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Metagenomics, Metabolomics, and Metaproteomics have significantly advanced

our knowledge of microbial communities by providing culture-independent

insights into their composition and functional potential. However, a critical

challenge in this field is the lack of standard and comprehensive metadata

associated with raw data, hindering the ability to perform robust data

stratifications and consider confounding factors. In this comprehensive review,

we categorize publicly available microbiome data into five types: shotgun

sequencing, amplicon sequencing, metatranscriptomic, metabolomic, and

metaproteomic data. We explore the importance of metadata for data reuse

and address the challenges in collecting standardized metadata. We also,

assess the limitations in metadata collection of existing public repositories

collecting metagenomic data. This review emphasizes the vital role of metadata

in interpreting and comparing datasets and highlights the need for standardized

metadata protocols to fully leveragemetagenomic data’s potential. Furthermore,

we explore future directions of implementation of Machine Learning (ML) in

metadata retrieval, o�ering promising avenues for a deeper understanding

of microbial communities and their ecological roles. Leveraging these tools

will enhance our insights into microbial functional capabilities and ecological

dynamics in diverse ecosystems. Finally, we emphasize the crucial metadata role

in ML models development.

KEYWORDS

metagenome, shotgun sequencing, machine learning, metadata, disease prediction

1 Introduction

Human microbiome research has made significant progress in recent years, with

a growing amount of metagenomic, metabolomic, and metaproteomic data that holds

immense potential for hypothesis testing, meta-analyses, and disease diagnosis (Gilbert

et al., 2018). However, several challenges hinder researchers from fully harnessing these

resources, including the substantial time investments required, difficulties in accessing

metadata, the demand for computational resources and bioinformatic expertise, and

inconsistencies in annotation and formatting among individual studies (Pasolli et al., 2017).
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Recently, several reviews and surveys have been published

on the application of multi-omics approaches, particularly in

the context of microbiome research. Marcos-Zambrano et al.

(2021) focused on the application of machine learning (ML)

techniques in human microbiome studies, covering topics such

as features selection, biomarkers identification, disease prediction,

and treatments. Hernández Medina et al. (2022) and Mathieu

et al. (2022) overviewed how the latest microbiome studies

harness the inductive prowess of ML and deep learning (DL)

methods and considering how microbiome data peculiarities (i.e.,

compositionality, sparsity, and high-dimensionality)—necessitates

adequate handling. Another noteworthy review article by Quince

et al. (2017) emphasized best practices for shotgun metagenomic

studies, discussed the identification and management of various

technical limitations encountered during experimental approaches

and provided an overview of implementing computational

pipelines for shotgun data analysis. In a comprehensive discussion

of experimental considerations for omics-based microbiome

studies, Mallick et al. (2017) listed bioinformatics analysis tools

tailored explicitly for metagenomics and metatranscriptomics and

also touched upon the challenges associated with integrated multi-

omic analyses. Nyholm et al. (2020) provided a perspective article

that summarized the application of the holo-omics approach in

biological research. They focused on holo-omics use cases in studies

related to host-microbiota interactions, with an emphasis on

exploring applications across various fields rather than engaging in

a debate about available tools and methods. In a recent perspective

Huttenhower et al. (2023) described how microbiome data sharing

faces challenges due to its complexity and interdisciplinary nature.

While best practices exist, they are not always widely adopted due

to the effort involved. The need for microbiome-specific resources

and recognition of data sharing efforts should be prioritized for

progressing this field.

While these reviews and studies have significantly contributed

to our understanding of microbiome research, there appears to be

a noticeable gap in the public domain. Specifically, there seems

to be a lack of comprehensive review articles that emphasize the

critical importance of metadata in optimizing the implementation

of ML and other advanced techniques within microbiome studies.

Predictive models relying on artificial intelligence (AI) and ML

tools have proven to be invaluable for gaining insights from

the vast quantities of metagenomic data generated in laboratory.

These tools also play a crucial role in unraveling the ecology and

behavior of microbial taxa under study. AI and ML contribute

to informed decision-making, effective management strategies,

and conservation planning by providing a deeper understanding

of microorganisms.

We aim to fill critical gaps in the existing microbiome research

literature, with a specific focus on implementing machine learning

(ML) techniques for microbiome classification while utilizing

sample/rawmetadata or diseasemetadata (pathological conditions)

for each study and systematically reprocessing and reanalyzing

the data. Unlike previous reviews, we highlight the importance

of integrated metadata analysis, which involves discussing both

experimental considerations (e.g., study design, sample collection,

and sample processing steps) and bioinformatics considerations

(e.g., managing diverse data types, assessing computational

demands, selecting integration approaches, and analysis tools). We

delve into the current landscape of metagenomic, metabolomic,

and metaproteomic data analysis within microbial communities

and concentrate on integratedmetadata derived frommetagenomic

microbial community analyses. This review may be of interest

to a broad range of researchers in the microbiome field,

including those with expertise in ML, DL, and bioinformatics. We

anticipate that our work will help to accelerate the development

and implementation of advanced ML-based approaches for

microbiome classification and disease diagnosis.

2 Exploring the diversity of
microbiome data types and challenges
in data analysis

2.1 “Omics” data types: understanding five
distinct categories

Recent advances in next-generation sequencing (NGS)

technology have enabled the generation of vast amounts of

metagenomic data. Each of these data types provides unique

insights into different aspects of the molecular world, and

advances in high-throughput technologies and data science

have made it increasingly possible to leverage all of these data

types simultaneously (La Reau et al., 2023). Metagenomic

sequences obtained with different sequencing strategies can

be analyzed to answer a variety of questions: What is the

relationship between the resolution of bacterial composition

and the total number of obtained reads? To what extent

do different sequencing methodologies selectively capture

bacterial genera, resulting in exclusive identification by one

strategy but not the other? To what degree do the sequencing

approaches diverge in their capacity to explain relevant

insights into specific experimental conditions? Moreover,

other omics applications have been used to investigate the

complexity in microbial communities, namely, metabolomics

and metaproteomics. This wealth of data can be broadly

categorized into five distinct types: shotgun sequencing,

amplicon sequencing, metatranscriptomic data, metabolomic,

and metaproteomic data.

