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Traditional alignment-based methods meet serious challenges in genome 
sequence comparison and phylogeny reconstruction due to their high 
computational complexity. Here, we  propose a new alignment-free method 
to analyze the phylogenetic relationships (classification) among species. In our 
method, the dynamical language (DL) model and the chaos game representation 
(CGR) method are used to characterize the frequency information and the 
context information of k-mers in a sequence, respectively. Then for each 
DNA sequence or protein sequence in a dataset, our method converts the 
sequence into a feature vector that represents the sequence information 
based on CGR weighted by the DL model to infer phylogenetic relationships. 
We name our method CGRWDL. Its performance was tested on both DNA and 
protein sequences of 8 datasets of viruses to construct the phylogenetic trees. 
We compared the Robinson-Foulds (RF) distance between the phylogenetic tree 
constructed by CGRWDL and the reference tree by other advanced methods 
for each dataset. The results show that the phylogenetic trees constructed by 
CGRWDL can accurately classify the viruses, and the RF scores between the 
trees and the reference trees are smaller than that with other methods.
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1 Introduction

Comparative analysis of biological sequences is one of the most fundamental aspect of 
bioinformatics. Through sequence comparison, differences between biological sequences can 
be identified, structural or functional information in biological sequences can be found, and 
then similarity and homology between sequences can be discovered. Sequence alignment is 
the traditional method for sequence comparison of biological sequences. The traditional 
methods for sequence comparison and phylogeny reconstruction rely on similarity analysis 
based on multiple sequence alignment (MSA). Some MSA based methods are widely used, 
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such as ClustalW (Thompson et  al., 1994), Muscle (Edgar, 2004), 
MAFFT (Katoh and Standley, 2013). Although the traditional MSA 
based approaches generally remain the references for sequence 
comparisons in phylogenetic analysis, the inherent computational 
complexity of MSA makes it incompatible with very large data sets 
available today (Bernard et al., 2019). The accuracy of the MSA based 
methods are limited not only by sequence identity, but also by multiple 
prior assumptions about the evolution of the sequences to 
be  compared (Zielezinski et  al., 2017). In addition, alignment 
algorithms usually assume that sequences of conserved regions are 
homologous segments of sequences (Li and Homer, 2010). However, 
this assumption often contradicts with real situations (Zielezinski 
et al., 2019). Therefore, in recent years, more and more research has 
focused on alignment-free approaches for phylogenetic analysis.

Many alignment-free methods for sequence comparison have 
been proposed, including information-theory-based methods (Out 
and Sayood, 2003; Li et al., 2004; Li and Vitányi, 2008; Giancarlo et al., 
2014; Vinga, 2014; Bussi et al., 2021), which use information theories 
to estimate the amount of shared information between sequences and 
thus analyze the similarity of species. There are also alignment-free 
comparison methods based on Fourier transformations (Yin and Yau, 
2015; Li et al., 2022), spaced-word (Leimeister et al., 2014a, 2017, 
2019a,b; Morgenstern, 2021), iterated-function systems (Almeida, 
2014), moments of the positions of the nucleotides (Li et al., 2016, 
2017), common substring length (Ulitsky et al., 2006; Yang et al., 2012; 
Leimeister and Morgenstern, 2014; Yang W. F. et al., 2016), higher 
order Markov model and chaos game representation (CGR) (Yang 
L. et al., 2016) etc. In particular, CGR is an important method for 
phylogenetic analysis (Joseph and Sasikumar, 2006; Almeida, 2014; 
Sengupta et al., 2020; Sun et al., 2020; Löchel and Heider, 2021). Jeffrey 
(1990) proposed the CGR of DNA sequences. Due to the advantages 
of using CGR of DNA sequences, scholars started to study the CGR 
of protein sequences (Fiser and Tusnady, 1994; Basu et al., 1997; Yu 
et al., 2004a). Protein sequences are more complex compared to DNA 
sequences as they consist of 20 types of amino acids. Fiser and 
Tusnady (1994) proposed a CGR of protein sequences by mapping 
proteins into a positive 20-sided shape, with each of the 20 vertices 
representing an amino acid. Basu et al. (1997) generated CGRs for 
different protein families using positive 12-sides shape, where each 
vertex represents a set of amino acid residues based on conservative 
substitutions. Yu et al. (2004a,b) proposed a CGR of protein sequences 
based on a detailed HP (hydrophobic, polar) model. In such a model, 
the protein sequence is mapped into a 4-sides shape, and the 20 amino 
acids that constitute the protein sequence are divided into four 
categories according to the amino acid polarity, with each vertex 
representing an amino acid of one polarity. Multifractal analysis for 
the CGR of genomes is an alignment-free methodology that has been 
applied to study genomic variations between viral species (Pandit 
et al., 2012). In addition, methods based on substrings of fixed length 
(k-mer) are most widely used in the studies of phylogeny. The main 
idea is to extract some information from the k-mers of a biological 
sequence as the feature vector of that sequence, and then calculate the 
pairwise distance matrix between the feature vectors, and then use the 
distance matrix to construct a phylogenetic tree. The most used one is 
the frequency information of k-mers (Qi et al., 2004; Jun et al., 2010; 
Yu et al., 2010a,b; Sims and Kim, 2011; Luczak et al., 2019; Cattaneo 
et  al., 2022). On the other hand, some scholars have done some 
analyses using the position information of k-mers (Kolekar et al., 

2012; Xie et al., 2015; He et al., 2021; Wang et al., 2022; Tang et al., 
2023). There is also the analysis that combines the frequency of k-mers 
as well as the position (Tang et al., 2021).

