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Introduction: Our study undertakes a detailed exploration of gene expression 
dynamics within human lung organ tissue equivalents (OTEs) in response to 
Influenza A virus (IAV), Human metapneumovirus (MPV), and Parainfluenza 
virus type 3 (PIV3) infections. Through the analysis of RNA-Seq data from 19,671 
genes, we aim to identify differentially expressed genes under various infection 
conditions, elucidating the complexities of virus-host interactions.

Methods: We employ Generalized Linear Models (GLMs) with Quasi-Likelihood 
(QL) F-tests (GLMQL) and introduce the novel Magnitude-Altitude Score 
(MAS) and Relaxed Magnitude-Altitude Score (RMAS) algorithms to navigate 
the intricate landscape of RNA-Seq data. This approach facilitates the precise 
identification of potential biomarkers, highlighting the host’s reliance on innate 
immune mechanisms. Our comprehensive methodological framework includes 
RNA extraction, library preparation, sequencing, and Gene Ontology (GO) 
enrichment analysis to interpret the biological significance of our findings.

Results: The differential expression analysis unveils significant changes in gene 
expression triggered by IAV, MPV, and PIV3 infections. The MAS and RMAS 
algorithms enable focused identification of biomarkers, revealing a consistent 
activation of interferon-stimulated genes (e.g., IFIT1, IFIT2, IFIT3, OAS1) across 
all viruses. Our GO analysis provides deep insights into the host’s defense 
mechanisms and viral strategies exploiting host cellular functions. Notably, 
changes in cellular structures, such as cilium assembly and mitochondrial 
ribosome assembly, indicate a strategic shift in cellular priorities. The precision 
of our methodology is validated by a 92% mean accuracy in classifying 
respiratory virus infections using multinomial logistic regression, demonstrating 
the superior efficacy of our approach over traditional methods.

Discussion: This study highlights the intricate interplay between viral infections 
and host gene expression, underscoring the need for targeted therapeutic 
interventions. The stability and reliability of the MAS/RMAS ranking method, even 
under stringent statistical corrections, and the critical importance of adequate 
sample size for biomarker reliability are significant findings. Our comprehensive 
analysis not only advances our understanding of the host’s response to viral 
infections but also sets a new benchmark for the identification of biomarkers, 
paving the way for the development of effective diagnostic and therapeutic 
strategies.
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1 Introduction

Organoids, intricate in vitro models formed through tissue 
engineering, faithfully reproduce the complex structure and 
functionality of corresponding in vivo tissues, finding wide-ranging 
applications in human tissue development, repair, diagnostics, disease 
modeling, drug discovery, and personalized medicine. Derived from 
pluripotent or tissue-resident stem cells, organoids emulate diverse 
tissues, including tumors, and offer a comprehensive platform for 
investigating tissue biology (Zhao et al., 2022). While conventional 
methods involve pluripotent stem cell self-assembly (Lehmann et al., 
2019), recent innovations have introduced novel approaches. Wang 
et  al. (2022) explored patient-derived organoid cultures to study 
colorectal cancer (CRC) mechanisms, revealing how culture methods 
influence gene expression patterns. Maiti et al. (2022) dissected human 
cornea organoids and donor corneas, elucidating early developmental 
states and their relevance for corneal diseases. Kathuria et al. (2020) 
generated cerebral organoids from individuals with bipolar disorder, 
uncovering gene expression differences and synaptic impairments. Pei 
et al. (2021) employed lung organoids to study SARS-CoV-2 infection, 
revealing virus-cell interactions and testing therapeutic interventions. 
Integrating adult stem cells and matrices, micro-scale organ-tissue 
equivalents (Huh et al., 2011) replicate specific tissue characteristics, 
accelerating functional maturation and enabling interactions unique to 
each organ (Drost and Clevers, 2017; Oksdath et al., 2018; Valdoz et al., 
2021; Blatchley and Anseth, 2023). Commercial sources and tissue-
specific media continue to expand organ-tissue equivalents possibilities 
(Hofer and Lutolf, 2021).

Bhowmick et  al. (2018) developed a 3D Human Tissue-
Engineered Lung Model (3D-HTLM) to study Influenza A Virus 
(IAV) pathogenesis and the immune response, addressing a critical 
gap in influenza research. By culturing primary human small airway 
epithelial cells (HSAEpCs) on a 3D chitosan-collagen scaffold, they 
aimed to more closely mimic the human lung’s complex architecture. 
Their findings demonstrated that 3D-cultured HSAEpCs exhibited a 
more robust response to IAV infection than their 2D counterparts, 
including significant differences in cell viability, morphology, and 
cytokine release, thereby underscoring the importance of 3D models 
in replicating in vivo-like responses.

Similarly, Zhou et al. (2018) utilized 3D human airway organoids 
to improve the assessment of influenza virus infectivity. Their work 
highlighted the organoids’ ability to closely mimic the human airway 
epithelium, enabling the differentiation of ciliated, goblet, club, and 
basal cells to nearly physiological levels. This advancement proved 
crucial for evaluating the infectivity of emerging influenza viruses, with 
the differentiated organoids showing greater replicative capabilities for 
human-infective viruses compared to traditional models.

Kinder et al. (2020) focused on Respiratory Syncytial Virus (RSV) 
and Human Metapneumovirus (MPV), employing 3D human airway 
epithelial (HAE) tissues to reveal notable disparities in infection 
capabilities and mechanisms of spread between the two viruses. This 
study not only demonstrated the superior infection efficiency and viral 
release by RSV compared to MPV but also highlighted the potential 
of 3D models in uncovering unique viral spread mechanisms, such as 

MPV’s use of actin-based filamentous extensions for cell-to-
cell transmission.

Ribó-Molina et al. (2024) leveraged an organoid-derived bronchial 
culture model to study MPV, offering insights into the virus’s 
preferential targeting of ciliated epithelial cells and the resultant cilia 
damage. This model’s close simulation of human respiratory tract 
conditions provided a more accurate platform for evaluating viral 
replication and pathogenesis, emphasizing the superiority of 3D 
organoids in mirroring in vivo conditions.

Rijsbergen et  al. (2022) and Shpichka et  al. (2022) further 
validated the efficacy of 3D organoids in studying viral infections, 
including Human Parainfluenza Virus Type 3 (PIV3). These studies 
highlighted organoids’ capacity to replicate key aspects of viral 
infections and their utility in exploring infection mechanisms and 
antiviral treatments, thereby confirming the advantages of 3D models 
over traditional 2D cultures in infectious disease research.

In the landscape of infectious disease research, the fidelity with 
which experimental models replicate human tissue complexity 
significantly influences our understanding of pathogen-host 
interactions and the efficacy of potential therapeutic interventions. 
This study introduces an innovative approach by employing upper 
airway lung Organ-Tissue Equivalents (OTEs) to investigate 
differential responses to infections by IAV, MPV, and PIV3. Unlike 
traditional cell culture systems, OTEs offer a sophisticated mimicry 
of the structural and functional complexity of the human respiratory 
epithelium, making them a superior model for this investigation.

The advantage of using OTEs lies in their capacity to replicate key 
features of the upper airway epithelium, such as the presence of 
diverse cell types including ciliated cells, goblet cells, and basal cells, 
within a physiologically relevant architecture. This multicellular 
composition enables a more accurate simulation of virus-host 
interactions and immune responses within the respiratory tract, 
thereby offering deeper insights into viral pathogenesis, host defense 
mechanisms, and the evaluation of therapeutic strategies. 
Furthermore, OTEs maintain the tissue-level organization and cellular 
differentiation crucial for understanding the nuanced behavior of 
respiratory viruses, which exploit specific cell types and tissue 
structures for entry, replication, and dissemination (Leach et al., 2023).

Central to our study’s methodology is the rigorous fabrication 
process of OTEs, utilizing non-diseased, non-smoking human lung 
donor tissue. Through a meticulous decellularization and 
solubilization process, detailed in our group’s previously published 
work (Leach et al., 2023), we produce a solubilized lung extracellular 
matrix (sECM). This sECM, rich in collagen, elastin, sulfated 
glycosaminoglycans, and hyaluronan, mirrors the native lung ECM 
composition, providing the essential physical and biochemical cues 
for the development and maintenance of lung-specific cell types 
within the OTEs. Advanced fabrication techniques, including the 
application of thiolated gelatin, hyaluronic acid, and a polyethylene 
glycol (PEG)-based crosslinker, ensure the OTEs support robust cell–
cell and cell-matrix interactions crucial for lung function and response 
to infections (Leach et al., 2023).

