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Integrated sequence and -omic
features reveal novel small
proteome of Mycobacterium

tuberculosis

Priyansha Raj Sinha, Rami Balasubramanian and

Shubhada R. Hegde*

Institute of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru, India

Bioinformatic studies on small proteins are under-represented due to di�culties

in annotation posed by their small size. However, recent discoveries emphasize

the functional significance of small proteins in cellular processes including cell

signaling, metabolism, and adaptation to stress. In this study, we utilized a

Random Forest classifier trained on sequence features, RNA-Seq, and Ribo-

Seq data to uncover small proteins (smORFs) in M. tuberculosis. Independent

predictions for the exponential and starvation conditions resulted in 695 potential

smORFs. We examined the functional implications of these smORFs using

homology searches, LC-MS/MS, and ChIP-seq data, testing their expression in

diverse growth conditions, and identifying protein domains. We provide evidence

that some of these smORFs could be part of operons, or exist as upstream

ORFs. This expanded data resource for the proteins of M. tuberculosis would

aid in fine-tuning the existing protein and gene regulatory networks, thereby

improving system-wide studies. The primary goal of this study was to uncover

and characterize smORFs in M. tuberculosis through bioinformatic analysis,

shedding light on their functional roles and genomic organization. Further

investigation of these potential smORFs would provide valuable insights into the

genome organization and functional diversity of the M. tuberculosis proteome.
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Introduction

Small proteins of length 5–100 amino acids are encoded by small open reading frames

(ORFs), often independent of the downstream ORF. Some known small proteins include

ribosomal proteins, nucleic acid chaperones, and kinase regulators. Many small proteins

are essential for cellular activities such as cell division, signal transmission, transportation,

and sporulation (Storz et al., 2014). Additional functions of the small proteins include

functions such as toxins, being part of larger protein complexes, interacting with the

membrane, controlling the activities of transcription regulators, and binding to DNA or

RNA. The evolutionary characterization of small proteins reveals intriguing trends. Small

proteins tend to be more evolutionarily dynamic than longer proteins, showing elevated

Ka/Ks ratios in interspecific comparisons and suggesting rapid evolution. While some

small proteins evolve into compact multi-domain proteins, others remain small, suggesting

diverse evolutionary pathways (Su et al., 2013). Their small size and versatility make

them well-suited for such diverse roles (Gray et al., 2022). For instance, the tarsal-less

(tal) gene in Drosophila encodes an 11-amino acid peptide that controls gene expression

and tissue folding (Cheng et al., 2011). Some small proteins interact with other proteins

to modify their structural conformation, which subsequently govern their stabilities and

enzymatic activities. For example, Sda (46 amino acids) in Bacillus subtilis interacts
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with histidine kinase KinA and induces a change in its

conformation, which results in the inhibition of KinA

autophosphorylation (Rowland et al., 2004; Whitten et al.,

2007; Storz et al., 2014). Similarly, conserved small proteins

SpoVM and CmpA exist in endospore-forming bacteria and exert

significant influence on sporulation processes. In Escherichia

coli, SpoVM obstructs the function of FtsH, an essential factor

for initiating sporulation (Cutting et al., 1997). Also, a PhoQP-

regulated small protein MgrB in E. coli negatively regulates

PhoQ sensor kinase (Lippa and Goulian, 2009). Moreover,

CmpA from B. subtilis impacts coat and cortex morphogenesis

during sporulation. Deleting cmpA speeds up sporulation, while

overproduction delays the entry into the sporulation stage and

interferes with cortex assembly (Ebmeier et al., 2012). Other B.

subtilis small proteinsMciZ and FsrA regulate cell division and iron

homeostasis, respectively (Handler et al., 2008; Smaldone et al.,

2012). In another study, two previously unidentified low-mass

proteins, TB7.3 and TB10.4, were discovered, with genetic analysis

confirming that TB10.4, in conjunction with the previously

recognized small protein CFP10, belongs to the low-mass ESAT-6

family, while TB7.3 stands apart as a low-molecular-mass protein

outside of this family (Skjøt et al., 2000).

Some regulatory small RNAs (sRNAs) that also encode small

proteins are termed dual-function sRNAs. These sRNAs can

influence target gene expression through various mechanisms,

including antisense activity via complementary base-pairing,

modulation of RNA binding protein activities, and translation into

peptides that participate in either similar or distinct metabolic

processes as the target gene (Thomason and Storz, 2010; Raina

et al., 2018). One such dual-function sRNA is SgrS in E.

coli, which prevents the synthesis of glucose transporters and

indirectly promotes the translation of sugar phosphatase. The

sRNA also codes for a protein SgrT, which inactivates existing

glucose transporters through protein-protein interactions (Wadler

and Vanderpool, 2007). Another example is SR1 in B. subtilis,

which initially known for inhibiting translation initiation of ahrC

mRNA, was later found to encode SR1P, a highly conserved small

peptide. SR1P binds to GapA, stabilizing the gapA operon mRNA

rather than promoting translation, thus showcasing a unique dual

functionality in B. subtilis (Gimpel et al., 2010). Additionally, the

McaS sRNA of E. coli demonstrates dual functionality by directly

base-pairing with mRNA targets and indirectly regulating gene

expression by binding to the global regulator CsrA. This unique

role in controlling biofilm formation adds complexity to the post-

transcriptional regulatory network (Jørgensen et al., 2013). Interest

in identifying and characterizing small proteins has increased

recently due to their functional importance.

Previously, comparative genomics approaches were employed

to identify small proteins in a given genome (Hemm et al.,

2008; Cheng et al., 2011; Samayoa et al., 2011; Yang et al.,

2011). One notable tool RanSEP utilizes the Random Forest

method to identify potential small proteins in bacterial genomes

based on sequence-level coding features (Miravet-Verde et al.,

2019). Additionally, conserved small ORFs were identified through

studies combining comparative genomics, sequence features, and

ribosome profiling data (Crappé et al., 2013; Friedman et al.,

2017). The advent of sequencing technology has facilitated the

comprehensive identification and characterization of numerous

small proteins. For instance, ribosome profiling data has revealed

signatures of translation for many small ORFs (Ingolia, 2014).

To annotate prokaryotic genomes, DeepRibo utilizes ribosome

profiling as a means of predicting expressed protein-coding genes

(Clauwaert et al., 2019). FSPP is another high-throughput small

ORF predictor that employs mass spectrometry data, RNA-Seq, and

Ribo-Seq data to predict genome-wide small proteins in humans (Li

et al., 2018). These existing tools primarily rely on sequence features

or expression data from Ribo-Seq or RNA-Seq.