2.1.1 DNA-metabarcoding: profiling microbial
communities

The most commonly used approach to analyze microbiota

is DNA-metabarcoding (also known as amplicon-based

metagenomics). In metabarcoding, samples are characterized

using reads obtained through the selective amplification of marker

genes, like the evolutionarily conserved 16S rRNA gene or the

ITS region. 16S rRNA gene profiling allow us to characterize the

taxonomic composition of prokaryotic communities while ITS

(ITS1 or ITS2) has been suggested for fungi (Santamaria et al.,

2012, 2018; Tangaro et al., 2021). Nonetheless, there are three main

limitations in Amplicon Sequencing: (I) Taxonomic resolution and

the ability to profile non-bacterial members of the community,

such as Eukaryotes in the environment. The conservation of the
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16S rRNA gene and the length of the amplicon product restrict the

achievable taxonomic resolution. This means that certain closely

related taxa may be difficult to differentiate based solely on the

16S rRNA gene sequence. Approaches based on the long reads

sequencing (e.g. Oxford Nanopore and Pacific Biosciences), able to

cover the whole 16S rRNA and ITS regions, are promising in reach

species level taxonomic resolution (Johnson et al., 2019; Notario

et al., 2023). (II) Inherent limitations in functional profiling:

this approach attempts to estimate functional capacity using the

16S rRNA gene, it inherently lacks the ability to directly analyze

the functional potential of microbes or microbial genes. Tools

exist able to infer functional capabilities based on the taxonomic

profiles such as Tax4Fun2 (Asshauer et al., 2015; Wemheuer

et al., 2020) and the phylogenetic investigation of communities by

reconstruction of unobserved states with PICRUSt (Langille et al.,

2013) and PICRUSt2 (Douglas et al., 2020), but the accuracy and

resolution of these predictions are limited. (III) PCR amplification

and its effects: PCR-based marker gene surveys are vulnerable

to a multitude of factors that can introduce errors and bias into

microbiome studies. These factors, extensively documented in

the literature (Nearing et al., 2021), encompass: undersampling,

differential extraction contamination, storage bias, amplification

parameters and quality of the starting template. Undersampling

refers to the risk to obtain an incomplete representation of the

microbial community due to limited sampling. Contamination

from DNA introduced during laboratory experiment through

reagents and equipment, known as contaminating DNA from

reagents, is another concern. The sample storage conditions under

which samples are kept can significantly impact the quality and

quantity of DNA. The amplification parameters employed in PCR,

including enzyme choice, annealing temperature, amplification

time, ramp rates, and cycle number, can introduce variability

and errors. Variations in the starting template concentration can

also affect the outcomes of amplification. Furthermore, DNA

properties such as GC content and secondary structure, known

as template properties, can influence amplification efficiency.

Errors may be introduced by primer mismatches or degeneracies,

where primer sequences may not perfectly match target sequences.

Polymerase errors during DNA polymerization in the PCR process

contribute to the issue (Berden et al., 2022). Challenges also arise

from chimeric reads, which are formed from hybrid sequences

originating from different templates during amplification (Haas

et al., 2011). Random errors, unpredictable in nature, can emerge

during the PCR process, while systematic PCR errors may be

associated with specific primer pairs or conditions. It’s crucial to

recognize that sequencing itself introduces errors, with Illumina

sequencing posing particular challenges due to its imaging-based

nature (Pienaar et al., 2006). These potential sources of error

and bias has led to concerns about the accuracy, reproducibility,

and potential contamination in microbiome studies (Gohl et al.,

2016). Nonetheless, despite the need for PCR amplification,

16S rRNA gene profiling requires a relatively low number

of sequenced reads per sample (∼100,000) to maximize the

identification of rare taxa. This makes it a cost-effective alternative

compared to shotgun metagenomic sequencing (Peterson et al.,

2021).

2.1.2 Shotgun sequencing data: unveiling
microbial abundance and functionality

Metagenomics experiments in the context of microbial

communities employ a shotgun sequencing approach, which

involves the isolation of DNA from the sample, its preparation

for sequencing, and subsequent deep sequencing. Shotgun

metagenomic (SM) data enable high resolution in estimation of

taxon abundance from phylum (Sunagawa et al., 2013), to strain

level (Scholz et al., 2016) within the original sample. In addition to

taxonomic profiling, shotgun sequencing data is used for studying

the functional potential of the human microbiome (Li et al., 2022).

In the analysis of SM data, the sequencing depth serves as a crucial

factor for understanding how it might affect the results. This impact

is particularly evident when sequencing depth is insufficient, or the

sample size is inadequate. A study by Li et al. (2022) reported that

15 million or higher depth as the optimal minimum sequencing to

explore species level composition formetagenome-wide association

studies (MWAS). The shotgun sequencing method has distinct

advantages over targeted sequencing techniques, such as 16S rRNA

gene sequencing. Shotgun sequencing is known for its relatively

unbiased nature, making it a suitable choice for capturing the

genomes of diverse species, regardless their phylogenetic origin

(Lu et al., 2017). In addition, recent studies by La Reau et al.

(2023) have revealed that shallow shotgun sequencing produced

lower technical variation and higher taxonomic resolution than 16S

rDNA sequencing at a much lower cost than deep SM sequencing.