Our study aims to illuminate the differential responses of OTEs to 
IAV, MPV, and PIV3 infections, focusing on variations in gene 

https://doi.org/10.3389/fmicb.2024.1342328
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Rezapour et al. 10.3389/fmicb.2024.1342328

Frontiers in Microbiology 03 frontiersin.org

expression through a bioinformatics approach tailored to RNA-Seq 
data encompassing 19,671 genes. These viruses, while sharing a 
respiratory tropism, induce distinct clinical presentations and immune 
responses, necessitating a comparative analysis to unravel the 
complexities of virus-host dynamics. The selection of 24- and 72-h 
post-infection time points is strategic, capturing early host responses 
and the progression to adaptive immune mechanisms, respectively.

In our quest to explore the intricate dynamics of gene expression 
in OTEs infected with various viruses, we opted for RNA-Seq as our 
primary data collection method over traditional microarray 
technology. RNA-Seq offers unparalleled depth and breadth in 
transcriptome analysis, providing the sensitivity to detect a wide range 
of expression levels and the specificity to uncover novel transcripts and 
splice variants. This choice aligns with our study’s objective to capture 
the complex and nuanced biological responses to viral infections, 
where the detailed characterization of gene expression changes is 
pivotal. Furthermore, the digital nature of RNA-Seq data, despite not 
being inherently continuous, is adeptly managed through advanced 
statistical methods tailored for such high-dimensional count data.

To address the analytical challenges posed by RNA-Seq’s discrete 
and overdispersed nature, we  employ Generalized Linear Models 
(GLM) (Nelder and Wedderburn, 1972) in conjunction with Quasi-
Likelihood (QL) F-tests (Wedderburn, 1974), facilitated by the EdgeR 
(Robinson et al., 2010) package. Our preference for EdgeR over other 
available tools, such as DESeq2 (Love et al., 2014), stems from its robust 
handling of biological variability and its flexibility in modeling complex 
experimental designs. EdgeR’s empirical Bayes methods (Robinson 
et al., 2010) are particularly effective in our context, where accurate 
estimation of dispersion and differential expression across small sample 
sizes is crucial. This decision ensures the integrity and reliability of our 
analysis, enabling the nuanced interpretation of gene expression 
dynamics induced by viral infections. Furthermore, the introduction 
of Magnitude-Altitude Score (MAS) and Relaxed Magnitude-Altitude 
Score (RMAS) algorithms allows for focused identification of genes 
significantly impacted by the infection. Gene Ontology (GO) 
enrichment analysis (Chen et al., 2013) then interprets the biological 
relevance of these findings, categorizing genes into groups reflective of 
the host’s transcriptional adjustments in response to viral infection.

2 Materials and methods

Our team has established an OTE model of the airway at an 
air-liquid interface (ALI) to accurately represent the intricate nature 
of human airways (Leach et  al., 2023). This model captures the 
dynamics of cell interactions, the presence of extracellular matrix 
(ECM) proteins, and various biomechanical aspects, offering a 
comprehensive platform for studying respiratory viruses’ interactions 
with the human airway epithelium. Building on this model’s 
capabilities, we  proceeded to infect the OTEs with three distinct 
viruses as part of our study. These included IAV strain A/Puerto 
Rico/8/1934 (H1N1), which features an EGFP-NS1 gene fusion and 
was kindly provided by Adolfo Garcia-Sastre of the Mount Sinai 
School of Medicine; MPV with an EGFP gene inserted before the N 
gene of strain CAN97-83 (product #M121 from ViraTree); and PIV3, 
which incorporates the EGFP gene between its first (N) and second 
(P/C/D/V) genes of strain JS (ViraTree product #P323).

For the virus infection, a medium was prepared from Dulbecco-
modified Eagle’s minimal essential medium, enriched with 0.1% 

inactivated fetal bovine serum, 0.3% purified bovine serum 
albumin, 20 mM HEPES (pH 7.5), and 0.2 mM Glutamax. This 
medium was sterilized using a 0.2 μm filter and preserved at 
4°C. We  determined influenza virus titers using Madin-Darby 
Canine Kidney (MDCK) cells (from ATCC, #CCL-34), while titers 
for other viruses were ascertained using the LLC-MK2 rhesus 
monkey kidney cell line (from ATCC, #CCL-185). It was estimated 
that each lung OTE harbored around 1.6 × 105 epithelial cells, and 
the nominal multiplicity of infection was based on the assumption 
that these cells were predominantly susceptible to the viruses 
under investigation.

For the infection process, OTEs were transferred to a 24-well 
culture plate containing modified PneumaCult ALI Medium (from 
Stemcell Technologies) and allowed to stabilize at 37°C in a CO2 
incubator. Prior to infection, each OTE surface was cleansed with 
warm Hank’s balanced saline solution. The virus, diluted in iDMEM, 
was then applied to the OTE’s apical surface. The plate was incubated 
with gentle rocking for an hour at 37°C in CO2 conditions, followed 
by standard growth conditions for specific durations, enabling a 
detailed exploration of viral infection dynamics within this advanced 
model system.

To facilitate the subsequent analysis of these virus-host interactions, 
RNA extraction from the OTEs was meticulously performed using the 
Direct-zol RNA Miniprep Plus Kit. This procedure began with the 
preparation of samples, followed by cell lysis, RNA purification, and 
DNase I  treatment to eliminate potential DNA contaminants. The 
purified RNA was then stored at −80°C, ensuring its preservation for 
in-depth sequencing and gene expression studies. This extraction 
process is essential for accurately dissecting the complex interplay 
between the OTE model and the introduced viral pathogens.

To delve into the molecular underpinnings of these interactions, 
RNA sequencing was paramount. cDNA libraries were crafted from 
50 ng of RNA extracts using a NEXTFLEX® Combo-Seq™ mRNA/
miRNA Kit and processed on a Sciclone® G3 NGSx Workstation. The 
libraries underwent quantification with a KAPA Library Quantification 
Kit and average fragment analysis via a 4200 TapeStation System. 
Following normalization, sequencing was conducted on an Illumina® 
NovaSeq 6000 System to generate 76-bp single-end reads, laying the 
groundwork for in-depth sequence analysis.

Utilizing Partek® Flow® software, raw sequence data were 
subjected to meticulous analysis. Initial processing involved Cutadapt 
(Martin, 2011) for trimming adaptors and low-quality bases, followed 
by alignment and quantification against the hg38 GENCODE 
reference database employing STAR (Dobin et  al., 2013) and an 
expectation/maximization (E/M) algorithm akin to Xing et al. (2006). 
This process culminated in the normalization of transcript-level 
counts to gene-level data using the median-of-ratios method from 
DESeq2 (Love et al., 2014), with results log2-transformed for clarity. 
Principal component analysis (PCA) was subsequently applied to 
elucidate global expression trends across various experimental 
conditions and temporal stages.

In this study, we  meticulously implemented various control 
conditions, including UV-treated and naïve samples, to bolster the 
precision of our experimental outcomes and effectively distinguish the 
effects of viral infection from other experimental variables. The 
incorporation of these controls was pivotal for affirming the integrity 
and reliability of our findings. It’s crucial to note, however, that while 
fundamental to our study’s design, these samples were not included in 
the differential expression analysis.
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TABLE 1 Sixteen infection conditions categorized based on (1) Virus, (2) Treatment, and (3) post-infection time.

Primary 
condition Virus Treatment Post-infection 

time
Primary 
condition Virus Treatment Post-infection 

Time

IAV-None-24 IAV Active 24-h IAV-None-72 IAV Active 72-h

MPV-None-24 MPV Active 24-h MPV-None-72 MPV Active 72-h

PIV3-None-24 PIV3 Active 24-h PIV3-None-72 PIV3 Active 72-h

Mock-24 Mock – 24-h Mock-72 Mock – 72-h

In-house controls Virus Treatment Post-infection Time In-house controls Virus Treatment Post-infection Time

IAV-UV-24 IAV UV 24-h IAV-UV-72 IAV UV 72-h

MPV-UV-24 MPV UV 24-h MPV-UV-72 MPV UV 72-h

PIV3-UV-24 PIV3 UV 24-h PIV3-UV-72 PIV3 UV 72-h

Untreated/Naïve −24 – – 24-h Untreated/ Naïve −72 – – 72-h

UV-treated samples, subjected to ultraviolet (UV) light to 
inactivate the viruses, provided a critical control for understanding the 
impact of viral components without their active replication. This 
approach helped isolate the effects of viral entry and subsequent host 
cell responses from those induced by viral replication, enabling us to 
specifically identify how viral infection mechanisms influence gene 
expression changes, separate from the effects of active viral 
proliferation within host cells.

Naïve samples, or untreated OTEs, served as internal controls to 
establish a gene expression baseline across our experiments. These 
samples were essential for ensuring that any observed gene expression 
changes were attributable to experimental manipulation, particularly 
viral infection, rather than to inherent variability or background 
expression levels.

Despite the indispensable role of UV-treated and naïve samples in 
establishing baseline and control conditions, our differential 
expression analysis focused exclusively on the direct effects of active 
viral infection on gene expression within the OTE models. 
Consequently, mock samples, which underwent all experimental 
procedures without virus introduction, were employed as the baseline 
for pairwise multiple hypothesis testing between actively infected 
samples. This approach ensured the gene expression changes 
we identified and analyzed were a direct consequence of active viral 
infection, offering a precise and focused insight into virus-
host interactions.