There are a couple of studies focused on genome-wide small

protein identification in a given bacterial genome. For instance,

in E. coli, intergenic small proteins were identified through a

combination of conservation analysis and ribosome binding site

models (Hemm et al., 2008; VanOrsdel et al., 2018). Furthermore,

ribosome profiling data enabled the genome-wide identification

of small ORFs in E. coli (Weaver et al., 2019). In M. smegmatis,

small proteins encoded by upstream open reading frames (uORFs)

were identified, suggesting their potential role in enhancing the

translation initiation of the downstream genes (Shell et al., 2015).

Additionally, Ribo-Seq data analysis in M. abscessus identified

about 113 small ORFs, the majority of which show conservation

across other mycobacterial species (Miranda-CasoLuengo et al.,

2016). In mycobacteria, a few small proteins are differentially

expressed across growth conditions. For example, MAB_5038c and

MAB_5039c ofM. abscessus are upregulated in the artificial sputum

and upon exposure to erythromycin or kanamycin, and not in

hypoxia (Miranda-CasoLuengo et al., 2016). Many studies describe

the role of small proteins in M. tuberculosis. ESX proteins, crucial

virulence factors in M. tuberculosis, facilitate protein secretion and

host-pathogen interactions. EsxA, a small protein co-expressed

with the ESX-1 secretion system, is vital for M. tuberculosis

virulence, playing a role in substrate secretion and ESX-1 gene

expression regulation (Bao et al., 2021). Also,M. tuberculosis small

heat shock proteins Arc1 (also known as Hsp16.3/16-kDa antigen

and α-crystallin-related protein 1) and Arc2 (also called HrpA)

are highly expressed during the non-replicative phase and upon

heat shock stress, respectively (Kennaway et al., 2005). Therefore,

conditional expression of these small proteins suggests their role in

the host adaptation of mycobacteria.

Despite all these approaches, a comprehensive, organism-

specific, genome-wide identification of small proteins at higher

confidence remains a challenge. We developed a machine-learning

pipeline by integrating genomic features with the gene expression

and ribosome binding information in a single framework to

identify small proteins in M. tuberculosis. This comprehensive

approach revealed 695 small proteins (smORFs henceforth), many

of which are conserved in other bacterial species. We reinforced

many of their functional importance by analyzing proteomics

data, predicting the conserved domains, and deriving functional

annotations. By comparing our results with previous findings,

we highlight the novelty of our approach. We compared our

predictions with those of previous tools, demonstrating improved

performance. Furthermore, we predict small proteins under two

conditions, exponential and starvation, offering insights into

potential therapeutic targets and enhancing our understanding of

M. tuberculosis pathogenicity.
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Methods

Feature selection for Random Forest
classification

Combined sequence features, expression (RNA-Seq), and

ribosome binding (Ribo-Seq) signatures were used to predict

small proteins in M. tuberculosis. Independent predictions were

made for the exponential and starvation growth conditions using

corresponding RNA-Seq and Ribo-Seq data while keeping the

sequence features constant. M. tuberculosis RNA-seq and Ribo-

seq data at exponential growth and 24 h of nutrient starvation

were downloaded from the European Nucleotide Archive (ENA)

(https://www.ebi.ac.uk/ena) (Sawyer et al., 2021) (E-MTAB-8835).

Using Trimmomatic (v0.39), adapters from the raw reads were

trimmed and the reads were aligned against M. tuberculosis

H37Rv reference genome (NC_000962.3) using Bowtie2 (v2.3.4.1)

(Langmead and Salzberg, 2012; Bolger et al., 2014). Aligned

SAM files were sorted, indexed, strand separated, and converted

into BAM files, and the replicates were merged using samtools

(v1.7) (Li et al., 2009). Expression of the ORFs was calculated

as normalized RPKM from the read counts obtained using

MultiBamCov in bedtools (v2.26.0) (Quinlan and Hall, 2010).

Likewise, Ribosome binding of the ORFs was assessed using the

same approach. Protein-coding sequence features were extracted

from the Python package iFeature (Chen et al., 2018). All the

sequence feature outputs provided by the iFeature Python package

were normalized values. Of the 18 different features provided by

iFeature, eight best features that efficiently separate positive and

negative training sets were chosen. These include hydrophobicity,

normalized Van der Waals volume, polarity, polarizability, charge,

grouped amino acid composition (GAAC), secondary structures,

and solvent accessibility. To this list, GC content was included

as an additional sequence-based feature. The features on which

the classifier is trained are not specific to small proteins, but test

the coding potential of the genomic regions with start and stop

codons in-frame.

For training the machine learning model, 197 and 193

annotated proteins of M. tuberculosis with amino acid length ≤

100 which are expressed and ribosome-bound in exponential and

stationary growth phases, respectively, were considered as a positive

set. Proteins were recognized as expressed and ribosome-bound

if their expression and ribosome binding (measured as RPKM)

values surpassed the median value of all the annotated proteins

in M. tuberculosis. The negative training set was comprised of

200 random in silico translated sequences generated from the stop

codon to the start codon located between the annotated ORFs in

M. tuberculosis. For generating test data,M. tuberculosis ORFeome

comprising all possible ORFs in the genome with a length cut-

off of ≥ 30 bases was generated using codon translation table 11,

with start codons ATG, TTG, and GTG and stop codons TAG,

TAA, and TGA. The test set contained ∼85% potential ORFs with

a size of < 100 amino acids, indicating a bias toward smaller

proteins due to the absence of a length filter. A total of 74,976

potential ORFs along the genome spanning both the strands were

generated. Novel ORFs encoding small proteins were predicted

from 45,652 potential ORFs (test set) devoid of annotated protein-

coding regions, repeat elements, ORFs with > 75% overlap with

the annotated protein-coding regions, and tRNA and rRNA-coding

regions. Random Forest classifier method (Ho, 1995) of the python

package scikit-learn (0.21.2) (Pedregosa et al., 2011) was used for

the prediction. The classifier performance in cross-validation was

calculated using the cross_val_score function in the scikit-learn

library. The mean values of the cross-validation score in a 5-fold

CV in the exponential and stationary growth phase data were

0.98 and 0.99, respectively. Hyperparameter tuning was performed

to decide the best parameters for the prediction which included

n_estimators=1000 and max_depth=10. Accuracy was derived

based on the AUC of the ROC curves. A probability cutoff of 0.6

was used to list the final predictions.

Comparison with the previously reported
methods

The ORFs predicted in M. tuberculosis by the previously

reported tools RanSEPs (Miravet-Verde et al., 2019), DeepRibo

(Clauwaert et al., 2019), and a ribosome profiling study conducted

by Smith et al. (2022) were obtained. RanSEPs uses sequence

features to detect small proteins in a given bacterial genome. With

a probability score (RanSEPs score) cutoff of > 0.6, RanSEPs

predicted 6494 smORFs in M. tuberculosis which are devoid

of the annotated proteins. DeepRibo is a neural network-based

tool trained on ribosome profiling data and DNA sequence of

translation initiation site (Shine Dalgarno sequence and ribosome

binding site) to annotate protein-coding genes in the bacterial

genomes. DeepRibo predicted 632 ORFs in M. tuberculosis

excluding the annotated proteins with a prediction score >-0.5.