In this paper, we  propose a new alignment-free method to 
construct the phylogenetic tree, which is named 
CGRWDL. We combine the dynamical language (DL) model and 
CGR to obtain new sequence information by considering both the 
frequency and context of k-mers (average position of k-mers) in the 
sequence. This combined consideration of the obtained information 
is used as a feature of the sequence to infer the phylogenetic tree. In 
detail, we use the DL model and CGR method to get the frequency 
information and the context information of the k-mers in the 
sequence, respectively. Then we consider the frequency and context of 
the k-mers together to extract more information from the k-mers in 
the sequence, so that the feature vector obtained will lose less 
information of the sequence, and the phylogenetic tree constructed 
will be closer to the reference tree.

From the feature vectors of k-mers in multiple sequences and their 
distance matrices, we  performed phylogenetic analysis of DNA 
sequences and protein sequences. We constructed phylogenetic trees 
for eight datasets of viruses and compared them with the current state-
of-the-art alignment-free methods demonstrate the superiority of our 
method in the accuracy of constructing phylogenetic trees.

2 Materials and methods

2.1 Datasets

To validate our metho hows the specific process of a sequence 
ATGC with o d, we applied our method for phylogeny reconstruction 
on complete DNA sequences, complete protein-coding DNA 
sequences and complete protein sequences of human 
immunodeficiency viruses (HIV-1), hepatitis C viruses (HCV), 
hepatitis B viruses (HBV), human rhinoviruses (HRV), human 
papillomaviruses (HPV), Dengue viruses, Ebola viruses, and 
Coronaviruses, respectively. The complete protein-coding DNA 
sequences are assembled from all coding sequences in the genome, 
and the complete protein sequences are assembled from all the protein 
sequences translated in this genome.

Human immunodeficiency virus (HIV) is a single-stranded RNA 
virus that can be divided into two types, HIV-1 and HIV-2. HIV-1 
infection causes shorter disease duration, more severe symptoms, 
greater virulence, and greater threat to humans. HIV-1 (Lemey et al., 
2004) can be divided into four subtype groups, M, N, O, and P, with 
14 subtypes. The M subtype group includes 11 subtypes A, B, C, D, E, 
F, G, H, I, J, and K. The N subtype group and O subtype group contain 
only the N and O subtype, respectively. In these 14 subtypes, 13 
subtypes are all previously discovered strains, while the P group of 
HIV-1 is the last HIV-1 type strain to be discovered, constituting only 
two strains so far. Dataset 1 in Supplementary material used here 
contains 56 HIV-1 viruses (Tang et al., 2023) of 11 subtypes A, B, C, 
D, F, G, H, J, N, O, and P. Among them, subtype A has two subtypes 
A1 and A2, and subtype F has two subtypes F1 and F2.

Hepatitis C virus (HCV) is a type of viral hepatitis virus, a single-
stranded positive-stranded RNA virus. HCV viruses can be classified 
into types 1–6 (Chen and Morgan, 2006) according to the differences 
in gene sequences. Type 1 HCV is the most common and has 
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distributed worldwide, predominant in China, the United States and 
Japan; type 2 HCV is common in China; type 3 HCV is common in 
India, China, Australia, and Pakistan; type 4 HCV is common in the 
Middle East and Africa; type 5 HCV is common in South Africa; and 
type 6 HCV is common in Hong Kong and Macau of China. He et al. 
(2020) used a dataset consisting of 82 HCV viral complete DNA 
sequences, but the complete protein-coding DNA sequences and 
complete protein sequences of 20 HCVs in this dataset are not 
available in NCBI (see details in the Supplementary material). Hence 
we only use the 62 HCVs which have all three data types, complete 
DNA sequence, complete protein-coding DNA sequence and 
complete protein sequence as our Dataset 2 in Supplementary material. 
There is no type 5 HCV in these 62 HCVs.

Human rhinovirus (HRV), the most common pathogen causing 
viral respiratory infections in humans, is also among the most 
serotyped viruses in humans. About half of all colds in adults are 
caused by rhinovirus infections. HRVs are currently classified into 
three subtypes A, B and C (Bochkov et al., 2011). The Dataset 3 in 
Supplementary material used here is composed of 113 HRVs with 3 
outgroup Hepatitis E viruses (HEVs) (He et al., 2021). Among them, 
113 HRVs belong to subtype A, subtype B and subtype C, while 3 
HEVs as outgroups can test the validity of our method 
more effectively.