There are several challenges and recommendations reported

in SM sequencing: (I) Human DNA Contamination and Skewed

Ratios: Challenges arise from shotgun sequencing approaches due

to their propensity to generate reads in proportion to the relative

concentrations of DNA within the sample. This often leads to an

extremely skewed ratio of microbial to human DNA, resulting in

human sequencing reads dominating within samples. For instance,

stool samples typically consist of <10% human DNA, whereas

samples obtained from sources like saliva, throat, buccal mucosa,

and vaginal swabs can contain more than 90% of reads aligned

to the human genome (Lloyd-Price et al., 2017). (II) Removing

host-derived DNA for accurate microbial analysis: Host-derived

reads should be removed from the metagenomic data before

downstream analysis by using available bioinformatic tools to avoid

bias in microbial quantification (Pereira-Marques et al., 2019). (III)

Distinguishing active from inactive microbial populations: A major

limitation of SM is that this technique does not allow distinguishing

between active (alive) and inactive (dead) microbial populations

and whether the predicted genes are actually expressed and under

what conditions.

However, some potential sources of bias are common to both

SM and meta barcoding. For instance, DNA extraction methods

can significantly impact the results. In addition, in the case of SM,

it is crucial to consider the differences in sequencing total DNA

through a PCR-free or PCR-enriched protocol. In this case, PCR

bias is also common to both strategies. These biases can influence

the resolution of bacterial composition, the selective capture of

bacterial genera, and the capacity to elucidate insights into specific

experimental conditions using different sequencingmethodologies.

Understanding and addressing these biases are crucial for accurate
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and reliable interpretation of metagenomic data (McLaren et al.,

2019).

2.1.3 Metatranscriptomic insights: revealing
microbial activity

Metatranscriptomics is the study of the transcriptional activity

of microbes and microbial populations, which is particularly

useful for functionally investigate the gut microbiota. It is a

powerful tool for understanding the active states of microbes,

their genes, and the different expressed pathways, as well as for

detecting and understanding the microbial role in pathological

conditions. We can gain insights into the gene expression patterns

of pathogenic microorganisms and their interactions with the host

by examining the RNA transcripts present in a host microbiome.

This information can aid in the early detection and diagnosis of

infectious diseases, as well as in monitoring treatment efficacy and

disease outcomes (Bashiardes et al., 2016).

However, there are some limitations to metatranscriptomic

analysis in disease detection. First, the complexity of the microbial

community and the varying abundance of different transcripts

can make it challenging to assess their source from pathogenic

or commensal microorganisms. Additionally, technical biases and

limitations in sequencing technologies (i.e. reads length) may affect

the sensitivity and accuracy of detecting low-abundance transcripts.

Furthermore, the interpretation of metatranscriptomic data in the

context of disease requires careful consideration of various factors

such as the host immune status, sample collection techniques, and

potential confounding factors. Standardized protocols for sample

collection, RNA extraction, and data analysis are essential to ensure

reproducibility and reliability of results.

Despite these challenges, metatranscriptomic analysis holds

great promise for understanding host-microbe interactions in

disease (Bashiardes et al., 2016), discover novel microbial

interactions (Bikel et al., 2015), detect regulatory antisense RNA

(Bao et al., 2015), and track expression of genes and determine the

relationship between viruses and their host (Moniruzzaman et al.,

2017). Advancements in sequencing technologies, bioinformatics

tools, and data integration approaches will continue to enhance our

ability to harness metatranscriptomics for accurate and informative

disease diagnosis and monitoring (Shakya et al., 2019).

2.1.4 Metabolomic signatures: unraveling
interactions through metabolites

Metabolomics is an investigative approach focused on the

analysis of small molecules (<1.5 kDa), commonly known as

metabolites, within various biological samples such as urine,

serum, plasma, feces, and saliva. It is challenging to differentiate

between features originating from microbes and those from the

host or environment, so it is crucial to have clear links between

these features and the corresponding microbial profiles from

the specimen. These data become most valuable when closely

connected to the corresponding microbial profiles from the source

specimen. Also, this method aims to identify and characterize

metabolites in these samples, thereby enabling the development

of distinctive metabolic profiles for individuals or populations.

These profiles are reflective of a complex interplay between genetic,

environmental, and microbial factors.

Metabolomics encompasses two key approaches targeted and

untargeted. Targeted metabolomics focuses on specific known

metabolites, commonly used for validating biomarkers or studying

the effects of interventions like drug treatments or dietary

changes. It offers high sensitivity and precision but is confined

to the predetermined metabolites on the target list. Untargeted

metabolomics aims to identify and quantify all metabolites present

in a sample, enabling the discovery of newmetabolites, biomarkers,

and pathways. While less precise than targeted metabolomics, this

method provides a wider coverage of metabolites, shedding light on

complex biological interactions involving genetic, environmental,

and microbial factors. Distinguishing between features from

microbes, the host, or the environment is challenging, requiring

clear associations between these features and the respective

microbial profiles from the specimen for accurate interpretation

(Bingol, 2018; Yang et al., 2019).

A noteworthy illustration of this concept can be found in

the examination of bioactive microbial metabolites, specifically

short-chain fatty acids (SCFAs), which includes propionate,

butyrate, and acetate. These SCFAs have been implicated in

the development and progression of several diseases, including

inflammatory bowel disease (IBD) and colorectal cancer (Storr

et al., 2013). Additionally, there are other metabolites like bile acids,

sphingolipids, and tryptophan derivatives, all of which exhibit

evidence of microbial interactions and bioactivity within the gut

environment (Mallick et al., 2019).

Recent studies by Muller et al. (2021) have demonstrated that it

is possible to differentiate between individuals with IBD and those

without, as well as distinguish between specific subtypes of IBD

(ulcerative colitis and Crohn’s disease) by employing ML pipeline

and metabolic profiling techniques. This highlights the potential

of metabolomics in contributing to our understanding of the

underlying metabolic alterations associated with various diseases

and conditions. Notably, these alterations include metabolites

closely associated with critical microbial pathways like bile acid

transformations and polyamines metabolism.