In the investigation conducted by Smith et al. (2022), ribosome

profiling techniques were employed to explore the landscape of

actively translated ORFs in M. tuberculosis. There were 1,929

predicted small ORFs, some of which exhibited overlapping regions

with annotated genes. From this, only those small ORFs that either

partially or completely overlapped antisense genes or remained

non-overlapping with annotated genes were considered. This

yielded a subset of 1,158 small ORFs which were predominantly

characterized by their short length, with a significant proportion

encoding proteins of around 50 amino acids. Among these, only

757 small ORFs were of lengths > 10 amino acids.

Conditional expression of identified ORFs

To quantify the conditional expression of the identified

smORFs, strand-specific RNA-Seq data from a range of

growth conditions were used. This included transcriptome

sequencing of M. tuberculosis subjected to conditions such

as redox stress (SRR14196865), low phosphate-induced stress

(SRR21026187), nutrient starvation, hypoxia, and exponential

growth (SRR18455925, SRR18455928 and SRR18455932). In

addition, RNA-Seq data to explore the evolutionary aspects of the

biofilm transcriptome (SRR23216840 and SRR23216853), assessing

the RNA-Seq expression profiles of the wild-type M. tuberculosis

H37Rv culture grown for a 48-hour duration (SRR23306196) were

considered. These data were retrieved from the NCBI Sequence

Read Archive (SRA) and the European Nucleotide Archive (ENA)

(Leinonen et al., 2011). Downloaded fastq reads were trimmed and
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aligned with the reference genome (NCBI Reference Sequence:

NC_000962.3) using Trimmomatic (v0.39) and Bowtie2 (v2.3.4.1),

respectively (Langmead and Salzberg, 2012; Bolger et al., 2014). The

read counts of these regions were obtained using MultiBamCov of

bedtools and normalized as RPKM. The threshold for considering

expression as significant was set above the median expression

level observed for the known protein-coding regions during the

exponential growth phase. smORFs were classified as expressed

if their RPKM values exceeded the median RPKM value of the

known protein-coding regions.

LC-MS/MS analysis

M. tuberculosis LC-MS/MS data of the exponential phase

and the early stationary phase (PXD000111) (Albrethsen et al.,

2013) were retrieved from the PRIDE archive (https://www.ebi.

ac.uk/pride/archive/) (Vizcaíno et al., 2013). To validate protein

expression, in silico translated sequences of smORFs were given as

the database in MaxQuant (v1.6.8.0) which processes LC-MS/MS

raw files and searches against the protein database (Tyanova et al.,

2016). smORFs of at least one unique peptide fragment with q-value

< 0.01 were considered as expressed.

ChIP-Seq analysis

Differential binding of RNAP and NusA for the smORFs

expressing in the exponential phase was analyzed using ChIP-

Seq datasets GSM1003215 and GSM1003219, respectively (Uplekar

et al., 2013). Their expression levels were compared with two

distinct sets of 200 randomly chosen IGRs. Additionally, ChIP-

Seq data of AraC family transcriptional regulator Rv3833 and a

genomic control (GSM1003222) were used as control data. These

IGRs were chosen to exclude the regions between operonic genes,

tRNAs, and rRNAs while maintaining similar length distributions.

The fastq-dump function of the sra-toolkit-3.0.2 was used to

retrieve the fastq format of the data. These were aligned to

the reference genome (NC_000962.3) using bowtie2 (v 2.3.5.1).

Aligned SAM files were converted to BAM files which were further

sorted and indexed by samtools. From the sorted BAM files,

readcounts were obtained using multiBamCov of bedtools, which

were further normalized to RPKM values to represent the binding

profile. Welch two sample t-test was performed to compare the

binding between smORFs and random IGRs.

G/C utilization in codons

For the smORFs, the presence of G or C bases at the first,

second, and third positions of all codons was assessed. The G/C-

skew was quantified by calculating the ratio of the cumulative

G+C bases at the third codon position to those at the second

codon position, after removing the start/stop codons. Statistical

comparisons were performed using Fisher’s exact test to compare

the G+C base counts between the second and third positions. The

statistical tests were conducted in either a one-tailed or two-tailed

manner. In one-tailed tests, the null hypothesis was that the G+C

base count at the third codon position would not exceed that at the

second codon position.

Gene and peptide conservation analysis

To identify the homologs of the predicted smORFs in other

bacterial species, Blastn (v 2.9.0 +) (Camacho et al., 2009) with

E-value < 10−4 were used for aligning against the genomes of

representative Gram-negative bacteria (Escherichia coli str. K-12,

Haemophilus influenzae 86-028NP, Klebsiella pneumoniae MGH

78578, Pseudomonas aeruginosa PAO1, Vibrio cholerae 2010EL-

1786, Yersinia pestis A1122), Gram-positive bacteria (Bacillus

subtilis str. 168, Listeria monocytogenes EGD-e, Staphylococcus

aureus NCTC 8325, Staphylococcus epidermidis ATCC 12228,

Streptococcus mutans UA159, Streptococcus pneumoniae 670-6B)

and mycobacteria (Mycobacterium africanum GM041182,

Mycobacterium canetti CIPT 140010059, Mycobacterium

tuberculosis, Mycobacterium leprae TN, Mycobacterium bovis

AF2122/97, Mycobacterium avium 104, Mycobacteroides abscessus

ATCC 19977).

Additionally, BactPepDB database was used to test the

conservation of peptides from the pool of predicted smORFs

using Blastp with an E-value cutoff of < 10−2 (Rey et al., 2014).

BactPepDB is a bacterial peptide database that contains bacterial

peptides of size between 10 and 80 amino acids.

Annotation of the smORFs

For the functional annotation of the smORFs, homologous

annotated proteins in other bacterial species were identified using

Blastp (v 2.9.0+) against the NCBI non-redundant protein database

(nr) with an E-value < 10−4. Additionally, protein domains

were identified using the InterProScan tool (https://www.ebi.

ac.uk/interpro/search/sequence/) (Blum et al., 2021). Operonic

gene organization in the M. tuberculosis H37Rv genome was

obtained from MicrobesOnline Operon Predictions (http://www.

microbesonline.org/operons/) (Price et al., 2005). To ensure the

selection of reliable operon pairs, only those with a probability score

exceeding 0.7 were included.

