteria with
high indicator values in male receptacles included the degrading
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bacterium Rhodococcus (Larkin et al., 2005) and endophytic
nitrogen-fixing bacterium Delftia (Han, 2004). Marinobacterium,
with a high indicator value in female algal bodies, participates in
the sulfur cycle (Fuse et al., 2000), and Coraliomargarita, with a
high indicator value in female receptacles, has been reported as a
specific microfloral member in the gut of Apostichopus japonicus
(Quan et al., 2019).

In summary, there were significant differences in the
composition of endophytic bacteria between males and females,
mainly associated with material metabolism, as well as the
degradation of pollutants, pathogen resistance and antioxidant
activity. Studies on higher plants have shown significant differences
in enzyme activity, secondary metabolites and endogenous
hormone levels between male and female individuals and reported
that estrogen is a unique secreted hormone in various brown
algae (Li et al., 2006) and that the content of bromophenols in
the reproductive tissues of the red alga Neorhodomela larix varies
between the sexes (Carlson et al., 1989). This indicates that the
differences in endophytic bacterial communities mentioned above
may mainly be due to differences in material metabolism within
the host algae and reproductive tissues of different sexes. However,
further confirmation based on combining the metabolomic and
transcriptome differences between the sexes of S. thunbergii and
their receptacles is needed.

4.3 The role of host sex in the assembly
of the endophytic bacterial community
in S. thunbergia

The results of the two methods in this study revealed differences
in the structure and function of endophytic bacterial communities
between male and female S. thunbergii and their receptacles. The β-
diversity analysis revealed that endophytic bacterial communities
in samples from different sexes could be clustered separately.
Moreover, the clustering between male and female receptacles was
more obvious, indicating that the sex differences in endophytic
bacterial communities from receptacles were greater than those
from algal bodies. This can be explained by the fact that the
differences in the male and female algal bodies of S. thunbergii
were smaller than those in their receptacles. The smaller difference
in endophytic bacterial communities between male and female
algal bodies means that the bacterial community in algal bodies
of different sexes was more stable than that in the receptacles, but
the significant differences in β-diversity between groups indicated
that the sex of S. thunbergii has a certain impact on the structure
of the endophytic bacterial communities in S. thunbergii and that
the impact was stronger on the endophytic bacterial communities
in the receptacles.

The α-diversity results also showed that the abundance and
evenness of endophytic bacteria in S. thunbergii were higher
in females than in males. Previous studies have found that the
reproductive tissues of brown macroalgae can secrete unique
estrogenic hormones, which may correspond to their metabolic
bacteria. Additionally, this study showed the bacterial genera
Steroidobactors (Fahrbach et al., 2008) that can degrade sex
hormones and Minicystis (Garcia et al., 2014) that can produce
steroids in female receptacles, indicating that the sex of the host

can directly affect the composition of endophytic bacteria in the
receptacles of S. thunbergii.

Moreover, the results of predicted gene function indicated that
the difference in the abundance of functional genes between male
and female algal bodies was less obvious than that between male
and female receptacles. This further confirmed that the differences
in bacterial communities of endophytic bacteria between different
sexes were mainly due to differences in the receptacles. These
differences were mainly related to metabolic genes, which suggested
that metabolic differences were the main reason for the differences
in endophytic bacteria between male and female algal bodies and
receptacles. In addition, the abundance of predicted genes with
significant differences was basically the same in both male and
female algal bodies but lower than that in the receptacles, and the
abundance of predicted genes in the female receptacles was much
higher than that in the male receptacles. Many studies have shown
significant differences in the content of various chemicals in male
and female flowers in plants (Quan et al., 2019; Sowndhararajan
et al., 2020). Although algae do not have floral organs, studies
have shown that the content of bromophenols in the reproductive
structures of the two sexes varies in the red alga Neorhodomela
larix (Carlson et al., 1989). In this study, it was also found that
both Sva0996_marine_group, which is involved in the utilization of
organic matter (Wang Y. et al., 2018), and Phormidesmis, which is
related to organophosphorus decomposition, were more abundant
in female receptacles. It can be speculated that the differences
in the chemicals between male and female receptacles lead to
differences in endophytic bacterial communities closely related to
host metabolism in the receptacles of different sexes. However, few
studies have focused on the differences between male and female
algae and their receptacles, and further studies will need to analyze
the metabolic differences between algae and receptacles of different
sexes and their correlation with endophytic bacterial communities
to reveal the mechanism by which the sex of dioecious macroalgae
affects the assembly of the endophytic bacterial community.

5 Conclusion

In this study, the endophytic bacterial community structures of
male and female S. thunbergii and their receptacles were compared
based on a culture method and high-throughput sequencing. The
results of both methods showed that the majority of endophytic
bacteria in the two sexes of S. thunbergii and their receptacles were
the same, but the diversity, abundance of dominant taxa, specific
bacterial taxa, and biomarkers differed between the sexes, especially
in the samples from receptacles. There was a significant difference
in predicted functional abundance between male and female
samples, and most of the functions were related to metabolism. It
was found for the first time that the sex of the host alga contributes
to the community assembly of endophytic bacteria in S. thunbergii,
and the impact on the endophytic bacterial community was greater
in the receptacles. Moreover, many endophytic bacterial strains
were obtained, providing experimental materials for the effective
utilization and development of algal microbial resources. The
results of this study help elucidate the mechanism of endophytic
bacterial community assembly in dioecious marine macroalgae and
further the understanding of the interaction between endophytic
bacteria and macroalgae.
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