Noteworthy, obtaining, processing, and comparing

microbiome-metabolome datasets frommultiple studies is typically

a cumbersome, extremely challenging, and time-consuming

process. Initial challenges include downloading the data associated

with each study, which are often missing or incomplete, and

linking microbiome, metabolome, and metadata sample identifiers

in each study. While sharing raw and/or processed metagenomics

data is common and relatively standardized in terms of formats

and online open-access repositories, metabolomics data is much

less standardized and often not being shared in microbiome

studies. Once all the raw data have been obtained, they need to

be jointly re-processed, which often requires additional expertise

or the use of a variety of bioinformatic methods. Making sure

taxon and metabolite identifiers can be mapped and compared

across datasets is another critical challenge and may require careful

and tedious curation efforts. Schorn et al. have recently addressed

some of these challenges by releasing a community resource for

linking raw genomic/metagenomic data with metabolomic data

(Schorn et al., 2021), yet, this resource requires proficiency in
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processing raw data sources and is targeted primarily at identifying

and confirming novel links between biosynthetic gene clusters and

metabolites (Muller et al., 2022). Regarding metabolomics raw

data, the European repository MetaboloLights (Yurekten et al.,

2023) currently contains 85 microbiome studies (out of 1,397,

accessed 1/1/2024) and it is interesting to note how currently in

the EMBL-EBI ENA (European Nucleotide Archive) repository are

available 146,583 datasets, highlighting the limited amount of raw

metabolomic data available (Yuan et al., 2023).

2.1.5 Metaproteomics: revealing the proteome
complexity

The gut microbiome, a highly intricate ecosystem comprising

trillions of microorganisms, presents a challenge for conventional

DNA-based approaches (Li L. et al., 2023). These methods often

fall short in elucidating the functional aspects of the microbiome,

unable to confirm whether predicted genes are actively expressed,

under what conditions, or to what extent (Park and Graveley, 2007;

Verberkmoes et al., 2009).Moreover, the viability and activity status

of the microbial cells remain uncertain. Meta-transcriptomics

(described above), although offering a solution by assessing RNA

expression as an indicator of gene activity, encounters challenges

related to the fate of expressed RNAs, ranging from protein

production to degradation or epigenetic silencing (Holoch and

Moazed, 2015; Yang et al., 2016). These limitations can be overcome

by directly assessing proteins.

Addressing these limitations, metaproteomic emerges as a

promising avenue, utilizing liquid chromatography–tandem mass

spectrometry (LC-MS/MS) to delve into protein functions. Unlike

DNA and RNAmethods, metaproteomic directly assesses proteins,

providing insights into microbial diversity and dynamic host-

microbiota interactions in the human gastrointestinal tract. This

technique aids in unraveling molecular mechanisms associated

with both homeostasis and disease pathogenesis (Lee et al., 2017).

In other words, metaproteomic is a large-scale characterization of

the entire protein complement and was initially used to study the

microbial function of environmental samples, like soil, activated

sludge, and acid mine drainage (Long et al., 2020).

Despite its potential, metaproteomic faces challenges, notably

in the depth of analysis due to the absence of a suitable

database. Taxonomic diversity calculators, commonly used in gut

microbiome studies, prove insufficient in assessing functional

states. The need for a functional perspective becomes evident, as

diversity alone does not necessarily correlate with the microbiome’s

functionality (Li L. et al., 2023).

Among metaproteomic studies, a mass spectrometry-based

shotgun proteomics approach is employed. This technique involves

the detection and identification of all proteins in a cell mixture

without gel-based separation or de novo sequencing. Peptides

resulting from enzymatic digestion of the proteome are separated

by liquid chromatography and analyzed through tandem mass

spectrometers. The resulting information is then compared

against peptide databases derived from genome sequences.

While shotgun metaproteomic has shown success in studies

involving microbial communities with low diversity, adapting this

approach to more complex environments, such as the human gut

microbiome, remains technically challenging. This method has

been demonstrated in few studies, including those focused on acid

mine drainage systems, endosymbionts, and sewage sludge water.

Indeed, in the ProteomeXchange (Vizcaíno et al., 2014; Deutsch

et al., 2017, 2022) repository, 211 studies out of 31,443 (0.7%,

data accessed on 1/1/2024) regards microbiome investigations.

However, challenges persist, and further advancements are needed

to overcome technical limitations in analyzing complex microbial

communities (Verberkmoes et al., 2009). The pursuit of a

comprehensive understanding of metaproteomics is strongly

recommended, with a key reference available in Xiong et al. (2015).

Erickson et al. (2012) described the simultaneous application of SM

and metaproteomics to identify potential functional signatures in

Crohn Disease (CD).

Table 1 summarizes the advantages, disadvantages, capabilities,

and recommended use of metagenomic data types.

3 Machine learning for microbiome
data analysis

In microbiome studies, there is a wide range of questions yet

to be solved; these question follows how microbial communities

and specific microbes within those community’s cause, respond

to, or contribute to disease. Do various diseases exhibit unique

gut microbiome alterations? Are some conditions associated

with pathogen intrusion, while others demonstrate a decline

in beneficial bacterial populations? Can we pinpoint microbial

biomarkers consistently enriched or diminished in a given disorder

across diverse patient populations? Several recent studies have

highlighted the advantages of implementing the ML pipeline on

SM data to understand microbial taxa, identify signatures for

disease identification and diagnose complex medical conditions,

particularly for gut microbiome-related diseases. These studies

demonstrate the following key benefits: (I) Improved Classification

Accuracy to taxa associated with IBD: Mihajlović et al. (2021)

employed a random forest (RF) model to classify Inflammatory

Bowel Disease (IBD), achieving an average F1 score of 91%.