All the analyses were performed using in-house Python and

R scripts. To generate and visualize figures, SWISS-MODEL

(Waterhouse et al., 2018), Clustal Omega (Sievers et al., 2011) and

PyMOL v2.5.4 (Schrödinger, LLC, 2015) were used.

Results

M. tuberculosis genome encodes
numerous small peptides and proteins

Going by the arrangement of the in-frame start and stop

codons along the M. tuberculosis genome, we identified 56,582

potential ORFs with a length cutoff of > 30 nucleotides (nts).

We systematically investigated how many of these with a coding

potential are indeed transcribed and translated. For this, we used a
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Random Forest learning algorithm that iterates over the training

data and generates random decision trees and classifies the data

based on the majority of decisions provided by the trees (Breiman,

2001). The training data for the prediction consisted of protein-

coding sequence features, which highlight the coding capacity

of a given sequence, gene expression quantified using RNA-seq,

and ribosome profiling (Methods). To identify smORFs in a

context-dependent manner, two sets of RNA-seq and Ribo-seq data

corresponding to exponential and starvation growth conditions

were used. The models were built with an accuracy of 99% for

both conditions and a 5-fold cross-validation score of 0.98 and

0.99 for the exponential and starvation phases, respectively. Our

final prediction resulted in 508 smORFs under exponential and

525 smORFs under starvation growth conditions, with an overlap

of 338 smORFs (Supplementary Table 1). The unique proteins

identified in each of these conditions suggest their potential roles

in the core biological processes that transcend the impact of

environmental stimuli.

The identified smORFs displayed diverse lengths, with a

median size of 53 amino acids (Supplementary Figure 1A). While

the majority of the smORFs identified are below 100 amino acids

in size, the novel proteome pool included 143 proteins which

are longer. smORFs with shorter lengths might be associated

with regulatory roles while longer smORFs could potentially

encode functional proteins with distinct biological roles. The

categorization of the smORFs based on their genomic location

showed that most of the identified regions are antisense to the

known protein-coding regions (43.2%) and IGRs between two

protein-coding genes (35.4%) (Supplementary Figure 1B). This

implies that the bacterial gene density could be much higher than

what is currently envisioned.

The M. tuberculosis genome has a G+C content of 65.6%,

exhibiting G/C-skew with higher G+C content at the third codon

position compared to the second position. The G/C-skew is largely

influenced by the amino acid composition of proteins, although

certain amino acids may be subject to additional structural and

functional constraints (Bibb et al., 1984). To evaluate whether

smORF genes exhibit a similar G/C-skew pattern as observed

in other M. tuberculosis genes, we analyzed them along with

an equal number of randomly taken annotated genes and IGR

sequences with a length greater than 10 amino acids. This revealed

a statistically significant positive G/C-skew (Fisher’s exact test, P

< 2.2e−16; n = 49,470 codons) for the smORFs, in contrast to

the IGRs where such skew was not observed (P > 0.05, n =

39,278 codons). The positive G/C-skew in the smORFs similar

to the known protein-coding genes in M. tuberculosis suggests a

conserved trend in codon composition in smORFs (Figure 1).

Previous attempts to identify small proteins in M. tuberculosis

such as RanSEPs, DeepRibo, and a study by Smith et al. used either

sequence features or functional data. We examined the overlap

of the predicted smORFs with the small proteins identified by

these methods. We observed that while 223 smORFs showed a

partial or complete overlap with the small proteins identified by

RanSEPs, small proteins identified by DeepRibo and Smith et al.’s

work showed an overlap for 261 and 149 smORFs, respectively

(Supplementary Figure 2). Interestingly, the overlap was less across

these methods as well, suggesting that each of these methods

captured largely distinct subsets of small proteins inM. tuberculosis.

FIGURE 1

G/C-skew analysis of smORFs, annotated ORFs, and IGRs. The

frequency of G+C nucleotides across di�erent codon positions was

evaluated and compared. Similar to annotated protein-coding

genes, smORFs have a higher G+C content at the third codon

position compared to the second position (P < 2.2e-16). An equal

number of randomly selected IGRs are used as control.

Further, we tested if our prediction method including both

sequence properties and functional data as features is robust in

obtaining high-confidence smORFs. For this, we systematically

compared the small proteins predicted by other methods with

our prediction of smORFs against strand-specific RNA-Seq data

available across eight distinct growth conditions (Methods).

We observed that in comparison with the expression of the

ORFs predicted using other mentioned tools in M. tuberculosis,

smORFs show significantly higher expression in all the studied

growth conditions (Supplementary Figure 3A). Also, the average

proportion of ORFs significantly expressed in all these eight

conditions was 10.68%, 40.21%, 50.36%, and 59.20% for the

RanSEP, DeepRibo, Smith et al.’s approach, and smORFs,

respectively (Supplementary Figure 3B). This demonstrates

consistently higher levels of expression of the smORFs identified

by our approach across all the growth conditions in comparison to

other prediction methods, highlighting the benefit of integrating

sequence and functional data while predicting smORFs in the

bacterial genomes.

Functional analysis of the novel proteome
of M. tuberculosis

The functional data comprising of RNA-Seq and Ribo-Seq used

for the prediction included exponential and starvation growth

conditions. Further, we studied the expression of smORFs in

eight diverse growth conditions to test their context-dependent

expression and the implications thereof (growth conditions listed
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FIGURE 2

ChIP-seq data analysis to test smORF transcription. Significant binding of RNAP and NusA in the genomic locations encoding smORFs suggests

active transcription in these regions, which is comparable to binding in the highly expressed genic regions in M. tuberculosis (P-value < 0.05). This is

contrasted with their binding to randomly selected IGRs and less expressed genic regions. Additionally, genomic control and ChIP-seq data of the

transcription factor Rv3833 were used as control samples.

in Methods) (Supplementary Table 2, Supplementary Figure 4).

The condition-specific expressions could be indicative of

M. tuberculosis adapting to different environmental stresses

encountered during infection. Of the 695 small proteins, 133

were expressed across all the tested conditions, indicating

their potential functional relevance across diverse conditions

(Supplementary Figure 5). For instance, the transmembrane

domain-containing protein MTB_ORF_12681 shows expression

in all the growth conditions. This protein is conserved in M. bovis

Mexico and M. leprae str. as given in BactPepDB. Additionally,

55 smORFs exhibited expression in at least one growth condition,

suggesting condition-specific roles for these proteins. For

instance, MTB_ORF_15161 predicted under the starvation phase

showed significant expression levels in RNA-seq nutrient-starved

growth conditions. MTB_ORF_15161 is conserved in different

mycobacterial species and was also detected in LC-MS/MS

analysis. Another example is MTB_ORF_18442, which was

predicted exclusively for the starvation phase and detected in LC-

MS/MS analysis. MTB_ORF_18442 shows significant expression

in both nutrient starvation and hypoxic growth conditions.

