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1 Introduction

Since the original discovery of bacteriophages by William Twort in 1915, and Félix

d’Hérelle in 1917, there have been numerous reports describing the use of these “filterable

viruses” in phage therapy, and interest in this area continues to grow as the frequency of

human infections with multidrug resistant bacteria escalates. In addition, a growing list

of significant historic moments in science were only made possible through the study

of phages. These achievements include the first demonstration that DNA is the genetic

material [leading to the Nobel Prize in Physiology or Medicine in 1969 (Hershey and

Chase, 1952)]; the first SDS-PAGE separating phage T4 proteins performed by Laemmli

[and among the top 10 most cited papers of all time (Laemmli, 1970)]; the first DNA

sequencing ever to be performed by Sanger on the phage ϕX174 genome [and leading to

his second Nobel Prize in Chemistry in 1980 (Sanger et al., 1977)]; the first isolation of a

bacterial restriction enzyme capable of cleaving phage T7 DNA [and a joint Nobel Prize

in Physiology or Medicine in 1978 (Smith and Wilcox, 1970)]; and the first description

of gene editing through the use of a phage defense mechanism known as CRISPR/Cas9

[and again a Nobel Prize in Chemistry in 2023 (Barrangou et al., 2007; Jinek et al., 2012)].

These and several additional studies have emerged demonstrating that phages are an

invaluable resource to scientists and that their individual components have a plethora of

functions beyond the usage of intact phages for bacterial therapy and gene transduction

[for an excellent review, see Salmond and Fineran (2015)]; although new applications for

phages even in gene cloning and expression have emerged through the discovery of phage

N15’s ability to deliver linearized vectors into bacteria, and now also engineered for use in

eukaryotic cells (Wong et al., 2023). Additional phage applications include the use of their

receptor binding proteins for bacterial detection, or engineering intact phages for bacterial

viability reporting [using phage cocktails or synthetic approaches to expand host ranges

(Sun et al., 2023)], and even uses in tumor detection, targeted therapeutic delivery (Shen

et al., 2023), or reducing cancer progression (Sanmukh et al., 2021a,b); the exploitation

of filamentous phages for phage display (Franca et al., 2023) traditionally for antibody

screening and more recently for antibacterial development (Zhao et al., 2023); exogenous

addition of phage endolysins (Fischetti, 2011; Cahill and Young, 2019; Abdelrahman

et al., 2021) as a method for killing of Gram-positive (Mursalin et al., 2023), and more

recently, Gram-negative microbes (Gondil et al., 2020) [together with outer membrane

permeabilizers (Kocot et al., 2023)]; phage-based vaccines (more on this below) (Palma,

2023); and the use of phage depolymerases as adjuvant therapy to disperse microbial

biofilms (Topka-Bielecka et al., 2021). Bacteria have also retained phage proteins such as
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their toxins (typically in lysogenic conversion) to help with

dissemination (Kumar et al., 2020), or permanently adapted phage

tail-like structures in Type VI secretions systems for injection of

toxic effectors into eukaryotic or bacterial hosts (Leiman et al.,

2009), or co-opted holins coupled with cell-wall editing enzymes

in Type X secretion systems (Palmer et al., 2021).

In this opinion article, I will discuss re-emerging trends to

exploit phages for glyco-tool discovery, glycan display and vaccine

development. Although phage display was first described in 1985

by George Winter (who subsequently received the Nobel Prize

together with Gregory Smith in 2018), the use of phages to

display sugars, either linked enzymatically or chemically, is more

recent. Also, since phages are genetically tractable and three-

dimensional, they provide many advantages that inert glycan

arrays cannot provide. Similarly, one of the first reports of

antibody Fab binding to a carbohydrate, the Salmonella O-antigen

oligosaccharide, was published in the seminal paper by Cygler

et al. (1991) and phage display was subsequently used to select for

the infamous carbohydrate-binding monoclonal antibody Se155-4

(Deng et al., 1994). It was 6 years later that the same O-antigen

was crystallized with the Salmonella phage P22 tailspike protein

(TSP), a protein that also possessed endoglycosidase activity

(Steinbacher et al., 1997). However, this was not the first report of

a phage polysaccharide depolymerase, these activities were already

described in the 1950s (Maxted, 1952; Adams and Park, 1956).