This underscores the robust connection between IBD and the

gut microbiome, showcasing how ML can enhance diagnostic

accuracy in complex diseases. (II) Access the microbial taxa

signature from SM data: Liñares-Blanco et al. (2022) generated

a metagenomic signature using RF, effectively identifying IBD

from fecal samples. The model achieved AUC scores of 0.74

and 0.76 for different IBD subtypes, Ulcerative Colitis (UC)

and Crohn’s Disease (CD), respectively, highlighting the utility

of ML in subtype-specific diagnosis. Bakir-Gungor et al. (2021)

utilized machine learning, specifically the RF method, to develop

a classification model for Type 2 Diabetes (T2D) diagnosis and

revealing that a subset of 15 commonly selected features had a

significant impact on minimizing the microbiota required for T2D

diagnosis, thereby reducing time and cost, showcasing the efficiency

ofML in biomarker selection. (III) Biomarker discovery and patient

subgrouping: Another study by Bakir-Gungor et al. (2022) aimed to

identify biomarkers associated with human gut microbiota during

IBD. Supervised and unsupervised ML models were employed

to (i) aid IBD diagnosis, (ii) discover IBD-associated biomarkers,

and (iii) Identify patient subgroups using clustering approaches.
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TABLE 1 Assessing metagenomic data types: advantages, disadvantages, capabilities, and recommended applications.

Data type Definition Capabilities∗ Advantages Disadvantage Recommended use

Shotgun- metagenomics Whole-genome sequencing of all

genomes in a sample, including DNA

from bacteria, fungi, viruses, and the

host organism

• High resolution,

• Moderate selectivity

• High capacity

• Can identify all members of a

microbial community, including

novel and rare taxa.

• Can be used to study gene

expression and metabolic activity.

• Expensive, time-consuming,

• May not be able to identify all

bacterial genera at equal efficiency.

• Difficult to assemble and analyze

complex metagenomes.

• May not be able to detect

low-abundance taxa.

• Studying the diversity and

composition of microbial

communities, identifying new

species and strains of microbes,

• Investigating the functional

potential of a

microbial community

Amplicon- sequencing Targeted sequencing of a specific

gene or region of DNA from a sample

• Low resolution,

• High selectivity

• Medium capacity

• Can be used to target specific

bacterial genera or genes.

• Is relatively inexpensive and fast

to generate

• Cannot identify all members of a

microbial community

• Biased toward certain

bacterial genera

• Profiling the abundance of specific

bacterial taxa in a community,

Tracking changes in the microbial

community over time, Identifying

bacterial pathogens

Meta- transcriptomics Whole-transcriptome sequencing of

all RNA transcripts in a sample,

including RNA from bacteria, fungi,

viruses, and the host organism

• High resolution,

• Moderate selectivity

• High capacity

• Can be used to study gene

expression and metabolic activity

at a high resolution.

• Expensive, time-consuming, May

not be feasible to identify all

bacterial genera at equal efficiency.

• Difficult to analyze, as it is not

always clear which genes are being

expressed by which bacteria

• Studying the functional potential

of a microbial community,

Identifying differentially expressed

genes.

• Investigating the response of a

microbial community to

environmental stimuli

Metabolomics Identification and quantification of

all metabolites in a sample

• Low resolution

• Low selectivity

• High capacity

• Can be used to study the metabolic

activity of a microbial community

• Can be used to identify

novel metabolites.

• Cannot identify all members of a

microbial community.

• Biased toward certain metabolites.

• Difficult to identify and quantify

all of the metabolites present in

a sample

• Studying the metabolic potential

of a microbial community,

Identifying biomarkers of disease

• Analyze interaction between

microbes and their environment

Metaproteomics Study of the entire protein collection

(proteome) of a microbial

community

• Low resolution • High-throughput,

sensitive, quantitative

• Expensive, time-consuming,

difficult to interpret results

• Study microbial communities,

detect pathogens, and monitor

environmental changes.

Capabilities∗ : - Resolution, The ability to distinguish between different microbes or genes; Selectivity, The ability to target specific microbes or genes for analysis; Capacity, The amount of data that can be generated and analyzed.
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Random Forest outperformed other classifiers, shedding light on

potential microbiome-mediated mechanisms of IBD and offering

insights for microbiome-based diagnostics. Another study by

Zeller et al. (2014) aimed to detect early-stage colorectal cancer

(CRC) by employing metagenomic sequencing of fecal samples to

identify distinctive taxonomicmarkers distinguishing CRC patients

from those without tumors. CRC-associated changes in the fecal

microbiome reflected, at least in part, the microbial community

composition within tumors, indicating potential tumor-related

host-microbe interactions. The analysis also revealed a metabolic

shift from fiber degradation in controls to host carbohydrate

and amino acid utilization in CRC patients, accompanied by

increased lipopolysaccharide metabolism. IV) Geospatial Microbial

Provenance: In a recent study Bhattacharya et al. (2022)

implemented ML to enable geospatial microbial provenance.

Researchers delved into the assessment of geographical specificity

within environmental metagenomes. Primary objective was to

discern unique microbial signatures that could be attributed to

specific cities, relying on taxonomic classifications as the basis

for differentiation. The outcomes of this comprehensive analysis

unveiled a remarkable level of accuracy in pinpointing the origin

of metagenomic data. The accuracy rates for classifying samples

by city ranged impressively from 85 to 89%, while continental

classification exhibited an even higher accuracy level, fluctuating

between 90 and 94%. Leung et al. (2022) proposed an integration of

metagenomics, metabolomics, and clinical data to classify enrolled

participants based on their NAFLD (nonalcoholic liver disease)

status and liver fat accumulation, and reaching an overall AUROC

score of about 93%.

Also,ML offers a significant advantage over traditional statistics

in the field of microbial ecology, where conventional statistical

methods have been the norm for data summarization, hypothesis

testing, and interpreting interactions within microbial datasets.