Also, MTB_ORF_19293 identified in the starvation phase has

significant expression in redox stress and low phosphate growth

conditions. MTB_ORF_19293 is a PIN domain-containing protein

homologous to the VapC family toxin (Type II toxin-antitoxin

system) protein in Gordonia mangrovi, Cryobacterium serini,

and different mycobacterial species. M. tuberculosis genome has

numerous toxin-antitoxin systems, notably the VapBC family with

50 members (Chauhan et al., 2022), which involve PIN-domain

proteins known for their ribonuclease activity (Arcus et al., 2005).

These findings highlight the dynamic and context-dependent

nature of small protein expression in M. tuberculosis, suggesting

their involvement in specific physiological processes.

Further, we attempted to validate the expression of smORFs by

testing the binding of transcription machinery in these genomic

regions. RNAP stands as the primary enzyme responsible for

transcribing RNA from a DNA template. Another member of

the transcription complex is NusA, which dynamically associates

with RNA polymerase and impacts elongation rates (Vogel and

Jensen, 1997; Uplekar et al., 2013). We analyzed ChIP-Seq data of

RNAP and NusA for the 508 smORFs identified in the exponential

growth phase. In addition, genomic control and transcription

factor Rv3833 data were included as control samples. We observed

that the smORFs were significantly bound by RNAP and NusA

compared to random IGRs (P-value < 0.05) (Figure 2). Therefore,

the transcription machinery appears to be strongly coupled to

the genomic regions encoding smORFs, indicating transcriptional

activity in these regions.

To assess the functional relevance of the smORFs, we integrated

biological data arising from LC-MS/MS, protein domains and

families, homologs identified in the NCBI non-redundant protein

database (nr), and sequence similarity results obtained from

Blastn against bacterial genomes. Using Interpro and its member

databases (described in the Methods section), we predicted

conserved protein domains for 257 smORFs. Also, Blastp against

the nr database showed 333 ORFs as the homologs of smORFs

that are conserved in different bacterial genera and species

(Supplementary Figure 6). Conservation of the smORFs in some

of the Gram-negative, Gram-positive, and mycobacterial genomes

(listed inMethods) evaluated using Blastn identified 693 homologs.

While only 1 homolog for the smORFs was found in both

the studied Gram-positive bacteria and Gram-negative bacteria,

681 showed conservation in the pathogenic M. tuberculosis

and other members of the M. tuberculosis complex (MTBC)

such as M. africanum, M. canetti, and M. bovis. Importantly,
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FIGURE 3

Sequence and expression analysis of MTB_ORF_17511 and MTB_ORF_17514. (A) Structural features and conserved motifs of the smORFs.

MTB_ORF_17511 is characterized by the H-xxx-D and W-x-G motifs, while MTB_ORF_17514 exhibits the H-xxx-D and Y-xxx-E motifs. (B) Displays

RNA-Seq expression levels of MTB_ORF_17511 and MTB_ORF_17514 during the exponential and starvation growth phase, and (C) Expression of

MTB_ORF_17511 and MTB_ORF_17514 quantified from RNA-Seq data from eight di�erent growth conditions. Relatively high expression levels are

observed in low phosphate conditions.

LC-MS/MS analysis showed the translated products for the 25

smORFs, many of which also have conserved protein domains.

Since the majority of the smORFs were of length shorter

than 50 amino acids, we also scanned smORFs through the

BactPepDb with default search parameters and obtained the hits

for 225 smORFs. For instance, MTB_ORF_36476 is conserved

in Nocardia cyriacigeorgica GUH-2, Rhodococcus jostii RHA1,

Saccharomonospora viridisDSM 43017, and other bacterial species.

Results from all these analyses are provided as a comprehensive

table (Supplementary Table 3). Below, we discuss a few examples

that show agreement from more than one of the above-

mentioned analyses.

i) MTB_ORF_47982 conserved in M. bovis and M. canettii

was found to have a Class A radical SAM methyltransferase

domain. The Class A methyltransferase domain catalyzes

methylation of adenosine in RNA and contains two conserved

Cys residues for catalysis, utilizing SAM as both a methyl

donor and a source of the activating radical (Fujimori,

2013). Proteins with radical SAM core domains use a
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FIGURE 4

Translational coupling revealed by smORF gene sequences. The overlapping start or stop codons between smORFs and the annotated gene is

regarded as a potential translation coupling. (A) Coupling between MTB_ORF_2957 and Rv0280; (B) Coupling between MTB_ORF_37415 and

Rv3924c; and (C) Coupling between MTB_ORF_12497 and Rv1297.

methylene radical from methylated cysteine residues (Zhang

et al., 2012). They have a CxxxCxxC motif crucial for

coordinating [4Fe-4S]2+/1+ clusters (Sofia et al., 2001)

and a structure resembling a TIM barrel, similar to TIM

barrel enzymes (Davis et al., 2017). This smORF has a

conserved cysteine motif and also showed an overlapping

Aldolase class I domain, characterized by a TIM β/α barrel

structure (Supplementary Figure 7A). Another smORF,

MTB_ORF_68067 contains a homeodomain-like domain

(PF13384) that binds DNA through a helix-turn-helix (HTH)

structure (IPR009057) and belongs toWinged helix-like DNA-

binding domain superfamily (Supplementary Figure 7B).

MTB_ORF_68067 is homologous to transposase (helix-turn-

helix domain-containing protein) of different mycobacterial

species and actinobacterial species such as Actinomycetota

bacterium, Kribbella soli, Blastococcus endophyticus, and

Mycobacterium avium.

ii) The WXG100 protein superfamily, exemplified by M.

tuberculosis ESAT-6 protein, is associated with the Type

VII secretion system (T7SS). The key characteristics include

the “Trp-Xaa-Gly (WXG)” motif along with crucial motifs

YxxxD/E and HxxxD/ExxhxxxH (Poulsen et al., 2014).

MTB_ORF_1751 and MTB_ORF_17514 are adjacently

located in the IGR between Rv1791 and Rv1793 on the positive

strand. Both the smORFs feature an EsxAB-dimer-like

domain and belong to the ESAT-6-like superfamily

(IPRO36689). ESAT-6 is an important virulence factor

and a major secreted protein of the ESX-1 secretion system

in M. tuberculosis (Sreejit et al., 2014; Osman et al., 2022).

MTB_ORF_17511 contains a conserved W-x-G motif, while

MTB_ORF_17514 features a conserved YxxxD/E motif.

Additionally, both smORFs exhibit a conserved HxxxD

motif. It’s worth noting that these ORFs, although overlap

with a pseudogene Rv1792, show significant RNA-Seq

expression. Also, their presence was exclusively detected

during the exponential growth phase in LC-MS/MS analysis.