The strategic exclusion of UV-treated and naïve samples from 
expression analysis underscored our commitment to 
methodological rigor, allowing us to maintain a sharp focus on the 
specific impacts of viral infection. This decision was instrumental 
in enhancing the clarity, precision, and relevance of our findings, 
thereby justifying and reinforcing the validity of our 
experimental approach.

Our primary aim was to investigate differential gene expression in 
RNA-Seq data from OTE models infected with IAV, MPV, and PIV3 
at 24- and 72-h post-infection, covering a comprehensive spectrum of 
19,671 genes. After meticulous preparation and infection of the OTE 
samples, followed by RNA extraction and quality assessment, 
we employed the Trimmed Mean of M-values (TMM) normalization 
method to adjust for library size variations and composition effects, a 
common challenge in RNA-Seq data analysis (Robinson and 
Oshlack, 2010).

For analytical clarity and precision, we  organized infection 
conditions into categories based on virus type (IAV, MPV, or PIV3), 
treatment nature (UV-treated or Non-UV/active), and post-infection 
duration (24 or 72 h), labeled as Condition-Treatment-Time. Actively 
infected samples were specifically denoted as Virus-active-Time. 
Crucially, mock-infected samples (Mock-24 and Mock-72) served as 
the baseline for our pairwise hypothesis testing, allowing us to attribute 
observed differential gene expression directly to viral infection.

This replication strategy, involving six replicates at both the 24-h 
and 72-h time points for each condition, significantly bolstered the 
statistical strength of our results. The detailed organization of these 
conditions, alongside the pivotal role of mock samples in our analysis, 
is thoroughly outlined in Table  1. This structured methodology, 
combined with the strategic use of control samples, enabled an 
in-depth and accurate exploration of the effects of viral infections 
under varied conditions, greatly enriching the depth and accuracy of 
our research outcomes.

2.1 Statistical methodology and gene 
ontology analysis

To ensure clarity and accessibility, we first define our thresholds 
for statistical significance as follows:

 • Significance (p < 0.05): Initially, findings with p-values less than 
0.05 are considered significant. This stage identifies potential 
differentially expressed genes (DEGs) before adjusting for the 
impact of conducting multiple tests.

 • BH-adjusted Significance (p-adj < 0.05): DEGs that have 
Benjamini-Hochberg (BH) adjusted p-values (Benjamini and 
Hochberg, 1995; Benjamini et al., 2009) below 0.05 are recognized 
as BH-significant. This adjustment method controls the false 
discovery rate (FDR), providing a balanced approach to 
identifying true positives while minimizing false positives.

 • Bonferroni-corrected Significance: DEGs are considered 
Bonferroni-significant (Dunn, 1961) when their p-values remain 
below the threshold adjusted for the number of comparisons 
(0.05 divided by n, where n is the total number of genes). This 
stringent criterion is designed to rigorously reduce the chance of 
Type I errors.
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Our analytical strategy for RNA-Seq data begins with a critical 
preprocessing step, TMM normalization. This method corrects for 
library size differences and compositional variations across samples, 
which is essential for accurate downstream analysis. We structure the 
count data into a DGEList object, ensuring each count is associated 
with its corresponding experimental condition, such as mock-infected 
or virus-infected OTEs at specific time points. The normalization of 
this data through the TMM method is the first vital step, setting the 
stage for a fair comparison of gene expression levels.

RNA-Seq data, characterized by count-based measurements, 
presents unique analytical challenges that necessitate specialized 
statistical treatment. One fundamental issue is the non-normal 
distribution of count data, which is often overdispersed, meaning the 
variance exceeds the mean (Law et al., 2014). Traditional parametric 
tests, like the two independent sample t-tests, assume normality of 
data and homogeneity of variances, conditions that RNA-Seq data 
rarely satisfy.

To address these challenges, we employed Generalized Linear 
Models (GLM) (Nelder and Wedderburn, 1972) to model the 
RNA-Seq count data. GLMs are a flexible extension of ordinary linear 
models that allow for response variables to have error distribution 
models other than a normal distribution. They are particularly suited 
for modeling count data that follow distributions from the exponential 
family, such as Poisson or negative binomial, which are adept at 
handling the discrete and often overdispersed nature of RNA-Seq data.

Moreover, the Quasi-Likelihood F-test (Wedderburn, 1974), 
utilized within the GLM framework, provides a robust tool for 
assessing the significance of differences in gene expression between 
experimental conditions while accommodating the inherent 
overdispersion. This test does not require the strict assumptions of 
parametric tests and instead estimates the variance and mean 
relationship directly from the data, allowing for more accurate and 
reliable inference even with complex RNA-Seq datasets.

The application of the GLM with QL F-test is therefore justified as 
it provides a methodologically sound approach to identifying 
differentially expressed genes in RNA-Seq data, capturing the complex 
distributional characteristics of such data and managing the gene-
specific variability in a way that traditional methods cannot.

2.1.1 Model fitting process in GLM with 
quasi-likelihood F-tests

The Generalized Linear Models with Quasi-Likelihood F-test 
(GLMQL) approach, as implemented in the EdgeR software package 
(Robinson et  al., 2010), is central to this analysis and follows the 
following steps:

 1. Design Matrix Formation:
 (a) The design matrix is a critical component that represents the 

experimental setup, encapsulating factors that might influence 
gene expression, such as infection type (e.g., IAV, MPV, PIV3) 
and time points post-infection (e.g., 24 or 72 h).

 (b) Each row in the design matrix corresponds to a sample, and 
each column represents a factor that may affect 
expression levels.

 2. Fitting the GLM:
 (a) With the design matrix in place, a GLM is fit (glmQLFit; Chen 

et al., 2020) to the TMM-normalized count data.

 (b) The GLM links the expected value of the counts to the linear 
predictors via a link function appropriate for count data, usually 
the log link for Poisson or negative binomial distributions.

 (c) The coefficients in the GLM represent the log fold-changes 
(logFC) for each factor in the design matrix when compared to 
a reference level, often the baseline condition such as the mock-
infected samples at 24 h.

 3. Quasi-Likelihood F-test:
 (a) After model fitting, the Quasi-Likelihood F-test is used to 

compare the full model (with all coefficients) against a reduced 
model (without the coefficients of interest) to determine if the 
omitted factors significantly affect gene expression.

 (b) This test estimates the variability (dispersion) directly from the 
data, which accounts for the overdispersion often seen in 
RNA-Seq data.

 (c) It returns p-values indicating the probability of observing the 
data if the null hypothesis (no difference in expression due to 
the factor) were true.

 4. Significance and Log Fold-Change (logFC) Extraction:
 (a) For genes where the full model significantly deviates from the 

reduced model, the Quasi-Likelihood F-test provides p-values, 
which are then adjusted for multiple testing to control the false 
discovery rate.

 (b) Simultaneously, the GLM yields logFC values, which 
represent the factor‘s effect size on gene expression. The 
logFC is the natural logarithm of the ratio of the expression 
level in the treatment condition to that in the 
reference condition.

A low p-value indicates strong evidence against the null 
hypothesis, suggesting that the factor in question does have a 
significant effect on gene expression. The logFC reflects how much the 
expression level changes due to the factor. A positive logFC indicates 
upregulation, while a negative logFC suggests downregulation due to 
the factor‘s presence.

2.1.2 Biomarker identification through differential 
expression analysis

The culmination of our statistical methodology involves 
identifying potential biomarkers that can inform on the specific viral 
infection and its impact on gene expression. Post-application of the 
Generalized Linear Models with Quasi-Likelihood F-test (GLMQL), 
our analysis proceeds to pinpoint genes exhibiting significant 
differential expression between the conditions compared, using both 
raw p-values and adjusted significance levels.

We utilize the GLMQL framework for precise identification of DE 
genes across experimental conditions, emphasizing those with 
significant p-values and notable log fold changes (logFC). This 
meticulous approach facilitates the discovery of genes whose 
expression profiles are distinctively altered in response to viral 
infections, earmarking them as potential biomarkers.

Recognizing the importance of minimizing false discoveries in 
high-throughput data analysis, we  apply rigorous multiple testing 
corrections. This includes the Benjamini-Hochberg (BH) method to 
control the false discovery rate and the Bonferroni correction for a 
stringent significance threshold. Such adjustments ensure that 
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identified DE genes are not artifacts of multiple comparisons but 
reflect genuine biological differences.

In our analysis, we leverage the Magnitude-Altitude Score (MAS) 
and Relaxed Magnitude-Altitude Score (RMAS) algorithms to 
prioritize genes for their potential as infection-specific biomarkers. 
These methodologies transcend conventional prioritization based 
solely on p-values or log fold changes (logFC), as commonly seen in 
tools like EdgeR (Robinson et al., 2010) or DESeq2 (Love et al., 2014).