The primary objective is to predict specific phenotypes, such as

disease states or age, based on microbiome data. One fundamental

distinction between statistical models and ML lies in their primary

objectives: statistical models aim to describe and infer relationships

between variables, whereas ML is tailored to optimize predictive

accuracy on external datasets. To illustrate, supervisedML typically

employs a learning step on a training dataset with labeled data

patterns associated with specific outcomes, while a separate test

dataset with unlabeled data is used to evaluate the model’s

performance. Finally, a validation dataset could be employed

to further evaluate the obtained model, when unseen data (i.e.

data not used neither for training nor for testing) are used. In

contrast, statistical models primarily focus on understanding how

values relate to outcomes, often without the need to partition the

data for performance evaluation. ML possesses several advantages

over classical statistics in microbial ecology research. It excels

in detecting subtle variations in microbial community structure

and can pinpoint particular bacterial taxa that play a pivotal

role in predicting specific outcomes. Additionally, ML can model

complex, non-linear combinations of bacterial count data and

environmental parameters, which closely resemble real-world

systems. This obviates the need for intricate data transformations

or preprocessing, which can be challenging when dealing with

molecular data.

Widening this aspect, ML approaches emerge as tool for multi-

omics data integration. The aim of multi-omics (or integrative

omics) approaches is to extract substantial evidence from large-

scale data by identifying, classifying, and quantifying different

biological molecules involved in complex structure, such tissues

or microbial communities (Vailati-Riboni et al., 2017). An

interesting application of multi-omics approaches was proposed

by Monteleone et al. (2021) in which they linked microbiota

composition and metabolites in Anorexia Nervosa (AN). This

condition in characterized by weight loss/regain cycles. Authors

characterize both the microbiota and the metabolome in the

underweight and regain phases, identifying a perturbation in gut

microbiota of AN female’s patients compared to healthy ones, and

an association to specific metabolites.

3.1 Utilization of publicly available
microbiome data in research studies

The rapid advancement of NGS technology has led to

an exponential growth in the volume of data housed within

publicly accessible repositories like the GenBank by the National

Center for Biotechnology Information (NCBI), the Metagenomic

Rapid Annotations using Subsystems Technology (MG-RAST), the

European Nucleotide Archive (ENA), and the DNA Data Bank

of Japan (DDBJ), among others. These repositories are invaluable

resources that store vast amounts of DNA sequences (Eckert

et al., 2020). Utilizing these raw sequences, made available to

the public, enables the application of cutting-edge ML and DL

techniques for extensive data analysis. In this section, we aim to

provide an insightful overview of the current trends in metadata

analysis through the use of publicly accessible raw data and

associated metadata.

Pasolli et al. (2016) conducted an extensive analysis of

metagenomic data, involving 2,424 publicly available datasets. They

introduced an ML-based framework for predicting microbiome-

phenotype associations, focusing on species-level abundances

and strain-specific markers. Cross-validation revealed strong

disease prediction capabilities, especially when using strain-

specific markers. Interestingly, including “control” samples from

other studies in training sets improved predictions. Streptococcus

anginosus was identified as a potential marker for general

microbiome dysbiosis rather than specific diseases. This work

advances our understanding of microbial dysbiosis and provides a

publicly accessible software framework and data.

Duvallet et al. (2017) gathered data from 28 published case-

control 16S rDNA amplicon sequencing gut microbiome datasets,

encompassing 10 different disease states. Their objective was to

explore whether consistent and disease-specific alterations in gut

microbial communities could be identified across various studies

of the same disease. Notably, some diseases, like colorectal cancer

(CRC), exhibited an abundance of disease-associated bacteria,

while others, such as IBD, were characterized by a depletion

of beneficial bacteria. Specific conditions like diarrhea displayed

substantial shifts in the overall microbial community, often

involving numerous associated microbes, while most conditions
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showed only a few microbial associations this study identify unique

patterns of dysbiosis shared across multiple disease states in the

human gutmicrobiome, characterized by variations in the direction

(i.e., the proportion of disease-enriched vs. disease-depleted

genera) and the scope (i.e., the total number of genera showing

differences between cases and controls) of disease-associated

shifts. Pietrucci et al. (2022) investigated the possible association

among gut-microbiome and Autism Spectrum Disorder (ASD)

by using metabarcoding data from eight different project and 6

different geographical location. The applied several ML approaches

and demonstrated their potential in overcoming limitation of

classical statistical approaches and perform features selection in

complex datasets.

Gupta et al. (2020) introduced the Gut Microbiome Health

Index (GMHI), for assessing health status based on the species-

level taxonomic profile of stool shotgun metagenome samples.

GMHI evaluates the likelihood of disease presence, independently

of clinical diagnosis, by comparing the relative abundances of

microbial species associated with positive and negative health

conditions. They implemented a mathematical index identified

from a comprehensive dataset of 4,347 publicly available human

stool metagenomes across various disease states.When they applied

to large-scale dataset, GMHI effectively distinguishes between

healthy and non-healthy groups, as compared to traditional

ecological indices like Shannon diversity and richness. In Lam

and Ye (2022) a network-based approach was implemented with

aim to build a microbial association networks upon a subset of

the Gupta et al. (2020) data. Additionally, they focused the more

on analyzing diseases individually rather than a disease-agnostic

approach, to better characterize microbial community traits in each

disease. Lam and Ye (2022) by focusing on microbial community

interactions in both healthy and diseased microbiomes, aimed at

identifying factors for the stratification of disease states and the

identification of potential microbial risk factors beyond individual

species. Furthermore, to gain insights into community interactions

across phenotypes, they also introduce a newmetric called “module

resilience” to study the retention of microbial community modules

in microbial interaction networks.