The expression levels in RNA-Seq and the respective

domains and motifs of these smORFs are depicted in

Figures 3A, B. Interestingly, the gene that is present next

to MTB_ORF_17514 is Rv1793, an ESAT-6-like protein

EsxN of the ESX-1 secretion system. There is a possibility

that these three ORFs collectively form an operon. It is

reported that low phosphate conditions can induce both the

ESX-5 and ESX-1 secretion systems (Elliott and Tischler,

2016). RNA-Seq analysis revealed favorable expression

patterns for both smORFs, with detectable expression

across all eight conditions and notably elevated expression

levels in the specific context of low phosphate conditions

(Figure 3C). Also, MTB_ORF_17514 and MTB_ORF_17511

exhibit conservation across various mycobacterial species,

including M. kansasii, M. canettii, M. simulans, and also

in E. coli.
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iii) The Nudix superfamily, widely distributed in eukaryotes,

bacteria, archaea, and viruses, primarily consists of

pyrophosphohydrolases that target substrates with the

general structure NDP-X and have significance in diverse

biological systems (McLennan, 2006). MTB_ORF_61001,

located antisense to Rv1499, contains a partially conserved

NUDIX box motif and NUDIX domain in it which is

characterized by the conserved loop-helix-loop structure

(Mildvan et al., 2005) (Supplementary Figure 8). This smORF

was also identified in LC-MS/MS analysis.

iv) In M. tuberculosis, cutinase-like proteins (CULPs) show

unique enzymatic activities, such as esterase and lipase

functions, despite their cutinase resemblance. CULPs are

characterized by α/β hydrolases featuring a conserved

pentapeptide motif (G-[YF]-S-[QL]-G) (West et al., 2009).

MTB_ORF_35316 and MTB_ORF_35318 have α/β hydrolase

and cutinase domains. Both smORFs are conserved along

many mycobacterial species such as M. kansasii and M.

canettii. Moreover, MTB_ORF_35318 also has a conserved

G-[YF]-S-[QL]-G motif (Supplementary Figures 9A, B).

v) MTB_ORF_57155 contains a BFD-like [2Fe-2S] binding

domain, a feature also found in bacterioferritin-associated

ferredoxin (Bfd). Bfd plays a key role in bacterial iron

homeostasis by aiding in the release of Fe3+ stored in BfrB

(Bacterioferritin). As a [2Fe-2S]-protein, Bfd interacts with

BfrB to facilitate the mobilization of iron (Wijerathne et al.,

2018). Bfd is a NIFU-like [2Fe-2S] protein, characterized by

a shared conserved cysteine pattern (C-X-C-X32-C-X2-C),

suggesting a common modular domain for binding [2Fe-2S]

clusters (Garg et al., 1996). The sequence alignment of

MTB_ORF_57155 to (2Fe-2S)-binding proteins of M. lepra

and E. coli is shown in Supplementary Figure 10, highlighting

the conserved cysteine residues. MTB_ORF_57155 is

homologous to the (2Fe-2S)-binding protein of Rhoodococcus

phenolicus and is conserved in many other mycobacterial

species such as M. palustre, M. porcinum, M. kubicae, M.

aquaticum, andM. canettii.

Overall, these findings provide insights into the evolutionary

conservation, expression patterns, and potential functional roles of

the smORFs inM. tuberculosis.

Genomic and functional organization of
the smORFs

Dual function sRNAs
Certain bacterial sRNAs encode functional peptides in

addition to modulating gene expression through base-pairing

with mRNAs (Thomason and Storz, 2010). This introduces

complexity to bacterial gene regulation, as these dual-function

sRNAs simultaneously govern post-transcriptional control and

diversify the proteome of an organism (Gimpel and Brantl,

2017). We observed such a potential dual-function for 9

smORFs which originate from the reported sRNA-encoding

regions inM. tuberculosis (Supplementary Table 4A). For instance,

MTB_ORF_64551 (90 amino acids) spanning the sRNA MTS0903

(Arnvig et al., 2011) is conserved as a protein inM. riyadhense and

Streptomyces sp. XY431 with 86% and 41% identity, respectively.

Likewise, MTB_ORF_12647 (35 amino acids) which is homologous

to the MurA protein of M. kansaii overlaps with the sRNA

RVnc0021 (mcr3) which is reported to have an important role

in early and late hypoxia in the presence of dextrose (Del

Portillo et al., 2019). Notably, MTB_ORF_12647 showed significant

expression in all the 8 studied growth conditions. Moreover, the

prediction tools DeepRibo and RanSEPs also partially/completely

predicted MTB_ORF_64551 and MTB_ORF_12647 as potential

small proteins, further supporting their dual functionality. Another

smORF MTB_ORF_46462 (19 amino acids), which is conserved as

a peptide in the BactPepDB in different mycobacterial species and

also predicted as an ORF by DeepRibo and RanSEPs, overlaps with

a 5′UTR sRNA, referred as “candidate 1502” (Miotto et al., 2012).

This sRNA is located upstream of the gene ilvB which is part of the

isoleucine-valine operon, suggesting that sRNA might be involved

in an attenuator system that regulates the synthesis of valine

and isoleucine in mycobacteria. MTB_ORF_46462 is significantly

expressed in 7 out of 8 studied growth conditions. These findings,

therefore, suggest a potential dual functionality of a few smORFs,

where they act as sRNAs by engaging in antisense/complementary

interactions, while also participating in metabolic pathways as

short peptides.

Co-regulated gene clusters
Translational coupling is a phenomenon observed in

prokaryotes, particularly archaea and bacteria, where the

translation of a downstream gene is dependent on the translation

of the upstream genes (Huber et al., 2019). To test whether

any of the smORFs exist as coupled ORFs, we examined the

occurrences of overlapping start or stop codons between smORFs

and any annotated gene in M. tuberculosis. We identified 50

such instances, of which 16 appear to be within the operons

(Supplementary Table 4B). The start or stop codons of these

smORFs are situated in a manner that they potentially overlap

with the start or stop codon of the neighboring annotated gene.

For example, MTB_ORF_2957 with a membrane binding domain

is coupled with a PPE protein-encoding Rv0280 (Figure 4A).