Hepatitis B virus (HBV) is a hepatophilic DNA virus, and its 
infection can lead to hepatitis B, liver fibrosis, liver cancer, and other 
related diseases. HBVs have several genotypes (Locarnini and 
Zoulim, 2010) of A-H. Genotypes B and C are predominant in 
China, with type C mainly distributed in the north, type B mainly in 
the south, and types A, D, and F in the west and minority regions. 
The Dataset 4 in Supplementary material we used consists of 121 
hepatitis B viruses, and these viruses have eight genotypes A, B, C, 
D, E, F, G, and H. The accession numbers are provided in the 
Supplementary materials.

Human papillomavirus (HPV), a spherical DNA virus, is 
widespread in nature and uses humans as the sole host, causing a 
variety of warts and neoplastic diseases when infected. Up to present, 
more than 150 HPV subtypes have been isolated and identified (Akgül 
et al., 2006). We used a dataset consisting 326 HPV viruses from He 
et  al. (2020) as our Dataset 5 in Supplementary material, which 
belongs to 12 subtypes, 6, 11, 16, 18, 31, 33, 35, 45, 52, 53, 58, and 66.

Dengue fever is an acute insect-borne disease caused by dengue 
virus, which is an RNA virus and one of the most widely spread 
mosquito-borne infections in the world, with four main subtypes, 1, 
2, 3 and 4 (Ross, 2010). Dengue fever is widely distributed in tropical 
and subtropical regions, with the most serious epidemics in Southeast 
Asia, the Western Pacific region and the Americas. In China, it is 
mainly prevalent in Guangdong, Hainan, Fujian, Taiwan, Guangxi and 
Zhejiang and other southern regions. Dataset 6 in 
Supplementary material we used contains 330 dengue viruses (He 
et al., 2021) belonging to the four subtypes.

Ebola virus, which first appeared in 1976, is a rare but serious and 
often fatal disease that can be  caused in humans. Ebola virus is 
transmitted to humans through wildlife and spreads through 
interpersonal transmission in humans. The average disease mortality 
rate for Ebola is approximately 50%. Ebola virus is a single-stranded 
negative-stranded RNA virus with a genome consisting of 
approximately 18,900 bases, and it has been determined that the genus 
Ebola virus can be divided into five subtypes, namely Ebola-Zaire 

virus (EBOV), Ebola-Sudan virus (SUDV), Ebola-Reston virus 
(RESTV), Ebola-Bendibugio virus (BDBV), and Taif Forest virus 
(TAFV) (Jacob et  al., 2020). The different subtypes have different 
properties, with EBOV and SUDV being highly pathogenic and lethal 
to humans and non-human primates; RESTV is not pathogenic to 
humans and has lethal effects in non-human primates. The large 
outbreaks that occurred in West Africa from 2014 to 2016 were 
primarily caused by the Zaire-type Ebola virus. Our Dataset 7 in 
Supplementary material has 59 Ebola viruses (Das et  al., 2020) 
belonging to five subtypes.

Coronaviruses are single-segmented positive-stranded RNA 
viruses, a large group of viruses that are widely found in nature. 
Coronaviruses were first isolated from chickens in 1937, and the 
family is the largest known family of RNA viruses, divided into four 
genera: α-viruses, β-viruses, γ-viruses, and δ-coronaviruses (Yang and 
Leibowitz, 2015). The Dataset 8 in Supplementary material we used 
contains 66 coronaviruses (Kirichenko et  al., 2022), of which 57 
viruses belong to the four genera α, β, γ, and δ, and 9 viruses are still 
unclassified so far. All of the sequences were taken from 
NCBI GenBank.

These 8 datasets have sequence lengths ranging from 3,248 to 
29,821, and, these datasets (except Dataset 4 in Supplementary material) 
have been previously used by other scholars. Here, we  use these 
datasets as references to evaluate our method by comparing its results 
with those obtained by other alignment-free methods Details of these 
datasets can be referred in the Supplementary material.

2.2 Methods

2.2.1 Dynamical language model
The algorithm used in DLTree has been described in detail by Yu 

et al. (2005, 2010a,b). Let S = 1 2… Ls s s  denote a DNA sequence (or 
protein sequence) with length L, where for any i L∈ …{ }1 2, , , , 
ai ∈{ }A,C,G,T  (or {A, I, L, M, F, P, W, V, D, E, N, C, Q, G, S, T, Y, R, 
H, K}), 1 2… ka a a is a k-mer. First, we count the number of times of 
this k-mer in this sequence, denoted as N( 1 2… ka a a ), and then 
calculate the frequency P( 1 2… ka a a ) of this k-mer in this sequence. 
P( 1 2… ka a a ) is defined as:

 
P a a a

N a a a
L Kk

k
1 2

1 2

1
…( ) = …( )

− +  
(1)

Yu et al. (2005) used the theory of dynamical language to construct 
the expected frequency Q( 1 2… ka a a ) of k-mer 1 2… ka a a  as:

 
Q a a a

P a P a a a P a a a P a
k

k k k
1 2

1 2 3 1 2 1

2
…( ) = ( ) …( ) + …( ) ( )−

 
(2)

The relative deviation between P( 1 2… ka a a ) (Eq. 1) and 
Q( 1 2… ka a a ) (Eq. 2) is used to remove the background noise.