Casimiro-Soriguer et al. (2022) performed a meta-analysis of

1,042 fecal metagenomic samples from seven publicly available

studies. They applied ML pipeline based on functional profiles,

instead of the conventional taxonomic profiles, to produce a highly

accurate predictor of CRC with the aim to discriminate samples

with adenoma, which makes this approach very promising for

CRC prevention by detecting early stages in which intervention

is easier and more effective. In addition, ML is used to extract

features relevant to the classification, which reveals basic molecular

mechanisms accounting for the changes undergone by the

microbiome functional landscape in the transition from healthy gut

to adenoma and CRC conditions.

Lugli et al. (2023) investigated the genetic diversity within

bacterial taxa constituting the infant gut microbiome by utilizing

the vast collection of publicly available shotgun metagenomic

data and associated metadata from multiple global studies,

encompassing infants from birth up to the age of 3 years.

The extensive dataset, comprising 10,935 metagenomic profiles,

enabled the identification of critical bacterial signatures within

the infant microbiome, linked to distinct community-state types.

Additionally, in the study metabolic reconstructions of these

infant microbiomes shed light on the functional attributes of

these predominant microorganisms during the early years of

life, revealing potential correlations with health states from both

metagenomic and metatranscriptomic perspectives.

Nelkner et al. (2023) conducted a meta-analysis using data

from 16 primary studies, examining microbial communities in

agricultural soils across Europe. They aimed to understand

how European soil characteristics influence microbial community

composition, particularly focusing on Thaumarchaeota members.

Their analysis used publicly available metagenome sequencing

data to assess microbial abundance at different taxonomic

levels. This study highlights the significance of standardized

metadata reporting and the benefits of open data sharing in the

scientific community.

Key studies in microbiome research emphasize the significance

of utilizing publicly available metagenomic data (Pasolli et al., 2016;

Gupta et al., 2020; Lam and Ye, 2022; Lugli et al., 2023), which,

when combined with metadata from different studies, facilitate the

validation and confirmation of research findings. It also promotes

data sharing, allowing scientists to build upon each other’s work

and develop comprehensive insights into complex phenomena.

3.2 Challenges to implementing machine
learning

One key challenge is the interpretability of ML models,

which often function as “black boxes” without clear mechanistic

understanding. Interpretable ML approaches, such as deep forest

algorithms and methods that incorporate prior knowledge like

microbial interaction networks, are emerging to address this

issue (Räz, 2024). The second barrier is the scarcity of large,

high-quality, and correctly labeled microbiome datasets needed

to train ML models effectively (Schloss, 2018). Additionally,

ensuring data quality through techniques like deduplication, class

balancing, outlier removal, and imputation is crucial. Lastly,

selecting, evaluating, and tuning the right ML model for a specific

task can be challenging, but a rich ecosystem of libraries and

frameworks, as well as synthetic microbiome datasets, can aid in

model development and benchmarking (Hernández Medina et al.,

2022).

The challenges faced by ML in terms of metadata can

be analogously compared to the complexities encountered in

taxonomic annotation of bacteria, as discussed in the previous

article by Mathieu et al. (2022). Definition and standardization

of metadata: Over the past two decades, there has been a

growing need for establishing not just standards for collecting and

processing metagenomic data but also for developing well-defined

methods for preparing metadata. This is essential to ensure the

reusability of data and to train ML models for comprehensive

and interdisciplinary microbiome analysis, as highlighted by

Cernava et al. (2022). As bacterial species definitions are based

on laboratory protocol and experiments, their relevant metadata

including technical and analytical methods, must be well-defined
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and standardized in ML. The lack of clear metadata definitions can

lead to difficulties in classifying bacterial species and organizing raw

read data to perform effective statistical tasks. Data heterogeneity:

Similar to the high DNA heterogeneity observed in bacterial

species, metadata can vary greatly across different datasets and

sources. This data heterogeneity poses challenges in integrating and

comparing information when metadata standards are inconsistent.

Moreover, considering we’ve only accessed a fraction of bacterial

diversity on Earth, metadata used in ML may be incomplete

and fail to capture the full spectrum of information needed

for robust model training. Datasets may lack essential metadata

attributes, making it challenging to build accurate models. Data

representation: Just as metagenomic assembled genomes (MAGs)

may not resemble complete genomes, metadata representation

can be inconsistent or not following a standard format. This

can make it difficult to interpret and utilize metadata for

ML purposes. Taxonomy and classification: Similarly, integrating

MAGs into metagenomic classifiers is complex due to their

ambiguous taxonomy affiliations. In machine learning, associating

metadata with specific categories or labels can be challenging when

dealing with data that doesn’t neatly fit into predefined classes.

Integration with Models: Just as MAGs are not fully integrated into

taxonomy, metadata may not always seamlessly integrate with ML

models. It requires careful preprocessing and feature engineering to

incorporate metadata effectively into the modeling process.

Yilmaz et al. (2011) introduced minimum information

standard about metagenomic sequence (MIMS) and the minimum

information about marker gene sequence (MIMARKS). Those are

two widely used standards for reporting metagenomic and DNA

metabarcoding data. These standards provide checklists of essential

information for sharing data, such as the sample type, collection

method, sequencing platform, and data processing steps.

In addition to MIMS and MIMARKS, there are a number

of other standards that can be used to report specific types

of metadata, such as the environmental package (E-Package): a

standard for reporting environmental metadata associated with

metagenomic samples (Logares et al., 2012) and the human

microbiome project (HMP) data analysis pipeline: A standard for

reporting metadata associated with human microbiome studies

(Huttenhower et al., 2012) and microbiome quality assurance

(MQA) a protocol for reporting quality control metrics for

metagenomic and DNA metabarcoding data (Lassalle et al., 2018).

The adoption of these standards makes microbiome data findable,

accessible and, reusable for other researchers. This is essential for

accelerating progress in metagenomics and DNA metabarcoding

research (ten Hoopen et al., 2017).