2.1.2.1 MAS definition
The MAS integrates both the magnitude of expression change 

( ( )2log FCl ), and its statistical significance ( ( )10log BH
lp ) into a 

singular score for each significant gene l, formulated as 

( ) ( )log FC log2 10MAS p
AM BHl l l= , where pl

BH  denotes Benjamini-

Hochberg adjusted p-values. Here M and A  are hyperparameters 
optimizing the balance between expression change and statistical 
confidence, ensuring a comprehensive evaluation of each 
gene‘s relevance.

2.1.2.2 RMAS definition
For situations where traditional FDR corrections, such as 

Benjamini-Hochberg, render no genes as significantly differentially 
expressed, the RMAS method provides an alternative. It employs 
p-values (pl)  in place of BH-adjusted ones (pl

BH) , defined as 
RMAS FC pl l

M
l
A

= ( ) ( )log log .2 10 This adjustment broadens the 
analysis to include genes that might be biologically significant but are 
overlooked due to stringent statistical corrections.

By setting M and A to 1, we ensure that the magnitude of expression 
change and its statistical significance are equally important in the final 
score. This reflects our hypothesis that genes critical to infection 
response should not only show significant expression changes but also 
be statistically robust, regardless of the magnitude of their change.

The use of MAS and RMAS offers a nuanced approach to gene 
prioritization by capturing a gene’s overall impact on the study’s 
biological context. This is particularly crucial in RNA-Seq data 
analysis for several reasons:

 • Holistic Gene Evaluation: Traditional prioritization based on 
p-values or logFC alone might overlook genes that, despite 
having moderate changes in expression or borderline statistical 
significance, play crucial roles in biological processes or 
pathways. MAS and RMAS integrate both dimensions, offering a 
more rounded assessment of each gene‘s potential impact.

 • Enhanced Biological Relevance: By balancing the magnitude of 
change with statistical significance, MAS and RMAS help identify 
genes that are not only statistically significant but also biologically 
meaningful. This is vital for understanding complex biological 
responses, such as those seen in viral infections, where the 
interaction between host and pathogen can affect gene expression 
in nuanced ways.

 • Adaptability to Data Variability: RNA-Seq datasets are 
characterized by inherent variability and complexity. The 
flexibility of MAS and RMAS in considering both expression 
change and significance level makes them particularly suited for 
such data, enabling the identification of relevant genes across a 
range of experimental conditions.

 • Exploratory Insight: RMAS, with its use of raw p-values, allows 
for the exploration of data beyond the constraints of traditional 
statistical thresholds. This exploratory nature is invaluable for 
uncovering potential biomarkers or therapeutic targets that 
might be dismissed by more conservative methods.

2.1.3 Gene ontology analysis
To interpret the biological implications of the significant changes 

in gene expression observed upon viral infection, we employed Gene 
Ontology (GO) enrichment analysis. This analysis facilitates the 
understanding of the biological processes, cellular components, and 
molecular functions enriched among the list of differentially expressed 
genes, thereby offering insights into the host’s defense mechanisms 
and the potential strategies employed by viruses to evade 
these defenses.

For the GO enrichment analysis, we utilized the Enrichr platform 
(Chen et  al., 2013), a comprehensive web-based tool designed to 
analyze gene lists for enrichment of specific GO terms. Enrichr 
incorporates multiple gene set libraries and employs robust statistical 
methods to identify significantly enriched terms, providing a deeper 
understanding of the biological themes associated with the gene lists.

Each list of significant upregulated and downregulated genes (raw 
p-values) identified for IAV, MPV, and PIV3 at 24- and 72-h post-
infection was separately analyzed using Enrichr. The analysis process 
entailed the submission of gene symbols to the Enrichr platform, 
where the enrichment of GO terms across three main categories, 
Biological Process, Cellular Component, and Molecular Function, was 
assessed. The output from Enrichr included lists of enriched GO terms 
associated with each gene list, along with statistical metrics such as 
p-values and combined scores, which facilitated the prioritization and 
interpretation of the most relevant biological processes impacted by 
viral infection.

Through this systematic GO enrichment analysis, we aimed to 
identify and compare the host cellular processes modulated in 
response to infection by each virus, thereby shedding light on the 
complexity of host-pathogen interactions and the dynamic nature of 
the host defense mechanisms. This methodological approach not only 
allowed for the exploration of the specific effects of individual viruses 
on the host cellular landscape but also provided a framework for 
identifying commonalities and differences in the host responses to 
these respiratory viral pathogens.

2.2 Classifying respiratory virus infections 
in OTEs using GLMQL-RMAS

Our classification approach commenced with the application of 
the GLMQL-RMAS method to identify top genes by comparing 
IAV-infected OTEs against Mock samples at 24 h post-infection. 
Similar comparative analyses were conducted for MPV and PIV3-
infected samples against Mock samples at the same time point. It is 
important to note that the top gene with the highest RMAS score is 
assigned a rank of 1, thereby assigning an RMAS rank to each gene. 
This initial phase allowed us to identify significant genes uniquely 
expressed in response to each viral infection. We further refined our 
analysis by identifying common significant genes across these 
contrasts. For these common significant genes, an aggregated RMAS 
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rank was defined as the summation of RMAS ranks for each 
comparison. Utilizing the RMAS scores, the gene with the smallest 
aggregated RMAS rank was selected as the fingerprint marker, 
capable of distinguishing all infected samples from the mock samples 
at the 24-h post-infection mark. This procedure was replicated for 
samples collected at 72 h post-infection, yielding two pivotal genes 
indicative of infection at 24- and 72-h post-infection intervals.

In instances where the top-selected gene at 24- and 72-h post-
infection are the same, we opt for the second-highest ranked gene at 
24 h as the primary selection. This adjustment is made because, within 
the first 24 h post-infection, the samples are less separable due to the 
nature of the viruses, and selecting an alternate top gene enhances the 
separation of samples during this critical early phase. This strategy 
ensures a more robust marker is utilized for distinguishing samples in 
the initial post-infection period.

To elucidate the dynamic changes between the two time 
points, we applied the GLMQL-RMAS method again, comparing 
the gene expressions of Mock, IAV, MPV, and PIV3 infected 
samples at 72 h against their respective 24-h expressions. An 
aggregated RMAS rank for all common significant genes was then 
defined as the summation of ranks from all four contrasts. 
Subsequently, the gene with the smallest aggregated RMAS rank, 
capable of separating samples at times 24 and 72, was chosen as 
the third pivotal gene.

Following this, a log-transformation was applied to the expression 
data of the three selected genes to normalize the distribution of 
expression levels, thereby enhancing the comparability and 
interpretability of gene expression across samples. To classify the 
samples into eight distinct classes (three viruses at two time points, 
along with two mock conditions), we employed a multinomial logistic 
regression model. This model was selected for its ability to handle 
multiple classes and provide probabilistic insights into class membership.

We adopted a Stratified K-Fold cross-validation strategy 
(Rodriguez et  al., 2009) with six splits to evaluate the model’s 
performance. This approach ensured that each fold accurately 
represented the entire dataset by maintaining the proportion of 
samples for each class, thus allowing us to gauge the model’s 
generalizability and robustness across different data subsets. The 
model’s classification performance was quantitatively assessed using 
metrics such as accuracy, precision, recall, and the F1-score 
(Theodoridis and Koutroumbas, 2006). Furthermore, an aggregated 
confusion matrix provided a comprehensive visual summary of the 
model’s performance across all folds, detailing true positives, false 
positives, and misclassifications.

To evaluate the efficacy of RMAS relative to ranking methods 
commonly utilized in EdgeR (Robinson et al., 2010) and DESeq2 
(Love et  al., 2014), we  replicated the aforementioned process, 
substituting RMAS with two alternative ranking criteria: once based 
on the smallest p-value and once based on the largest log2-fold change 
(log2FC). This comparative analysis allowed us to assess the 
performance and discriminative power of RMAS against traditional 
approaches in identifying pivotal genes indicative of viral infection.

3 Results

In this section, we  present the outcomes derived from the 
methodologies outlined in Section 2.

3.1 Statistical methodology and gene 
ontology analysis

For the purpose of data visualization in the PCA, we applied a 
log2-transformation to the RNA-Seq data post-TMM normalization, 
facilitating the equalization of variance across samples. Figure  1 
presents the 3D PCA plot, which provides a clear spatial segregation 
of the samples according to the defined experimental groups from 
Table 1, demonstrating the distinct transcriptional profiles induced by 
each viral infection condition. It is important to note that the log2-
transformation was specifically for PCA visualization; all other 
analyses reported in this paper are based on non-log-transformed data 
to preserve the original distribution and scale of expression values.