Both phage binding to carbohydrates and hydrolase/lyase activities

have been described on an individual lectin/enzyme basis, similar

to the P22 TSP example given above. However, functional assays

for screening for broad phage activities within a population or data

mining through genome databases is only now being considered.

2A bottomless toolbox for
glycobiologists

I recently attempted to summarize the complexity in the

composition of bacterial surface glycans in Gram-negative, Gram-

positive and acid-fast microbes, like Mycobacterium tuberculosis

(Szymanski, 2022). I subsequently used Campylobacter jejuni

as the model to emphasize that each bacterial strain within

this Gram-negative species possesses separate pathways for the

biosynthesis of several glycoconjugate structures including N-

and O-linked glycoproteins, capsular polysaccharides (CPS) and

lipooligosaccharides (Szymanski, 2022). In addition, the set of

enzymes required for synthesis of the three latter conjugates

differs from strain to strain resulting in different carbohydrate

structures and serotypes; and even within a single strain, many

of the enzymes can vary in expression (on or off) leading to

the possibility of one in >1,000 different glycan compositions

(for CPS alone) on each individual cell. Now considering that

(1) NMR has been used to solve glycoconjugate structures for a

miniscule number of bacterial strains to inform our understanding

of the vastness of unique monosaccharides that the domain of

Bacteria are capable of synthesizing, and (2) phages predominantly

express receptor binding proteins recognizing specific bacterial

surface glycan structures and glycoside hydrolases/lyases capable of

degrading polysaccharides in order to gain access to the bacterial

cell surface (Simpson et al., 2015), it is obvious to conclude that

the estimated 1031 phages on Earth (Mushegian, 2020) provide

an enormous repertoire for discovering proteins (glyco-tools)

involved in glycan binding and degradation as a consequence of

this evolutionary arms race (Figure 1A). However, the possibilities

do not end with simply the identification of novel lectins

and enzymatic functions [now also including glycosyltransferases

modifying capsids and tail tubes (Freeman et al., 2023)], since

many enzymes can also be manipulated to maintain the lectin

binding domain while inactivating the enzymatic activity, or

optimized through methods such as phage display to exhibit

improved activity. This would provide the scientific community

with a limitless number of reagents for bacterial glycan labeling

and structural characterization to better define the carbohydrate

receptors necessary for phage therapy and enable researchers to

screen pathogenic isolates to assess the conservation of specific

glycan structures for glycoconjugate vaccine design.

Furthermore, phage genomes are not static, but rather quick to

acquire new mutations and recombination events and are capable

of also adapting to bind to human glycans, such as fucosylated

mucins, when coevolved together with the bacterial host and

gut-on-a-chip environment (Chin et al., 2022). The binding of

human glycans was also observed by Green et al. when they

demonstrated that the phage tail fiber could bind to human heparan

sulfate proteoglycans co-localizing the phage to the epithelial

cell surface in proximity to the Escherichia coli bacterial host

(Figure 1A). The authors concluded that their new findings provide

the opportunity to target phages to mucosal surfaces to selectively

remove pathogens from these sites (Green et al., 2021). It will

also be interesting to explore whether the phage expresses two

different phage tail fibers with different carbohydrate specificities,

or whether these fibers possess two separate glycan binding sites,

similar to the CTX-phage encoded cholera toxin B-subunit (Heim

et al., 2019). These observations further expand the toolbox to

include reagents of value for eukaryotic glycobiologists alike.