 
M a a a

P a a a Q a a a
Q a a ak

k k

k
1 2

1 2 1 2

1 2

…( ) = …( ) − …( )
…( )  

(3)

We consider M( 1 2… ka a a ) as the first feature extracted from 
the sequence.
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2.2.2 Chaos game representation
CGR of DNA sequence was proposed by Jeffrey (1990), which is 

an iterative function-based graphical representation of DNA 
sequences. CGR expresses the distribution rule of DNA sequences of 
a certain length as fractal characteristics of a graph, and then the 
distribution rule of the sequence can be obtained by fractal analysis. 
Therefore, it has become a statistical method for genome sequence 
analysis. CGR has become a powerful tool for feature encoding in 
machine learning and alignment-free sequence comparison (Löchel 
and Heider, 2021).

2.2.2.1 Chaos game representation of DNA sequences
Each nucleotide of a DNA sequence is mapped one-to-one in 

order onto the unit plane, and the four vertices of the plane are the 
four nucleotides that make up the DNA sequence, where each base is 
located at the coordinates of: PA = ( )0 0, , PC = ( )0 1, , PG = ( )11, , 
PT = ( )1 0, . And, the CGR can be represented by the following iterated 
function system (IFS):

 CGR CGRi i i= × +( )−0 5 1. ,ω  (4)

where, CGR

if is A
if is C
if is Gi

i

i

i
0 0 5 0 5

0 0

0 1

11

1

= ( ) =

( )
( )
( )

. . ,

,

,

,
,

,

,

,
ω

ω
ω
ω

,,0( )











∈

,

,

if is T

i

iω

  {1,2,…,L}.

The Figure 1A shows the specific process of a sequence ATGC 
with only 4 bases mapped point-by-point to the unit plane (CGR plot 
generation), and the Figure  1B is a CGR plot corresponding to 
complete DNA sequences of HRV.

2.2.2.2 Chaos game representation of protein sequences
Since protein sequences are more complex than DNA sequences 

and consist of 20 amino acids, we  refer to the CGR of protein 
sequences based on the detailed HP model proposed by Yu et al. 
(2004a) in order to have some correspondence with the CGR 
representation of DNA sequences.

Similar to the CGR of DNA sequence, each amino acid in a 
protein sequence is mapped to the unit plane in a one-to-one order. 
Now the four vertices of the unit plane are the 20 amino acids that 
make up the protein sequence instead of four nucleotides that make 
up the DNA sequence. Here, we  classify amino acids into four 
categories according to their polarity (Yu et al., 2004b), namely: 
non-polar class: A, I, L, M, F, P, W, V; negative polar class: D, E; 
uncharged polar class: N, C, Q, G, S, T, Y; and positive polar class: 
R, H, K. where the coordinates of the position where each amino 
acid is located are: Pβ = ( )0 0, ,if β = A, I, L, M, F, P, W, or V; 
P² ,= ( )0 1 ,if β = D or E; P² ,= ( )1 0 ,if β = R, H or K; P² ,= ( )11 , if β = N, 
C, Q, G, S, T or Y.

Its iterative function system is expressed as:

 CGR CGRi i i= × +( )−0 5 1. ,ϕ  (5)

where, CGR
if is A I L M F P W V
if is D

i

i

i
0 0 5 0 5

0 0

0 1
= ( ) =

( )
( )

. . ,

, , , , , , , ,

,
,

,

,
ϕ

ϕ
ϕ ,,

, , ,

, , , , , , ,

,
E

if is R H K
if is N C Q G S T Y

i
i

i

1 0

11

,

,

( )
( )











∈
ϕ
ϕ

{1,2,…,L}.

2.2.2.3 Position mean of chaos game representation
Whether it is a DNA sequence or a protein sequence, for each 

k-mer, we can find the prefix part of this sequence ending with that 
k-mer and can also get the CGR of this subsequence. We denote 
the last position of the subsequence ending with a k-mer 1 2… ka a a  
in the CGR diagram as (

1 2 1 2
,

k ka a a a a aCGR x CGR y… … ). In a 
sequence, a k-mer may appear several times, so there are several 
subsequences ending with that k-mer, hence there may have 
multiple coordinate values in the CGR graph. And we calculate the 
position means 1 2… ka a aCGR x  and 1 2… ka a aCGR y  for these 
coordinate values.

 

CGR x
CGR x CGR x CGR x

N

a a a

a a a a a a a a a N

A

k

k k k A

1 2

1 2 1 2 1 21 2

…

… … …

=
+ +( )

,

 
(6)

FIGURE 1

(A) CGR generation process (e.g., ATGC), (B) CGR of complete DNA sequence of HRV: DQ473505.1.
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CGR y
CGR y CGR y CGR y

N

a a a

a a a a a a a a a N

A

k

k k k A

1 2

1 2 1 2 1 21 2

…

… … …

=
+ +( )

,

 
(7)

where N n a a aA k= …( )1 2 , is the number of times k-mer 
1 2… ka a a  appears in this sequence.