Throughout this study, in the GLMQL-RMAS/MAS analysis, 
we set both the M and A parameters to 1, with a significance level of 
α = 0.05. Figures  2, 3 display the total counts of upregulated and 
downregulated significant genes in IAV, MPV, and PIV3 infected 
samples, contrasted against Mock samples at 24- and 72-h post-
infection, respectively. Supplementary Figure S1 displays volcano plots 
for six contrasts at both 24- and 72-h post-infection using raw 
p-values. UV-treated samples served primarily as in-house controls to 
ascertain the baseline effects of viral component presence without 
replication. For a thorough analysis, we  also conducted multiple 
hypothesis testing across all actively infected samples compared to 
their UV-treated counterparts, detailed in Supplementary Figure S2.

Supplementary Figures S3, S4 display the total counts of 
upregulated and downregulated genes, significant according to both BH 
and Bonferroni corrections, in samples infected with IAV, MPV, and 
PIV3, contrasted against Mock samples at 24- and 72-h post-infection, 
respectively. After applying the Benjamini-Hochberg adjustment and 
Bonferroni correction, all MPV-associated genes were rendered 
insignificant, attributed to the nature of the MPV virus. Consequently, 
for the remainder of this paper, we  will focus our discussion on 
significant genes identified using raw p-values, as shown in Figures 2, 3.

Figures 4A,B present Venn diagrams illustrating the common 
significant genes associated with IAV, MPV, and PIV3, contrasted 
against Mock samples at 24- and 72-h post-infection, respectively. 
Supplementary Figures S5a–d display Venn diagrams showcasing the 
common BH and Bonferroni significant genes related to IAV, MPV, 
and PIV3 when compared against Mock samples at the same post-
infection intervals. The genes are ranked according to their RMAS 
scores and aggregated RMAS rankings, reflecting their overall 
significance across two or three groups. Figures 5A–D displays the 
Venn diagrams for significant upregulated genes when logFC >0 and 
logFC >1. This figure aims to demonstrate the stability of RMAS 
ranking, showing that it remains consistent regardless of the logFC 
lower threshold (with the top gene being identically selected), unlike 
rankings based on only p-values.

3.1.1 Gene ontology analysis
The GO analysis aimed to decipher the complex interactions 

between viral infections and host cellular mechanisms, focusing on 
the biological processes impacted by the upregulation and 
downregulation of significant genes.

At 24 h post-infection, GO analysis (Supplementary Tables S1, S3, S5) 
revealed an upregulation of genes associated with innate immune 
responses and antiviral defense mechanisms across all three viral 
infections, indicating a robust host defense strategy that involves 
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FIGURE 1

Three-dimensional principal component analysis (PCA) of RNA-Seq data from OTE samples. The PCA plot visualizes transcriptional profiles across 16 
infection conditions, demonstrating distinct clustering by virus type (IAV, MPV, PIV3), treatment (UV-treated, Non-UV/active), and time post-infection 
(24, 72  h), including Mock and Naïve controls at both time points. Data points represent individual samples, color-coded by condition, as listed in 
Table 1. The log2 transformation was applied solely for the purpose of this visualization to standardize variance; subsequent analyses were conducted 
with non-transformed data.

FIGURE 2

Distribution of upregulated and downregulated significant genes in IAV, MPV, and PIV3 infected samples compared to Mock samples at 24  h post-
infection, using raw p-values with a significance level of α  =  0.05.
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interferon-stimulated genes and cytokine signaling pathways. 
Concurrently, the downregulation of genes (Supplementary  
Tables S2, S4, S6) highlighted the viruses’ impact on host cellular 
structures, metabolism, and organelle functions, suggesting viral strategies 
to disrupt normal cell processes and evade immune surveillance.

By 72 h post-infection, the host response showed a sustained activation 
of antiviral defense mechanisms (Supplementary Tables S7, S9, S11), with 
a continued focus on cytokine-mediated immune responses and the 

inhibition of viral replication. This period also exhibited a significant 
downregulation in genes related to translation, cellular respiration, and 
gene expression (Supplementary Tables S8, S10, S12), reflecting a deeper 
viral influence on host metabolic and biosynthetic pathways.

Supplementary Tables S13, S14 provided a comparative analysis 
of the common host responses to IAV, MPV, and PIV3 infections at 
both time points. These analyses underscored a conserved set of 
defense mechanisms activated by the host, including the upregulation 

FIGURE 3

Distribution of upregulated and downregulated significant genes in IAV, MPV, and PIV3 infected samples compared to Mock samples at 72  h post-
infection, using raw p-values with a significance level of α  =  0.05.

FIGURE 4

Venn diagrams showing the overlap of significant genes associated with IAV, MPV, and PIV3 infections compared to Mock samples at 24/72  h post-
infection. Genes are ranked based on RMAS scores and aggregated RMAS rankings to highlight their significance across the groups. (A) At 24  h post-
infection. (B) At 72 h post-infection.
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of genes crucial for blocking viral entry, replication, and the 
modulation of immune signaling. This shared response highlights the 
fundamental aspects of the host’s antiviral defense and points to 
potential targets for broad-spectrum therapeutic interventions.

3.2 Classifying respiratory virus infections 
in OTEs using GLMQL-RMAS

Following the methodology described in Section 2.3, we identified 
three genes: IFIT1 (infection-dependent), IFIT2 (infection- 

dependent), and ELOVL4 (time-dependent), using GLMQL-RMAS 
as predictors for multinomial logistic regression. After conducting a 
6-fold stratified cross-validation, we obtained a mean accuracy of 92% 
with a 95% confidence interval of [85, 98%]. Figure 6 displays a 3D 
visualization of all samples using only these three genes as the 
coordinate axes. Figure 7 shows the confusion matrix for the 8-class 
classification using these genes. Figure  8 presents the confusion 
matrix for the 8-class classification when replacing RMAS with the 
common ranking method, ranking genes based on the smallest 
p-value, and Figure 9 illustrates the classification when genes are 
ranked based on logFC, with all other aspects remaining identical.

FIGURE 5

Venn diagram of significant upregulated genes with logFC >1 at 72  h post-infection. Consistent with the previous figures, it demonstrates the 
dependability of RMAS ranking in maintaining the identification of the top gene despite varying logFC thresholds. (A) Venn diagram of significant 
upregulated genes with logFC >0 at 24  h post-infection. (B) Venn diagram of significant upregulated genes with logFC  >  0 at 72  h post-infection. 
(C) Venn diagram of significant upregulated genes with logFC  >  1 at 24  h post-infection. (D) Venn diagram of significant upregulated genes with 
logFC  >  1 at 72  h post-infection.
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4 Discussion

4.1 Statistical methodology and gene 
ontology analysis

The PCA visualization (Figure  1) reveals that samples 
progressively shift towards the positive direction of PC1 from 24 to 
72 h post-infection. Figures 2, 3 and Supplementary Figures S3, S4 
suggest the stability of the MAS/RMAS ranking method, as it 
maintains consistent rankings even when applying Benjamini-
Hochberg or Bonferroni corrections, provided the genes still meet the 
significance criteria. Notably, IFNB1 and IFIT1 remain the top-ranked 
upregulated significant genes when contrasting IAV samples against 
Mock samples at both 24- and 72-h post-infection. This stability in 
ranking is further highlighted in Figure 5, where using RMAS for 
ranking shows that even when adjusting the lower logFC threshold 
from 0 to 1, the ranking of upregulated significant genes 
remains unchanged.

Analyzing the upregulated genes at 24 h post-infection (Figure 2), 
we observe a distinct immunological response pattern for each virus:

 • For IAV, genes such as IFNB1 (interferon-beta 1) and IFIT2 
(interferon-induced protein with tetratricopeptide repeats 2) are 
central to the innate antiviral response. IFNB1 is pivotal for 
initiating a broad-spectrum antiviral state, while IFIT2 is known 
for its role in inhibiting viral protein synthesis. OASL 
(2′-5′-oligoadenylate synthetase-like) and RSAD2 (radical 
S-adenosyl methionine domain-containing 2) enhance viral RNA 

degradation, indicating a robust cellular mechanism to thwart 
viral replication.

 • For MPV, OAS2 and MX1 (myxovirus resistance 1) suggest 
activation of similar antiviral pathways. MX1 is involved in the 
inhibition of viral replication in the cytoplasm, adding an 
additional layer of cellular defense. ATG14 and ZDHHC16 (zinc 
finger DHHC-type containing 16) may indicate the engagement 
of autophagy-related pathways and membrane trafficking 
adjustments as cellular strategies against viral infection.

 • In the case of PIV3, IFIT3 (interferon-induced protein with 
tetratricopeptide repeats 3) upregulation is significant for the 
interception of viral replication, complementing the activities of 
IFIT1 and IFIT2. The increase in OAS2 and MX1 once again 
underscores a shared antiviral strategy across different viral 
infections, and ISG15 (interferon-stimulated gene 15) points to 
a broader modulation of the immune response, given its role in 
protein ubiquitination related to antiviral defense.