Many PPE proteins in M. tuberculosis are known to be associated

with the cell membrane and have membrane-binding properties

(Mitra et al., 2017). MTB_ORF_2957 is homologous to the PPE

family protein of M. tuberculosis var. africanum. In another

instance, MTB_ORF_37415 is coupled with the start codon

of rpmH (Rv3924c), and the presence of this peptide was

also identified in the LC/MS-MS study (Figure 4B). Another

example is MTB_ORF_12497, which is coupled with the start

codon of rho (Rv1297) (Figure 4C). MTB_ORF_12497 shows

conservation across M. canettii, M. bovis, and M. Avium, and this

coupling between the two genes appears to be conserved. Further

exploration of these diverse genomic organizations of smORFs in

the context of annotated proteins could provide valuable insights

into the complex regulatory and functional aspects of smORFs in

M. tuberculosis.

Upstream open reading frames (uORFs) are the small protein-

coding regions in mRNA that precede the main coding region
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FIGURE 5

Genomic location of MTB_ORF_36851. (A) MTB_ORF_36851 appears to be in an operon along with the genes Rv3874 and Rv3875 and (B)

Conservation of gene synteny involving MTB_ORF_36851 within the suggested operon structure across mycobacterial species, including M. canettii

CIPT 140010059 (4422565-4423270), M. tuberculosis var. africanum GM041182 (4329924-4330629), and M. bovis AF2122/97 (4292923-4293628).

of a gene. Bacterial uORFs, known as leader peptides, can stall

ribosomes during translation, influencing mRNA production and

downstream gene expression. These uORFs can also be coupled

to the translation of main protein-coding ORFs, influencing

the overall translation efficiency of the mRNA (Dever et al.,

2020; Morris and Geballe, 2000). We scanned the 5′UTRs of

the annotated protein-coding genes in M. tuberculosis to test

for the presence of any of the identified smORFs. For this, we

used the available genome-wide transcription start sites (TSS)

in M. tuberculosis (Cortes et al., 2013) and identified 58 and

77 putative uORFs during exponential and starvation growth

conditions, respectively (Supplementary Table 4C). For example,

MTB_ORF_67572, predicted in both exponential and starvation

growth conditions, is located in the 5′UTR of Rv0813c. Rv0813c

belongs to a family of bacterial FABP-like proteins and may have a

role in the recognition, transport, and/or storage of small molecules

in the bacterial cytosol (Shepard et al., 2007). MTB_ORF_67572

has a transmembrane domain, implying its potential function as

a membrane-bound protein. Notably, this smORF is conserved as

a membrane protein in Gram-positive bacterial species, including

Gordonia jacobaea, Rhodococcus aetherivorans, as well as various

mycobacterial species such as M. kansasii ATCC 12478, and

Mycolicibacterium wolinskyi. These findings suggest a promising

avenue for further research into the regulatory roles of these

putative smORFs as uORFs inM. tuberculosis.

Operon gene organization enables the functional grouping

of the genes to achieve rapid adjustments in response to

changing environments, enhancing bacterial adaptability and

survival (Ralston, 2008). We examined if any of the smORFs

could be part of the defined operonic structures, and identified

65 smORFs located within the operonic regions in M. tuberculosis

(Supplementary Table 4D). For example, MTB_ORF_54512 is

part of an operon with Rv2159c, Rv2160A, and Rv2160c

(Supplementary Figure 11). MTB_ORF_54512 has a Tetracyclin

repressor-like, C-terminal domain and overlaps with an annotated

pseudogene Rv2160c. TetR controls the production of TetA, a

protein located in the cell membrane responsible for expelling

tetracycline antibiotics from the cell, preventing them from

binding to ribosomes and disrupting protein synthesis (Kisker

et al., 1995). In another example, MTB_ORF_16006 is an integral

part of an operon comprising Rv1641, Rv1642, Rv1643, and

Rv1644 (Supplementary Figure 12). The proteins in this operon

share functions closely related to ribosome assembly and protein

synthesis. Notably, MTB_ORF_16006 features a membrane-

binding domain and is conserved as a peptide in M. leprae.

In a different instance, MTB_ORF_36851 is part of the ESX

protein operon Rv3874-Rv3875 (Figure 5A). MTB_ORF_36851

has a 12bp overlap with Rv3874 and was also detected in

LC/MS-MS analysis. This smORF demonstrates conserved gene

synteny along with the smORF in M. canettii, M. bovis, and

M. tuberculosis variant africanum (Figure 5B). Moreover, smORFs

MTB_ORF_16006 and MTB_ORF_36851, which are positioned

at the start of their respective operons and are smaller in size

compared to the other operonic genes, might function as uORFs.

These smORFs demonstrate significant expression levels across

all eight tested growth conditions, emphasizing their functional

importance (Methods). These findings suggest that smORFs within

operons could play a crucial role in M. tuberculosis adaptability

and survival, particularly concerning key cellular processes and

antibiotic resistance.
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Discussion

Small proteins have come to light either by recognizing that the

mutations in IGR are attributed to unannotated small protein genes

or through the revelation that some sRNAs encode small proteins

(Storz et al., 2014). Most genome projects employed a 100 amino

acid residue threshold to avoid erroneous predictions, resulting

in the under-representation of small proteins (Su et al., 2013).

Traditional protein discovery methods also faced challenges in

small protein prediction and validation. However, these seemingly

trivial molecules have gained recognition as they play important

roles in processes such as cell signaling, metabolism, and growth

(Su et al., 2013). Since small proteins play a significant role in

bacterial pathogenesis and virulence, it is important to define their

function and interactions.

We identified small proteins in M. tuberculosis using a

comprehensive approach that incorporated sequence features,

RNA-Seq, and Ribo-Seq data that are publicly available. The

data underwent rigorous training and testing on selected

features, resulting in the prediction of 695 smORFs. To

assess whether combining sequence features along with high-

throughput functional data such as RNA-Seq and Ribo-Seq

generates robust predictions, we systematically compared the

small proteins sourced by other available methods and tools with

our prediction of smORFs. For this, we tested the proportion

of small proteins that are expressed in independent RNA-

Seq data and noted that smORFs show significant expression

across tested growth conditions compared to those generated

by previous methods. The elevated expression levels observed

in smORFs underscore the robustness of our approach, which

integrates both sequence characteristics and expression data for

ORF prediction. Importantly, the genomic regions encoding these

smORFs show statistically significant binding of RNAP and

NusA in contrast to randomly selected IGRs, thereby providing

strong evidence for their expression. Subsequently, a thorough

homology search against the nr database was conducted to

identify conserved protein domains in the smORFs. Further, a

comprehensive exploration included testing their conservation

across genomes and peptide database, detection in the LC-

MS/MS data, and studying their genome context features such

as operon organization, coupling with annotated genes, and

uORF analysis. Remarkably, several smORFs met most of the

aforementioned criteria, making them intriguing candidates for

further exploration.