We consider 1 2… ka a aCGR x  and 1 2… ka a aCGR y  as the second 
feature extracted from the sequence. An example to show calculating 
process is given in Supplementary material. We mapped the sequence 
to a CGR graph, where each nucleotide in the sequence corresponds to 
a point in a unit square based on the position of this nucleotide in the 
sequence. Each point has a coordinate, and this coordinate value 
represents the position of the subsequence ending with this k-mer in the 
CGR graph (this corresponds the position of this k-mer in the 
sequence). We know that in a sequence, the same k-mer may appear 
multiple times at different positions in the sequence, hence we use the 
average of the CGR coordinate values of this k-mer to represent the 
average position of this k-mer in the sequence. In fact, the average 
position here indicates the context information of k-mer.

2.2.3 Chaos game representation weighted by 
dynamical language model

In the previous subsection, we obtained M a a ak1 2…( ) using the 
DL model, and we use M a a ak1 2…( ) (Eq. 3) as the weight value of 
the corresponding CGR region mean 1 2… ka a aCGR x  (Eq. 6) and 

1 2… ka a aCGR y , (Eq. 7) weighting 1 2… ka a aCGR x and 1 2… ka a aCGR y
with ( )1 2… kM a a a  to obtain:

 

S a a a
M a a a CGR x M a a a CGR y
i k

k a a a k a a ak k

1 2

1 2 1 21 2 1 2

…( ) =
…( )× …( )×( … …, ))

We denote M a a a CGR xk a a ak1 2 1 2
…( )× …  as Info_X and 

M a a a CGR yk a a ak1 2 1 2
…( )× …  as Info_Y. In particular, Info_X and 

Info_Y are 0 when k-mer a a ak1 2⊃  is not occurring. For species A, for 
a fixed k-value, there are 4k  different k-mers, hence we can obtain 4k  
Info_X and Info_Y. We arrange these 4k  Info_X and Info_Y according 
to the alphabetical order of k-mers to obtain a 2 4× k -dimensional (or 
2 20× k-dimensional) feature vector A. The first 4k  dimensions of this 
vector are Info_X, and the last 4k  dimensions are Info_Y, expressed 
as follows:

 
( ),1 ,4 ,4 1 ,2 4, .k k kA A A AA S S S S+ ×=  

Each of the DNA sequences (or protein sequences) was mapped 
to a feature vector, an n k× ×( )2 4 -sized feature matrix can be obtained 
for n sequences as follows:

 

1,1 1,4 1,4 1 1,2 4

,1 ,4 ,4 1 ,2 4

.
+ ×

+ ×

 
 
 
 … 

 

     



k k k

k k kn n n n

S S S S

S S S S

2.2.4 Distance calculation
We take the definition of Manhattan distance to calculate the 

distance between two species. The distance between species A and 
species B is given by:

 
d A B S S

i
A i B i,( ) = −

=
∑

1

γ

, , ,

 
(8)

where, 
γ =

×

×







2 4

2 20

k

k

,

,

.
DNA sequences

protein sequences

After calculating all pairwise distances, a distance matrix D can 
be  obtained, which reflects the differences between sequences or 
species. Finally, the Neighbor-Joining (Saitou and Nei, 1987) algorithm 
[50] is applied to construct a phylogenetic tree using MEGA X 
software (Kumar et al., 2018).

2.3 How to estimate the optimal length of 
k-mer

Wu et al. (2009) gave the definition of the cumulative relative 
entropy (CRE) and relative serial divergence in the feature frequency 
profile (FFP) method to estimate the optimal k-value. Similar to the 
idea of CRE and cumulative average relative deviation (CARD) (Xie 
et al., 2015), here we propose cumulative average feature value (CAFV) 
(defined below) to estimate the optimal k-value for our method. In the 
previous section 2.2.3, it is known that for species A, a feature vector 
( ),1 ,2 ,2 4, ×

kA A As s s  can be obtained. First, we calculate the mean 
value of the feature vector, denoted as VA k, :
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Then for n species, we can obtain a V (Eq. 9) for each of the n 
sequences and then sum the different Vs for the n species:

 1, 2, , ,= + + +k k k n kT V V V  (10)

where, n is the number of sequences.
Finally, the Tk  value (Eq. 10) obtained by taking different values 

of k and accumulating them in increasing order of k gives:

 
CAFV Tk

k
k=∑

1  
(11)

CAFV value is calculated based on the feature vector taken from 
each sequence. When the length of k-mer is short, the information of the 
original sequence contained in our calculated feature vectors increases 
with the length of the k-mer, so the CAFV value also grows rapidly. After 
k reaches the optimal value, the information starts to decrease when k is 
increased (due to the fact that when the value of k is too large, many 
k-mers do not appear in the sequence, hence there are lots of zeros in the 
feature vectors, making the calculated CAFV value small). After the 
optimal value, the CAFV value starts to increase very slowly.