At the 72-h mark (Figure 3), the trend of gene expression changes 
suggests an adaptive shift in the host response. For instance, the 
upregulation of IFITM1 and OAS1 in IAV infections might signify a 
sustained defense mechanism, possibly transitioning from an 
immediate to a more regulated long-term response. The continued 
downregulation of structural genes like ITGB4 and metabolic genes 
like EEF2 across different viruses could reflect a sustained 
reprogramming of cellular processes in the extended phase of viral 
infection. At 72 h post-infection, there is a clear pattern of upregulation 
for genes involved in the OTE’s response to viral infection:

FIGURE 6

Three-dimensional visualization of sample classification using IFIT1, IFIT2, and ELOVL4 as axes. This representation underscores the distinct clustering 
of samples based on infection and time-dependent gene expression patterns, facilitated by the GLMQL-RMAS methodology.
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FIGURE 8

Confusion matrix for the 8-class classification after replacing RMAS ranking with rankings based on the smallest p-value (EdgeR ranking method).

FIGURE 7

Confusion matrix for the 8-class classification using IFIT1, IFIT2, and ELOVL4 as predictors. The matrix highlights the model’s accuracy in distinguishing 
between different viral infections and time points, reflecting a mean accuracy of 92% as achieved through a 6-fold stratified cross-validation process.
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 • For IAV, we see a sustained upregulation of IFIT1 and IFITM1, 
which are critical for the ongoing defense against viral replication 
and signaling to other immune system components. OAS3, 
OASL, and OAS1 continue to illustrate the activation of the 
oligoadenylate synthetase pathway, crucial for degrading viral 
RNA. RSAD2 and DDX58 (RIG-I) remain central for recognizing 
RNA viruses and initiating immune responses, suggesting a 
prolonged active defense mechanism.

 • For MPV, the persistence of MX1 and OAS1 upregulation is 
noted, suggesting a long-lasting immune response activation. 
Proteins like ZC3HAV1 (zinc-finger antiviral protein) play roles 
in viral mRNA sensing and decay, indicating a continued cellular 
effort to suppress viral gene expression. SRP68 and PLSCR1 
implicate ongoing cellular adjustments in response to 
infection stress.

 • The PIV3 response highlights a similar trend with OAS3 and 
OAS1 again pointing to the significance of the antiviral state at 
this later time point. IFIT3, ISG15, and IFI44L emphasize a 
maintained immune response, with ISG15 indicating a broader 
immune system communication and potential modulation of the 
inflammatory response.

In our extensive investigation of the host response to IAV, MPV, 
and PIV3 infections in OTEs at 24- and 72-h post-infection, Gene 
Ontology (GO) analysis has been instrumental in elucidating the 
complex interactions between viral invasion and host defense 
mechanisms. By analyzing both upregulated and downregulated genes 
at these time points, we have painted a detailed portrait of how host 
cells activate various biological processes to counteract viral threats. 

Concurrently, these cells undergo substantial changes in cellular 
functions to support the viral lifecycle. Given the absence of BH or 
Bonferroni significant genes for the MPV virus, we conducted the GO 
analysis using significant genes determined by raw p-values. This 
approach ensured a comprehensive understanding of the host’s 
response mechanisms across all studied viruses.

4.1.1 Gene ontology analysis of the host (OTE) 
response to influenza A virus

Our examination of OTEs infected with IAV at 24 h post-infection 
through Gene Ontology (GO) analysis (Supplementary Table S1) has 
provided deep insights into the host’s defense mechanisms. This 
analysis reveals a multifaceted response to viral invasion, highlighting 
the significant roles played by a diverse array of genes. Key among 
these are interferon-stimulated genes such as IFITM3, IFITM1, 
IFITM2, and OAS1, which spearhead the defense against viral entry, 
replication, and spread. Additionally, genes integral to the innate 
immune response, such as CGAS and DDX60, have been identified, 
emphasizing the host’s rapid mobilization against the virus.

The breadth of the host’s defense is further illustrated through the 
“Defense response to symbiont” category, pointing to a strategy 
effective against a range of pathogens. This broad-based approach is 
complemented by more targeted responses, such as those in the 
“Negative regulation of viral process” and “Negative regulation of viral 
genome replication” categories, where genes like ZC3HAV1 and 
APOBEC3G play pivotal roles in thwarting viral RNA degradation 
and replication.

The analysis also uncovers the nuanced balance the host 
maintains through the “Regulation of viral genome replication,” 

FIGURE 9

Confusion matrix for the 8-class classification when genes are ranked based on logFC (EdgeR ranking method).
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revealing the intricate dance between host and virus. The 
importance of cytokine signaling in coordinating the immune 
response is underscored by findings in “Response to cytokine” 
and “Response to type II interferon” categories, with genes like 
CD40 and GCH1 highlighting the orchestration of inflammation 
and antiviral states.

Moreover, the host’s adaptive response is evident in the 
modulation of immune and inflammatory pathways, as shown by 
the involvement of genes in “Positive regulation of intracellular 
signal transduction” and “Regulation of I-kappaB kinase/
NF-kappaB signaling.” This adaptability is crucial for mounting 
an effective defense and is further highlighted by the host’s 
responsiveness to cytokine signals, as seen in the “Cellular 
response to cytokine stimulus” category.

On the flip side, the analysis of downregulated genes 
(Supplementary Table S2) reveals a significant reconfiguration of 
cellular priorities in the wake of IAV invasion. This includes alterations 
in cilium assembly and mitochondrial ribosome assembly, indicative 
of a strategic shift towards supporting viral replication at the expense 
of certain host functions.

At 72 h post-infection (Supplementary Tables S7, S8), our GO 
analysis traces the evolution of the host’s defense mechanisms, 
marking both continuity and adaptation. The sustained antiviral 
response, enriched in “Defense response to virus” and broadened by 
“Defense response to symbiont,” highlights enduring strategies against 
viral challenges. The ongoing efforts to curb viral RNA degradation 
and replication, as seen in “Negative regulation of viral process” and 
its counterpart for viral genome replication, reflect a persistent 
molecular defense.

This period also showcases the host’s regulatory finesse in 
“Regulation of viral genome replication,” ensuring viral control 
without compromising cellular integrity. The pivotal role of cytokine 
signaling in this extended defense phase is evident, with genes 
implicated in cytokine and inflammatory response modulation 
playing key roles in maintaining the systemic defense against IAV.

Furthermore, the activation typically associated with bacterial 
infections, as seen in “Cellular response to lipopolysaccharide” and 
“Response to lipopolysaccharide,” suggests a heightened state of 
immune readiness, potentially enhancing the host’s capability to 
manage co-infections.

The critical role of NF-kappaB signaling in mediating these 
responses, as highlighted in “Regulation of I-kappaB kinase/
NF-kappaB signaling,” underscores the complexity and efficacy of the 
host’s defense mechanisms, offering insights into potential therapeutic 
targets to bolster resistance against IAV.

The examination of downregulated genes at this juncture sheds 
light on the long-term impacts of IAV on the host’s cellular 
machinery, revealing strategies likely aimed at optimizing viral 
replication and survival. This includes a notable suppression of host 
cell translation machinery and biosynthetic processes, suggesting a 
comprehensive viral strategy to reshape host cellular architecture 
and function.

Collectively, these insights from the GO analysis at both 24- and 
72-h post-infection provide a comprehensive view of the host’s 
dynamic and evolving response to IAV, highlighting the complexity of 
antiviral defense mechanisms and identifying avenues for therapeutic 
intervention to support the host’s immune defense and recovery.

4.1.2 Gene ontology analysis of the host (OTE) 
response to human metapneumovirus

Our investigation into the response of OTEs to MPV infection, at 
both the early and later stages post-infection (Supplementary  
Tables S3, S4, S9, S10), through Gene Ontology (GO) analysis, sheds 
light on the intricate defense mechanisms mobilized by the host. This 
analysis identifies key biological processes and genes that are pivotal 
in the host’s strategy against MPV, revealing a nuanced and adaptive 
response to the viral threat.

Central to the host’s defense are the “Defense response to 
symbiont” and “Defense response to virus” processes, which 
underscore a comprehensive antiviral response encompassing a wide 
spectrum of strategies. This is exemplified by the activation of genes 
such as IFITM1, RSAD2, and the OAS gene family, alongside 
interferon-stimulated genes (ISGs) like MX1, MX2, and ISG15. These 
genes are instrumental in halting viral replication and spread, 
highlighting the host’s rapid and targeted defense mechanisms 
designed to counteract MPV invasion efficiently.