3 Phage glycan display

Phages can serve as templates for glycan display to allow

for screening of scrambled protein sequons permissible for

glycosyltransferase recognition (Durr et al., 2010), or to rapidly

screen for genetically altered transferases capable of protein

modification. More recently, phages have been used for density-

controlled, multivalent display of varying glycan structures, as an

alternative to glycan arrays, to screen glycan binding interactions

(Sojitra et al., 2021; Lin et al., 2023). To accomplish this, genetically

bar-coded M13 filamentous phages are chemically functionalized

with different glycan structures in a process known as LiGA (for

liquid glycan array, shown in Figure 1B in comparison to more

commonly used glycan arrays). Incubation with a cocktail of

phages, each displaying a different carbohydrate structure, allows

investigators to characterize glycan binding preferences of purified

proteins, or glycan recognition by adhesins on specific cell types,

or glycan enrichment correlated with known organ functions in

mouse models (Sojitra et al., 2021; Lin et al., 2023). Another

application of this method would be to investigate bacterial binding

to various glycan structures which very few laboratories have been
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FIGURE 1

Summary of bacteriophage components described in this review. (A) T4-like phage (not drawn to scale) with carbohydrate-binding (lectin) tail fibers

adhering to the capsular polysaccharides of a microbe, and likely possessing glycoside hydrolase/lyase activity to cleave the receptor to gain access

to the bacterial cell wall. The tail fiber is also shown to interact with heparan sulfate glycosaminoglycans (GAG, represented as horizontal lines except

for the GAG interacting with the phage) extending from proteins on host epithelial cells (according to Green et al., 2021). The dotted lines highlight

one of the receptor binding proteins, depicted as a trimer, as a candidate for the toolbox of reagents useful for glycan detection or cleavage. (B)

Filamentous phage covalently modified with glucose and galactose disaccharides as part of the liquid glycan array (LiGA) technology. The phage

genome has also been tagged with a barcode to enable identification of adherent phages from deep-sequencing data (according to Sojitra et al.,

2021). This glycan display platform is compared to two commonly used methods, Luminex beads modified with the same sugars as shown for the

phage, and glycan arrays on glass slides. (C) Assembly of a double-stranded RNA Cystovirus demonstrating that the viral envelope is derived from the

host inner membrane (IM) by an unknown self-assembly process and may contain intermediates from bacterial glycoconjugate biosynthesis

pathways. The bacterial outer membrane (OM) with a generic full-length polysaccharide is shown with the peptidoglycan layer underneath. The

rightmost arrow depicts the possibility of engineering self-assembling lipid vesicles with defined carbohydrate structures. All carbohydrates are

drawn using the Symbol Nomenclature for Glycans (Neelamegham et al., 2019). Iduronic acid (divided brown diamond), galactose (yellow circle),

glucose (blue circle), glucuronic acid (divided blue diamond), N-acetylglucosamine (blue square), and xylose (orange star). S indicates sites of

sulfation with arbitrary linkage site.

able to assess through the use of standard glycan arrays (Day et al.,

2016; Semchenko et al., 2019; Sanchez et al., 2023).

4 Vaccine development—Manipulation
of nucleobases

Many researchers have shown that the successful breakthrough

in the use of mRNA vaccines to treat SARS CoV-2 viral infections

hinged on the use of the modified nucleobase, N1-methyl-

pseudouridine (Morais et al., 2021; Nance and Meier, 2021). And

Karikó and Weissman subsequently received the Nobel Prize in

Physiology or Medicine in 2023 for demonstrating the benefits of

this modified nucleoside base in protein expression and immune

recognition (Karikó et al., 2008). The application of this newmRNA

vaccine platform and the encapsulation into lipid nanoparticles

(see below), has caused an explosion in vaccine development

targeting a number of infectious agents, and phages may provide

new alternatives for the biopharmaceutical industries. For example,

there are currently 40 DNA and 150 RNA modifications known,

and many of these are found in phages (Nielsen et al., 2023).

Furthermore, we and others have identified several new single-

stranded (ss)RNA and double-stranded (ds)RNA phages and their

RNA compositions have yet to be explored (Crippen et al., 2021;

Thongchol et al., 2023). Also, some phages, including the C.

jejuni Firehammervirus phages, possess mechanisms to precisely
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exchange canonical nucleotides with non-canonical nucleotides

with 100% efficiency into an existing DNA strand (Crippen

et al., 2019). Such enzymes would have great utility in creating

novel DNA/RNA templates for functional studies and potentially

engineering mRNA vaccines against a variety of pathogens more

efficiently and/or with novel properties.