MTB_ORF_17511 and MTB_ORF_17514 collectively

encompass a pseudogene. Although a pseudogene region is

not expected to be transcribed, it’s noteworthy that the smORFs

not only possess the conserved EsxAB-dimer-like domain featuring

WXGmotifs but also exhibit expression in all the growth conditions

studied using RNA-Seq data. Similarly, MTB_ORF_54512 overlaps

with a pseudogene and displays a C-terminal domain resembling

that of a Tetracyclin repressor. Another smORF, MTB_ORF_35318

situated on the positive strand of M. tuberculosis is 208 amino

acids long. This smORF is located at 5′UTR of Rv3724B and has

a conserved cutinase domain and motif. Moreover, the presence

of a BFD-like [2Fe-2S] binding domain in MTB_ORF_57155,

similar to the bacterioferritin-associated ferredoxin (BFD), is

of particular importance. BFD, known for its shared conserved

cysteine pattern, suggests a common modular domain for binding

[2Fe-2S] clusters. The observed homology of MTB_ORF_57155

with (2Fe-2S)-binding proteins in various mycobacterial species

underscores its potential functional relevance.

Many smORFs were identified to serve a dual role as sRNAs.

For instance, MTB_ORF_64551, which is reported to function

as an sRNA MTS0903, is conserved as a protein in different

mycobacterial species. Besides these smORFs, we identified

multiple smORFs that could be (i) a part of an operon, (ii)

function as an upstream ORF or (iii) have their start/stop codon

coupled with the annotated ORFs. For example, MTB_ORF_36851,

situated upstream of an operon consisting of Rv3874 and Rv3875, is

conserved in different mycobacterial species along with the whole

operon. Consequently, it may function as an integral component

of this operon or act as an uORF. Also, a membrane-biding

domain-containingMTB_ORF_2957 is coupled with a PPE protein

Rv0280. This observation agrees with known characteristics of PPE

proteins in M. tuberculosis which are often associated with the cell

membrane. Furthermore, the homology of MTB_ORF_2957 to a

PPE family protein in M. tuberculosis var. africanum underscores

its conservation and functional relevance in the broader context of

mycobacterial species.

These instances provide valuable information for further

investigation into the functional roles of smORFs inM. tuberculosis

and other related organisms. Further experimental validation is

necessary to understand the mechanism of action and functional

significance of the smORFs. Understanding the roles of small

proteins, particularly in stress conditions, could pave the way

for developing novel antimicrobial strategies. Future research

directions may include functional studies of these small proteins,

exploring their roles in various strains or stress conditions,

and comparative analyses to understand their conservation and

diversity across different mycobacterial species and other bacteria.

These efforts could provide crucial insights into the pathogenicity

mechanisms and adaptive strategies of M. tuberculosis and related

bacteria, potentially leading to new therapeutic approaches.

Overall, our findings shed light on the potential importance of

small proteins in mycobacterial biology and provide a foundation

for future research in this area.
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SUPPLEMENTARY FIGURE 1

(A) Distribution of smORF lengths, and (B) Genome-wide distribution of

smORFs. For each category, the number of smORFs and their respective

percentages are mentioned in the figure.

SUPPLEMENTARY FIGURE 2

Venn diagram illustrating shared small protein predictions among the

current study and the previous reports namely, RanSEPs, DeepRibo, and

Smith et al.’s Riboret approach.

SUPPLEMENTARY FIGURE 3

Assessing the performance of di�erent small protein prediction methods by

evaluating ORF expression in diverse growth conditions. (A) The percentage

of small proteins crossing the median expression level of annotated CDS

regions in each of the eight individual RNA-Seq conditions is calculated and

represented in the Y-axis, (B) The results from (A) are averaged to represent

the consolidated performance for each method.

SUPPLEMENTARY FIGURE 4

Circular plot illustrating context-dependent expression of the smORFs in 8

distinct RNA-Seq data, ordered from the outermost to the inner circle as

specified in Supplementary Table 2. The plot is generated using the Circos

tool (Krzywinski et al., 2009).

SUPPLEMENTARY FIGURE 5

Each bar represents the count of smORFs that are significantly expressed in

a varying number of conditions. The last column indicates that 133 smORFs

are significantly expressed in all eight conditions.

SUPPLEMENTARY FIGURE 6

Distribution of the hits obtained for the smORFs from Blastp against the nr

database across bacterial genera. The Y-axis denotes the number of Blastp

hits.

SUPPLEMENTARY FIGURE 7

Protein domains highlighted in the identified smORFs. (A) Presence of

conserved Aldolase class I and Radical SAM domains, along with a

conserved CxxxCxxC motif within MTB_ORF_47982, and (B) Winged

helix-like DNA-binding domain superfamily in MTB_ORF_68067.

SUPPLEMENTARY FIGURE 8

Illustration of MTB_ORF_61001 with a NUDIX domain in protein sequence

and structure (highlighted in teal). The model was built using SWISS-MODEL

taking A0A7G7DNV8 (Alphafold) as a template.

SUPPLEMENTARY FIGURE 9

Representation of the (A) Cutinase and AB_hydrolase domains in

MTB_ORF_35316; (B) Cutinase and AB_hydrolase domains in

MTB_ORF_35318, including a conserved GxSxG motif.

SUPPLEMENTARY FIGURE 10

(A) A BFD-like [2Fe-2S] domain identified within MTB_ORF_57155, and (B)

Sequence alignment between BFD protein of E. coli (E.c.) (CAD6001291.1),

(2Fe-2S)-binding protein of M. leprae (M.l.) (WP_081439367.1), and

MTB_ORF_57155 (MORF_57155), generated using CLUSTAL O (1.2.4). The

conserved cysteine residues are highlighted with green bars.

SUPPLEMENTARY FIGURE 11

MTB_ORF_54512 within an operon that includes Rv2159c, Rv2160c, and

Rv2160A. A Tetracycline repressor-like C-terminal domain is found in

MTB_ORF_54512.

SUPPLEMENTARY FIGURE 12

Representation of MTB_ORF_16006 within an operon that includes the

genes Rv1641, Rv1642, Rv1643, and Rv1644.

SUPPLEMENTARY TABLE 1

The genomic locations of smORFs and the growth condition in which they

were predicted.

SUPPLEMENTARY TABLE 2

The accession numbers and the condition descriptions for the 8 di�erent

RNA-Seq data used.

SUPPLEMENTARY TABLE 3

Compilation of data obtained from multiple analyses. (A) Identified protein

domains in the smORFs, (B) Blastp hits against nr database obtained for the

smORFs, (C) Blastp hits using Bacterial Peptide Database (BactPepDb), (D)

Results of the Blastn analysis performed against select Gram positive, Gram

negative and mycobacterial genomes, and (E) Outcomes of the LC/MS-MS

analysis using Maxquant.

SUPPLEMENTARY TABLE 4

smORF genomic organization along with other annotated genes and

sRNAs. (A) Percent overlap between smORFs and experimentally validated

sRNAs, (B) Coupling and basepair overlap between smORFs and the

corresponding annotated genes, (C) Presence of smORFs within the

Transcription Start Site (TSS) region of the annotated genes, and (D) smORFs

as part of the operonic structures.
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