The host’s efforts to thwart viral proliferation are further evidenced 
by the “Negative regulation of viral genome replication” and “Negative 
regulation of viral process,” which focus on the molecular inhibition 
of viral replication. This strategic suppression, involving genes like 
IFIT1 and PLSCR1, signifies the host’s calculated approach to limit 
viral dissemination. Moreover, the “Positive regulation of type 
I interferon production” and related categories emphasize the host’s 
endeavor to boost the production of critical antiviral cytokines, a vital 
step in fortifying the host’s antiviral state and alerting adjacent cells to 
the viral presence.

Additionally, the GO analysis brings to light the modulation of the 
immune response through specific cytokines and enzymatic activities, 
as seen in the “Interleukin-27-mediated signaling pathway.” This not 
only demonstrates the host’s readiness and sophisticated response to 
viral encounters but also points to potential therapeutic targets that 
could enhance host defenses against MPV.

Conversely, the examination of downregulated genes during MPV 
infection unveils viral strategies aimed at manipulating host cellular 
functions and immune responses. This includes interference with 
“Lysosomal Lumen Acidification” and “Ribosome Assembly,” 
potentially affecting protein degradation and synthesis. Such viral 
tactics may aim to divert host mechanisms to favor viral replication or 
impede host defenses.

Insights into the “Regulation of Neutrophil Migration” and 
“Regulation of Cytoplasmic Transport” reveal viral influences on 
immune cell dynamics and intracellular movement, possibly altering 
the inflammatory landscape and host protein production priorities. 
Furthermore, changes in “G Protein-Coupled Acetylcholine Receptor 
Signaling Pathway” and “Regulation of Early Endosome to Late 
Endosome Transport” suggest viral modifications to cellular signaling 
and trafficking, which could impact viral entry and immune responses.

Through this comprehensive analysis, we delve into the dynamic 
interactions between MPV and the host, uncovering the adaptive 
and multifaceted nature of the host’s defense mechanisms. These 
findings not only deepen our understanding of the biological 
processes at play during MPV infection but also offer a groundwork 
for developing strategies to restore host functions and bolster the 
immune defense, providing a clear direction for future 
therapeutic interventions.
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4.1.3 Gene ontology analysis of the host (OTE) 
response to parainfluenza virus type 3

Our investigation into PIV3 infection in OTEs at 24- and 72-h 
post-infection, documented in Supplementary Tables S5, S6, S11, S12 
has yielded insightful revelations about the host’s defense strategy 
through Gene Ontology (GO) analysis. This detailed examination 
highlights a nuanced host response meticulously orchestrated to 
counteract PIV3 invasion, spotlighting specific biological processes 
and genes pivotal in mounting an effective defense.

At the forefront of this defense is the “Defense response to virus” 
category, which brings to light the host’s reliance on interferon-
stimulated genes (ISGs) like IFITM1, IFIT5, and the OAS gene family. 
These genes are instrumental in blocking viral entry and replication, 
epitomizing the host’s immediate and robust countermeasures against 
the viral threat.

Moreover, the “Defense response to symbiont” term underscores 
the host’s broad immune capability, showcasing its adaptability to 
combat not just viruses but a spectrum of pathogens. This is 
complemented by efforts detailed under “Negative regulation of viral 
genome replication,” where the host employs a targeted molecular 
assault on the viral lifecycle, as evidenced by the actions of RSAD2 
and MX1.

The analysis also shines a light on the “Antiviral innate immune 
response,” underscoring the innate mechanisms activated to detect 
and neutralize viral components, thereby initiating a comprehensive 
immune response. The significance of cytokine signaling in 
orchestrating these defenses is elaborated through the “Interleukin-
27-mediated signaling pathway” and “Cytokine-mediated signaling 
pathway,” highlighting the crucial roles of genes that facilitate antiviral 
states and mobilize immune cells to the infection site.

On the flip side, the examination of downregulated genes presents 
a clear picture of PIV3’s strategic impact on host metabolism and 
cellular processes. This includes notable disruptions in carboxylic acid 
catabolism and the cellular response to hypoxia, indicating a viral-
induced shift in host energy metabolism and adaptations to the 
metabolic requirements imposed by the infection.

Processes like “Carboxylic Acid Catabolic Process” and “Negative 
Regulation of Cellular Response to Hypoxia” point to a deliberate 
alteration in energy management and hypoxic responses, suggesting 
the virus’s influence on host cellular conditions to favor its replication. 
Additionally, “Response to Hydroperoxide” and related changes in the 
oxidative stress response highlight the host’s adjustments to manage 
cellular damage and foster tissue repair under viral attack.

This comprehensive analysis not only deepens our understanding 
of the sophisticated interplay between PIV3 and its host but also 
illuminates potential targets for therapeutic intervention. By 
highlighting the intricate defense mechanisms activated by the host 
and the strategic viral maneuvers to subvert these responses, 
we identify avenues to strengthen host defenses, aiming to mitigate 
the impact of PIV3 infection and support the host’s recovery and 
resilience against viral challenges.

4.1.4 Comparative analysis of host (OTE) response 
to IAV, MPV, and PIV3 infections

Our extensive Gene Ontology (GO) analysis across OTEs infected 
with Influenza A virus (IAV), Human Metapneumovirus (MPV), and 
Parainfluenza virus type 3 (PIV3) at both 24 and 72 h post-infection 

unveils a dynamic and multifaceted host defense against these 
respiratory viruses. Each virus triggers a distinctive host response, 
leveraging a blend of common and unique strategies to counter viral 
threats effectively. This response encompasses a broad activation of 
interferon-stimulated genes, innate immune mechanisms, and a 
strategic modulation of cellular processes to optimize defense while 
navigating viral evasion tactics.

IAV elicits a potent antiviral defense, characterized by the 
mobilization of key interferon-stimulated genes (IFITM3, IFITM1, 
IFITM2, OAS1) and critical innate immune response genes (CGAS, 
DDX60). This robust response is augmented by a broad “Defense 
response to symbiont,” signifying the host’s versatile defense strategy 
against various pathogens. The host’s approach is further defined by 
targeted molecular interventions (ZC3HAV1, APOBEC3G) to curb 
viral proliferation, underpinned by a critical emphasis on cytokine 
signaling to orchestrate an integrated immune and inflammatory 
response, highlighting the role of genes such as CD40 and GCH1.

MPV infection showcases a similar reliance on a comprehensive 
antiviral response, with genes like MX1, MX2, ISG15, IFITM1, and 
RSAD2 playing pivotal roles in halting viral replication. This response 
is coupled with strategic molecular efforts (IFIT1, PLSCR1) to 
suppress viral replication and amplify type I interferon production, 
underscoring the host’s adaptive immune response modulation.

PIV3 prompts a refined host defense, focusing on obstructing 
viral entry and replication through the activation of IFITM1, IFIT5, 
and the OAS gene family. This targeted defense is complemented by a 
“Defense response to symbiont,” illustrating a broad immune 
capability. Moreover, PIV3 infection underlines the host’s direct efforts 
(RSAD2, MX1) to dampen viral processes and genome replication, 
spotlighting the role of innate immune mechanisms and cytokine 
signaling in mounting a coordinated defense.

4.1.5 Upregulated genes and host defense 
mechanisms

Across all three viruses, a significant upregulation of genes 
involved in the “Defense response to virus” (GO:0051607) was 
observed at both 24 (Supplementary Tables S1, S3, S5) and 72 h 
(Supplementary Tables S7, S9, S11, S14) post-infection, highlighting 
a robust antiviral defense strategy marked by the activation of 
interferon-stimulated genes (ISGs) such as IFITM3, RTP4, OAS1, 
IFITM1, and MX1. This universal response underlines the host’s 
capacity to mount a strong defense, emphasizing mechanisms like 
viral entry blockade and innate immune signaling. Additionally, the 
“Negative regulation of viral process” (GO:0048525) and related terms 
across both time points underscore the host’s molecular strategies to 
restrict viral replication, featuring genes like ZC3HAV1, APOBEC3G, 
RSAD2, and MX1.

The cytokine response, particularly the “Response to cytokine” 
(GO:0034097) and “Response to type II interferon” (GO:0034341), 
further emphasizes the critical role of cytokine signaling in 
orchestrating a coordinated immune response, with genes such as 
STAT1 and MX2 playing pivotal roles.

4.1.6 Downregulated genes and cellular 
alterations

Notably, the downregulation of genes associated with “Cilium 
Assembly” (GO:0060271) and “Organelle Assembly” (GO:0070925) at 
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24 h post-IAV infection (Supplementary Table S2), and similar trends in 
MPV (Supplementary Table S4) and PIV3 infections 
(Supplementary Table S6), suggests a strategic viral interference with 
cellular structures and organelle functions. This might facilitate viral 
evasion or replication by altering cellular priorities and homeostasis. 
Furthermore, the downregulation observed in “Translation”(GO:0006412) 
and “Cytoplasmic Translation” (GO:0002181) at 72 h post-IAV and PIV3 
infection (Supplementary Tables S8, S12) points towards a viral strategy 
to dominate the host cell’s protein synthesis machinery.