5 Vaccine
development—Self-assembling lipid
nanoparticles

Pseudomonas syringae phage φ6 was the first enveloped dsRNA

Cystovirus identified more than 50 years ago (Gottlieb and

Alimova, 2023) and has served as the model phage to understand

phage RNA biosynthesis, packaging and host lipid bilayer

recruitment. Reminiscent of eukaryotic viruses, the phages use

protein-triggered membrane fusion for entry into their bacterial

hosts (Bamford et al., 1987) and the phages exit surrounded by

host phospholipid bilayers from the inner membrane (Heymann,

2023). These envelopes are generated through the insertion of

one specific phage protein (that must be expressed together

with its chaperone) and vesicles of similar buoyant density

as φ6 phospholipid precursors can be generated independently

through the sole expression of these proteins (Johnson and

Mindich, 1994). More recently, P. aeruginosa enveloped RNA

viruses were discovered (Yang et al., 2016; Antonova et al., 2023),

followed by similar viruses described by our group targeting

Acinetobacter radioresistens (Crippen et al., 2021). Not only is

the mechanism of membrane acquisition and assembly around

the RNA-core require further elucidation for these Cystoviruses

(Sun et al., 2017), but it is currently unknown whether the

glycolipid intermediates normally assembled on the bacterial inner

membrane are being excluded or whether the bacterial membranes

can be manipulated to include specific glycans to target immune

cell receptors or to include glycan antigens of interest (Crippen

et al., 2021) (Figure 1C). It would be interesting to determine

whether naturally enveloped phages such as those described

for Pseudomonas, and more recently for Acinetobacter, can be

engineered to form self-assembling lipid nanoparticles displaying

specific bacterial polysaccharides (Figure 1C). This would be

reminiscent of glycoconjugate expressing outer membrane vesicles

(OMVs) that have been successfully used in many studies (Dull

and McIntosh, 2012; Sinha et al., 2015; Chen et al., 2016; Liu

et al., 2016; Price et al., 2016; Banerjee et al., 2023). There

would be several added advantages to using the enveloped phages

including the presence of a phospholipid bilayer rather than the

use of an endotoxin containing outer membrane, homogeneous

particle sizes, facile generation of particles from bacterial fermentor

growth, etc. Similarly, these lipid nanoparticles can potentially

be engineered to carry different cargo including select protein

antigens or modified mRNA, perhaps by taking advantage of some

of the mechanisms that phages have evolved to alter their own

nucleoside bases. Not discussed, but equally interesting, there are

extensive efforts in using well-characterized phage proteins such as

the Salmonella phage P22 capsid as a carrier, reactor or vaccine

(Wang and Douglas, 2022; Essus et al., 2023), or the phage Qβ

system (Sungsuwan et al., 2022), among others (Yuan et al., 2023).

6 Conclusion

There is no doubt that bacteriophages will continue to

inform our understanding of a multitude of biological and

chemical processes, and lead to key discoveries and additional

Nobel Prizes for years to come. Since Félix d’Hérelle’s first

realization that phages can be used to manage microbial

infections, researchers have continued to make improvements

in this approach and are also exploring the use of several phage

components as their unique functions are being realized. In

this article, I emphasized that phages will act as a constant

source of reagents for glycobiologists since it is known that

as bacteria adapt and change their carbohydrate structures

for phage evasion, phages alter the specificities of their

receptor binding proteins and polysaccharide depolymerases

for bacterial infection. Similarly, phages will also be more

commonly used in glycan display platforms to better understand

the binding specificities in carbohydrate-protein interactions.

Lastly, enveloped phages have the potential to replace

OMVs, lipid nanoparticles and virus-like particles in various

vaccine platforms and I anticipate this will be a topic for

future development.
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