2.4 Robustness test

In order to test the robustness of the phylogenetic tree constructed 
using our method, we used the modified bootstrap method proposed 
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FIGURE 2

The CAFV values of the eight datasets change with k-mers length.

by Yu et al. (2010a). The works as follows. We first use CGRWDL to 
extract sequence information to construct a feature matrix, where 
each row represents the feature vector of a DNA sequence (or protein 
sequence) and each column is the feature value of each fixed k-mer in 
different sequences. Afterwards, we randomly sample this n k× ×( )2 4

-dimensional (or n k× ×( )2 20 -dimensional) feature matrix by column 
with replacement. Then, we can obtain a new n k× ×( )2 4  -dimensional 
(or n k× ×( )2 20 -dimensional) matrix by sampling 
n nk k× ×( ) × ×( )( )2 4 2 20or  times. In the next part, we use Equation (8) 
to calculate the Manhattan distance between every two rows in the 
new matrix to obtain the new distance matrix. After that, the method 
in Section 2.2.4 is used to construct the phylogenetic tree. In the end, 
keep repeating this process 100 times. Furthermore, we employed the 
method for estimating tree inconsistency based on information theory 
proposed by Salichos et al. (2014) to construct the inconsistency trees 
for each dataset, in which internode certainty (IC) and IC All (ICA) 
values were displayed on the branches of the trees.

3 Results

To demonstrate that our method is effective for phylogenetic 
analysis of virus sequences, we did the analysis on three types of data 
including complete DNA sequences, complete protein-coding DNA 
sequences and complete protein sequences from eight datasets of 
viruses HIVs, HCVs, HRVs, HBVs, HPVs, dengue viruses, Ebola 
viruses and coronaviruses.

3.1 Selection of k-value

We plot the CAFV values (calculated by (Eq. 11)) for k from 4 to 
10 for both DNA and protein sequences of 8 datasets of viruses in 
Figure 2. We can see that CAFV values tend to be stable when k-value 
is greater than or equal to 8 for complete DNA sequences and 

complete protein-coding DNA sequences, CAFV values tend to 
be stable when k-value is equal to 4 for complete protein sequences. 
Therefore, we  guess k-value can be  taken as 8 for complete DNA 
sequences and complete protein-coding DNA sequences and k-value 
can be taken as 4 for protein sequences. However, for longer sequences 
(such as coronaviruses), the CAFV value is still increasing slowly 
when k-value is changed to 10 for complete DNA sequences and 
complete protein-coding DNA sequences. In this case, we guess to set 
the value of k to 11.

In order to analyze the effect of the length of the k-mers on the 
performance of the CGRWDL, we tested it on datasets of different types 
and different lengths. We evaluated the performance of CGRWDL in 
complete DNA sequences, complete protein-coding DNA sequences and 
complete protein sequences, respectively. For each dataset, we used the 
phylogenetic tree constructed by alignment tool MUSCLE (Edgar, 2004), 
the Maximum Likelihood method and Tamura-Nei model (Koichiro and 
Masatoshi, 1993) in the Mega X software (used the default parameters) 
(Kumar et al., 2018) as the reference tree.

Then we use the treedist in phylip (Felsenstein, 2005) to calculate 
the Robinson-Foulds (RF) distance (Robinson and Foulds, 1981) 
between the phylogenetic tree constructed by our method and the 
reference tree. Based on the variation of the RF distance, it is possible 
to see how k-value affects the results on different types and lengths of 
datasets. Figure 3 shows the RF distance between the phylogenetic tree 
generated by our method and the reference tree when k takes 
different values.

In Figure 3, we tested k-values between 4 and 10 when the data 
type is DNA sequences (both complete DNA sequences and complete 
protein-coding DNA sequences) and between 2 and 5 when the data 
type is protein sequences. And, the trend of RF distance between the 
phylogenetic tree constructed by CGRWDL and the reference tree 
tend to be stable when k-value is greater than or equal to 8 for DNA 
sequences. At the same time, the RF values of most sequences are 
minimized. For protein sequences, RF values are minimum values 
when k-value is equal to 4. But for viruses with longer sequences (such 
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as Coronaviruses), it is required k = 10 for DNA sequences to obtain 
the minimum RF distance. This result is consistent with the conclusion 
that we use the CAFV value to estimate the optimal value of k. The 
k-value varies slightly with the length and type of viruses.

3.2 Phylogenetic analysis

Here we used CGRWDL to construct the phylogenetic tree of 
56 HIV-1 strains in Dataset 1 in Supplementary material, and the 
best phylogenetic tree was obtained when k = 8 for both the 
complete DNA sequences and complete protein-coding DNA 
sequences; while the best phylogenetic tree (the one with the 
smallest RF distance to the reference tree) was obtained when k = 3 
for the complete protein sequences. We show the phylogenetic tree 
from the complete protein-coding DNA sequences as in Figure 4. 
We can see that the four subtype groups of HIV-1 genome sequences 
are clearly clustered and that the eight subtypes in group M are 
correctly classified. Two of the subtypes, A and F, have the correct 
subtype classification.

The phylogenetic tree from the complete protein-coding DNA 
sequences (Supplementary Figure S1) clearly clusters the HCV 
sequences of Dataset 2 in Supplementary material into five classes and 
all the five genotypes are correct, as shown in the five major branches 
of the tree.