4.1.7 Integrated host response across viral 
infections

The GO analysis of genes common to IAV, MPV, and PIV3 infections 
at both 24 (Supplementary Table S13) and 72 h (Supplementary Table S14) 
post-infection reveals a core set of biological processes activated in 
response to these viral infections. This integrated host defense 
mechanism, involving both upregulation of antiviral genes and 
downregulation of genes related to cellular maintenance and metabolism, 
suggests a strategic host response that prioritizes defense mechanisms 
while modulating cellular functions to mitigate viral invasion.

4.1.8 Comparative analysis and insights for 
therapeutic intervention

Our comparative analysis underscores both unique and shared host 
response pathways across IAV, MPV, and PIV3 infections. While core 
antiviral mechanisms, such as interferon signaling and viral genome 
replication inhibition, are universally activated, variations in specific 
GO terms and associated genes highlight the unique interactions 
between the host and each virus. This understanding not only deepens 
our insights into the molecular underpinnings of host-virus interactions 
but also illuminates potential targets for broad-spectrum and virus-
specific therapeutic interventions aimed at enhancing host defenses and 
mitigating the adverse effects of viral infections.

In conclusion, this extensive GO analysis across early and later 
stages post-infection offers a valuable framework for future research 
into the mechanisms of host resistance and virus pathogenesis. It 
highlights the complexity of the host’s defense strategies, the 
adaptability of viral mechanisms to circumvent these defenses, and the 
potential for identifying novel therapeutic targets. These findings 
contribute significantly to our understanding of viral infections in 
OTEs, providing a solid foundation for the development of effective 
antiviral strategies and enhancing our capacity to combat respiratory 
viral pathogens.

4.2 Classifying respiratory virus infections 
in OTEs using GLMQL-RMAS

Our study showcases the advanced methodology of biomarker 
identification through differential expression analysis, underscored by 
the application of Generalized Linear Models with Quasi-Likelihood 
F-tests (GLMQL-RMAS). This rigorous approach allowed us to 
identify genes with significant differential expression due to viral 
infection, utilizing both raw p-values and adjusted significance levels 
for an accurate representation of biological differences.

The differential expression analysis, anchored in the GLMQL 
framework, pinpoints genes with notable differences in expression 

across experimental conditions. By emphasizing significant p-values 
and log fold changes (logFC), we  unearth potential biomarkers 
indicative of specific viral infections. The RMAS algorithm refines 
gene prioritization by integrating the magnitude of expression 
changes with statistical significance, surpassing traditional methods 
that rely solely on p-values or logFC. The RMAS and MAS 
calculations, with hyperparameters M and A set to 1, emphasize the 
equal importance of expression magnitude and statistical robustness, 
promoting a balanced evaluation of each gene’s potential as 
a biomarker.

The selection of the top three genes through RMAS ranking, as 
illustrated in Figures  6, 7, demonstrates a remarkable 92% mean 
accuracy in distinguishing between eight different groups using a 
stratified k-fold cross-validation approach. This precision starkly 
contrasts with the lesser efficiency of prioritizing genes based solely 
on p-value or logFC, which achieved a mean accuracy of 85% each, as 
depicted in Figures 8, 9. This comparison underscores the superiority 
of integrating both p-value and logFC information in 
biomarker identification.

A pivotal aspect of our discussion focuses on the requirement for 
an adequate sample size to ensure the reliability of biomarkers in 
prediction models. Adhering to the principle that at least 10 samples 
per variable (gene) are necessary, our approach is geared towards 
maximizing the predictive power and generalizability of the model. 
The utilization of multinomial logistic regression further enhances the 
model’s robustness, enabling it to generalize across different biological 
contexts and experimental conditions.

The employment of multinomial logistic regression is crucial in 
translating differential expression analysis into actionable insights. 
This statistical model accommodates the complexities of biological 
data, ensuring that identified biomarkers are not only statistically 
significant but also biologically relevant and capable of predicting 
specific viral infections accurately.

Our comprehensive approach, from differential expression 
analysis through to biomarker identification using MAS and RMAS, 
followed by validation via multinomial logistic regression, sets a new 
standard in the field. It highlights the importance of integrating 
statistical rigor with biological relevance, paving the way for the 
identification of robust biomarkers that can inform on viral infections 
with high precision. This methodology not only contributes to our 
understanding of viral pathogenesis but also opens avenues for the 
development of targeted diagnostic and therapeutic strategies, 
underscoring the potential of advanced statistical models in 
biomedical research.

5 Conclusion

Our study provides a comprehensive examination of gene 
expression dynamics in response to viral infections, focusing 
specifically on Influenza A virus (IAV), Human metapneumovirus 
(MPV), and Parainfluenza virus type 3 (PIV3). Utilizing Generalized 
Linear Models (GLMs) with Quasi-Likelihood (QL) F-tests (GLMQL) 
to analyze RNA-Seq data from 19,671 genes, our aim was to identify 
genes differentially expressed under various infection conditions. The 
application of GLMQL, along with the innovative Magnitude-
Altitude Score (MAS) and Relaxed Magnitude-Altitude Score 
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(RMAS) algorithms, facilitated the precise identification of potential 
biomarkers indicative of specific viral infections. Our Gene Ontology 
(GO) analysis further enriched our understanding of the host’s 
defense mechanisms, identifying key biological processes activated 
in response to these viral infections. This analysis consistently 
highlighted the activation of interferon-stimulated genes across all 
three viruses, underlining the host’s reliance on innate immune 
mechanisms to combat viral threats. Moreover, the analysis of 
downregulated genes unveiled viral strategies aimed at manipulating 
host cellular functions, emphasizing the need for targeted 
therapeutic interventions.

The GO analysis offered deep insights into the host’s comprehensive 
response to viral infection, pinpointing critical biological processes, 
cellular components, and molecular functions impacted by IAV, MPV, 
and PIV3. Key findings included the activation of a broad range of 
interferon-stimulated genes (e.g., IFIT1, IFIT2, IFIT3, OAS1) and 
innate immune response genes (e.g., CGAS, DDX60), showcasing the 
host’s robust defense mechanisms against viral entry, replication, and 
spread. Notably, the analysis also revealed significant changes in 
cellular functions and structures, such as cilium assembly and 
mitochondrial ribosome assembly, indicating a strategic shift in cellular 
priorities to support viral replication. The stability of the MAS/RMAS 
ranking method, even under stringent statistical corrections, 
underscores the reliability of our approach in identifying 
key biomarkers.

Our implementation of the GLMQL-RMAS methodology 
enabled the precise identification of genes with significant 
differential expression, setting the stage for biomarker identification. 
This rigorous statistical framework, combined with the strategic use 
of the MAS and RMAS algorithms, allowed for the nuanced 
prioritization of genes based on both the magnitude of expression 
changes and their statistical significance. The classification of 
respiratory virus infections in OTEs, leveraging a multinomial 
logistic regression model validated through stratified k-fold cross-
validation, achieved remarkable accuracy. This method not only 
demonstrated a 92% mean accuracy in distinguishing between 
different viral infections but also underscored the superior efficacy 
of integrating both p-value and logFC information over traditional 
methods. Crucially, our study highlights the importance of having 
an adequate sample size for each variable (gene) used as a predictor 
in the model, ensuring the reliability and generalizability of 
our findings.

6 Limitations of study

While this study offers valuable insights into the dynamics of gene 
expression in human lung organ tissue equivalents (OTEs) infected 
with respiratory viruses, it is important to acknowledge several 
limitations that should be considered when interpreting the findings:

6.1 Model specificity

The use of OTEs as a model system, while advantageous for 
controlled experiments, does not fully recapitulate the complexity of 
the human lung. Therefore, the observed gene expression patterns 
may not fully represent the in vivo response.

6.2 Limited virus selection

This study focuses on a specific set of respiratory viruses 
(Influenza A, Human metapneumovirus, and Parainfluenza virus type 
3). As a result, the findings may not be  generalizable to other 
respiratory pathogens with distinct mechanisms of infection and gene 
expression modulation.

6.3 Short-term observation

The examination of gene expression changes is restricted to the 
first 72 h post-infection. Longer-term effects, potential recovery 
processes, and late-stage alterations in gene expression are 
not captured.

6.4 RNA-Seq constraints

RNA-Seq, while a powerful tool, has inherent limitations, 
including biases in sequence representation and challenges in 
detecting lowly expressed genes or splice variants.

6.5 Clinical translation

Extrapolating findings from the OTE model to human disease 
requires caution. Factors such as host genetics, comorbidities, and 
environmental influences, which play a crucial role in clinical 
outcomes, are not considered in this model.

Despite these limitations, this study provides valuable insights 
into the early gene expression responses to respiratory viruses 
within an OTE model. It serves as a foundation for further 
investigations in the field of viral pathogenesis and host-
virus interactions.
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