Among the phylogenetic trees constructed for the three data types 
of HRVs in Dataset 3 in Supplementary material, the phylogenetic tree 
constructed for the complete protein sequences is the best of the three 
trees (see Figure 5). The three subtypes of the HRV sequences are 
clearly distinguished from each other, while the three HEV sequences 
as the outgroup are clustered together separately and are grouped into 
the outermost layer.

For HBV viruses in Dataset 4 in Supplementary material, we built 
three optimal phylogenetic trees for each of the three types of data 
when k is set 8 and 4, respectively. The most optimal phylogenetic tree 
was obtained from the complete DNA sequences (Supplementary 
Figure S2), where the HBV sequences were clearly divided into eight 
categories and each category contains only one subtype of HBV.

For human papillomaviruses in Dataset 5 in 
Supplementary material, among the phylogenetic trees we built using 
complete DNA sequences, complete protein-coding DNA sequences 
and complete protein sequences, the best performing one is the one 
constructed from complete DNA sequences with k = 8. As one can see 
in the figure (Supplementary Figure S3), the phylogenetic tree 
we constructed demonstrates that 330 HPV viruses are clustered into 
12 clusters, each cluster corresponds to one subtype, and each 
sequence is clustered into the correct cluster.

For dengue viruses in Dataset 6 in Supplementary material, 
we constructed a phylogenetic tree by taking k = 8 for complete 
DNA sequences; a phylogenetic tree by taking k = 8 for complete 
protein-coding DNA sequences; and a phylogenetic tree with 
k = 4 for complete protein sequences. The best performance is the 
phylogenetic tree constructed by complete DNA sequences, as 
shown in Supplementary Figure S4. The figure shows the 
classification of the four subtypes. The dengue viruses were 
clustered into 4 classes and each class was correctly clustered.

To understand the relationship between Zaire-type viruses and 
other viruses, we used CGRWDL to construct a phylogenetic tree for 
Dataset 7 in Supplementary material. As shown in Supplementary 
Figure S5, the five Ebola genera are completely distinguished from 
each other.

The phylogenetic trees were constructed using our method for the 
66 sequences of the coronaviruses in Dataset 8 in 
Supplementary material (shown in Figure 6). We can see that these 
coronaviruses are clearly clustered into 4 categories α, β, γ, and δ. The 
previously unclassified NC_009657, NC_009988, NC_010437, 
NC_010438 are classified in the α cluster; NC_009019, NC_009020, 
NC_009021, NC_014470, and NC_034440 were classified to the 
β cluster.

3.3 The consistency analysis of trees

We conducted a consistency analysis on the phylogenetic trees 
inferred from the eight datasets using the CGRWDL method. 
We  constructed inconsistency trees for each dataset, in which 

FIGURE 3

When k-mers takes different values, the Normalized RF distance between the phylogenetic tree constructed and the reference tree of the eight datasets.
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internode certainty (IC) and IC All (ICA) values (Salichos et al., 2014) 
were displayed on the branches of the trees. The inconsistency trees 
for all datasets are shown in the Supplementary material 
(Supplementary Figures S6–S13). From these figures, it can be seen 
that the IC and ICA values of 1 for each subtype branch in each 
dataset. However, there is some inconsistency at the fine branches 
within the same subtypes.

3.4 Performance comparison of CGRWDL 
with other methods

To compare the performance of our method with other 
advanced alignment-free methods, we  used the same eight 
datasets mentioned above. Six state-of-the-art methods, namely 
DLTree (Yu et al., 2010a), CVTree (Qi et al., 2004), KINN (Tang 
et al., 2023), FSWM (Leimeister et al., 2017), FFP (Sims and Kim, 
2011), and d2 (Vinga and Almeida, 2003) were used in the 
comparison. We  note that the FSWM method can only do 
phylogenetic analysis for DNA sequences, while the other five 
methods are applicable to both DNA sequences and protein 
sequences. All six methods are based on k-mer techniques, 
among which the CV method utilizes Markov model; the DL 
method employs dynamic language model; the FFP method 
calculates distance scores based on the differences in k-mer 
frequencies between sequences; the d2 method computes 
distances based on k-mer frequencies using weighted distance; 

The KINN method proposes a new definition of k-mer inner 
distance; and the FSWM method is based on Spaced 
Word Matches.

We used all six methods to construct phylogenetic trees based 
on the eight datasets separately. We  then calculated the RF 
distance between every phylogenetic tree and its reference tree, 
and the results are presented in Table 1. We mark the minimum 
score of the RF distance from the reference tree in each dataset in 
red, and mark the method that misclassified this dataset as “*.” 
Due to the fact that FSWM is only applicable to DNA sequences, 
a “/” is used to represent the column for the two protein sequences 
(Ebolaviruses (P), and HRV (P)) in the table. The k-mer values 
used for the seven methods are shown in Supplementary Table S1. 
Specifically, We  constructed phylogenetic trees for different k 
values for each method separately and calculated the RF distance 
between these phylogenetic trees and the reference tree. The 
k-value corresponding to the smallest RF value was taken as the 
best k-value for the method, and is shown in 
Supplementary Table S1.

With these results shown in the table, we  can see that 
CGRWDL is superior. In these eight datasets, the phylogenetic 
trees generated by our method have the smallest RF distances 
between the reference trees on the seven datasets. Only for HBV 
sequences our method does not have the smallest RF distance, but 
it is very close to the optimal method, with RF values differing by 
only 4 and ranking 2nd among the seven methods. As seen in the 
previous section that the groupings of the phylogenetic trees 

FIGURE 4

Phylogenetic tree of HIV-1 complete protein-coding DNA sequences constructed by CGRWDL (k  =  8).
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constructed using our method are all correct, so the RF distance 
values between the phylogenetic trees constructed by our method 
and the reference tree only reflect the topological differences 
between the internal branches of the same class on the 
phylogenetic tree generated by CGRWDL and the corresponding 
branches on the reference tree.

As can be  seen from table, for HIV, the RF distance value 
obtained by our method is 10. After we analyzed the phylogenetic 
tree of HIV, we found that the difference between the phylogenetic 
tree of HIV constructed by our method and the reference tree only 
lies in small differences in the branch placement of the same genus 
species. In particular, the FFP, d2, CV, and KINN methods all 
made subtype classification errors when constructing phylogenetic 
trees for coronaviruses. Among them, the CV method classified 
the γ-viruses NC010646 virus in α-viruses; the d2 method divided 
the β-viruses into two parts; and the phylogenetic trees of the FFP 
and KINN methods mixed all the subtypes together. With correct 
categorization, the RF value of our constructed tree and the 
reference tree is smaller than FSWM by 16; the RF values of our 

constructed tree and the reference tree are equal to the DL 
method, both being 20.

4 Discussion

By comparing the performance of our method with other six 
state-of-the-art alignment-free methods, we can see that CGRWDL is 
superior. In most alignment-free methods, researchers represent DNA 
or protein sequences as numerical feature vectors that can describe the 
sequences, and use the similarity or dissimilarity between these 
feature vectors to describe the similarity or dissimilarity between 
sequences, thereby to build the phylogenetic tree. However, in the 
process of representing sequences as numerical feature vectors, some 
information is lost. The more information we used, the better the 
original sequence can be  represented, and the more accurate the 
inferred phylogenetic tree can be. In this work, we  propose the 
CGRWDL method, which combines the context and frequency 
information of k-mers. The context information is characterized by 

FIGURE 5

Phylogenetic tree of HRV complete protein sequences constructed by CGRWDL (k  =  4).
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the average value in the CGR. The frequency information comes from 
the dynamic language model, which removes background noise. 
Therefore, our method used more information, allow us to infer 
phylogenetic tree more accurate.

Our method is an alignment-free method based on frequency and 
context information of k-mers. Similar to other alignment-free 
methods, the computational complexity of our method is not high. 
Therefore, our method is also applicable to large-scale sequence data.

As we all know, when k-mer is used for phylogenetic relationship 
analysis, the value of k is an important parameter that has a great 

influence on the results. How the length of k-mer should be taken is a 
topic that has always been discussed by scholars. Here we also discuss the 
selection of value of k in our method. From Section 3.1, it can be seen 
that the value of k changes with the length of the sequence. When the 
sequence is short, most of the time, k can be set to 8. However, if the 
sequence is longer, such as in the case of Ebola and Coronavirus, the 
value of k needs to be set to 10. Although the CGRWDL presented in this 
paper was used for viruses sequence comparison and phylogenetic tree 
reconstruction, it can also be used to analyze problems other than virus 
genome comparison such as bacterial genome comparison.

FIGURE 6

Phylogenetic tree of Coronaviruses complete DNA sequences constructed by CGRWDL (k  =  10).

TABLE 1 RF distance comparison between phylogenetic trees constructed using 7 alignment-free methods and reference trees.

Dataset CGRWDL DLTree CVTree FFP d2 KINN FSWM

HIV 10 12 16 24 20 14 22

HCV 20 26 28 44 22 38 32

HBV 92 116 106 112 96 94 88

HPV 294 320 328 310 302 328 310

Dengue viruses 566 572 570 574 568 566 576

Coronavirus 20 20 38(*) 70(*) 38(*) 78(*) 30

Ebolaviruses(P) 40 50 54 50 52 50 /

HRV(P) 18 28 24 114 52 30 /

The minimum RF distance value for each virus indicated in red.
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5 Conclusion

We proposed a new alignment-free comparison method 
called CGRWDL for viruses. The method is to combine 
the frequency information and context information of the k-mers 
in the sequence to obtain a new metric of the k-mers such that 
the sequence can be  represented by this new k-mers metric. 
For different lengths and types of sequences, CGRWDL can 
accurately construct the phylogenetic relationships of species and 
the RF distance between it and the reference tree is smaller than 
other advanced methods. We  also give a reference for the 
selection of the length of k-mers, and there is a slight difference 
in the length of k-mers to be selected for different lengths and 
types of datasets.
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