The technologic advancements in instrumentation toward

high-throughput and high-resolution methods in metabolomics,

have supported the accumulation of big data across laboratories

that needs a support regarding data and metadata deposition

(Haug et al., 2017). TheMetabolomic Standard Initiative (MSI) and

COSMOS (COordination of Standards in MetabOlomicS) (Salek

et al., 2015) are constantly supporting the definition of minimum

standards in metabolomic data deposition by implementing the

MSI Core Information for Metabolomics Reporting (CIMR)

(Sumner et al., 2007). Moreover, COSMOS is actively engaging

publishers to promote the requirements for authors to deposit

metabolomics results, as is required for other “omics” disciplines

(Salek et al., 2013). As an outcome of the COSMOS initiative,

in 2014 the MetabolomeXchange database and repository was

launched. It aggregates data from the major providers, namely

MetaboLights (Yurekten et al., 2023), Metabolomics Workbench

(Sud et al., 2016), and Metabolomic Repository Bordeaux, to

facilitate the access and reusability of metabolomic datasets and

associated metadata (Ferry-Dumazet et al., 2011).

Similarly to what happened for NGS data, proteomics

and metaproteomics data release (both raw and processed)

was initially driven by journals guidelines, and resulting in a

lack of minimal associated metadata (e.g. experimental design,

peptide identification and quantification, protein identifications

and protein ratios) (Olsen and Mann, 2011). In this context, the

ProteomeXchange (Vizcaíno et al., 2014; Deutsch et al., 2017, 2022)

international consortium aims to overcome data and metadata

deposition issues by exploiting the cooperation of primary [PRIDE

(Perez-Riverol et al., 2021) and PASSEL (Farrah et al., 2012)]

and secondary [PeptideAtlas (Desiere et al., 2006) and UniProt

(The UniProt Consortium, 2023)] resources, bioinformaticians,

researchers and also representatives from journals active in the

field, and offering a framework for consistent and user-friendly

data deposition.

3.3 Limitation of ML/AI application to
microbiome data analysis

Training by using a feature count table consisting of vectors

composed of the relative representation of each taxon or MAGs in

the sample is the most common approach to develop a predictive

model (Figure 1), which is followed by normalizing the raw counts

using an appropriate approach accounting for sparsity and data

compositionality (Gloor et al., 2017; Casimiro-Soriguer et al., 2022).

However, the implementation of ML comes with its own set of

limitations, potential errors and common challenges associated

with applying ML to this input data:

3.3.1 Data quality and pre-processing
Due to the high dimensionality, sparsity, and noise of

metagenomic data, a significant challenge arises during the

normalization process to feed into the ML model. Non-biological

zeros are a prevalent phenomenon observed in both 16S rRNA

and SM datasets (Jiang et al., 2021). The abundance distributions

of taxa are distorted by these zeros, which can be attributed

to three distinct categories: biological, technical, and sampling

zeros (Brill et al., 2022). Biological zeros correspond to actual

zero abundances of taxa that do not exist in the microbiome

samples. In contrast, technical zeros and sampling zeros are non-

biological zeros with distinct origins. Technical zeros result from

pre-sequencing experimental artifacts, such as DNA degradation

during library preparation and inefficient sequence amplification

driven by factors like GC content bias (Silverman et al., 2020).

On the other hand, sampling zeros stems from limitations in

sequencing depths. Addressing the intricacies associated with these

zero categories is imperative for robust ML model construction.
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FIGURE 1

Comprehensive framework for metagenomic data documentation and metadata analysis.

In addition, a typical dataset may contain a few hundred training

instances but thousands of OTUs/ASVs (i.e., features); this large

number of features can greatly challenge the classification accuracy

of any method and compound the problem of choosing the

important features to focus on.

3.3.2 Biological complexity
The microbiome is variable between individuals and time. This

biological variability can make it challenging to identify universal

patterns or develop generalizable models (Kodikara et al., 2022;

Vinciotti et al., 2023). Also, the taxonomic and functional variability

of microbial communities can exhibit significant differences

across different environments, making it difficult to establish

consistent associations.

3.3.3 Interpretability
Complex machine learning models, such as deep neural

networks, might lack interpretability, making it challenging to

understand the biological significance of the learned patterns as

these models may not be able to generalize to new, unseen data

(Linardatos et al., 2021). Interpretable models are often preferred

in microbiome research to gain insights into the relationships

between microbial features and expected outcomes (Bengtsson-

Palme, 2020).

3.3.4 Overfitting and generalization
Due to the high dimensionality of microbiome data, models

may be overfitting to noise and contain many spurious correlations

in the training data (Walsh et al., 2023). To prevent overfitting, we

can use several techniques, such as early stopping, regularization,

and data augmentation (Balestriero et al., 2022). Early stopping

involves stopping the training process before the model has fully

converged, while regularization involves adding a penalty term

to the loss function that discourages the model from overfitting

(Schmidt, 2023).

Imbalance dataset and cross-validation issues may lead

to optimistic estimates of model performance. In this case

recommended to use methods like stratified cross-validation
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techniques to account for class imbalances in microbiome datasets

(Gou et al., 2020; Casimiro-Soriguer et al., 2022; Watson, 2022).

3.3.5 Batch e�ects and confounding variables
Batch Effects are very common, and this often introduces

systematic differences between the measurements of different

batches of experimental such as sites/between laboratories, sample

preservation protocols, storage conditions, DNA/RNA isolation

methods and kits (Ling et al., 2022; Li Y. et al., 2023), sequencing

methods can introduce batch effects, which may confound the

true biological signals. Combining data from different batches

without carefully removing batch effects can give rise to misleading

interpretations of taxonomical classificational and ML model

interpretations. Therefore, it is necessary to identify and remove

the batch effects before proceeding to the downstream analysis and

proper normalization and batch correction techniques are essential

(Luo et al., 2010) and multiple approaches for batch effect removal

have been reported (Alter et al., 2000; Benito et al., 2004; Ling et al.,

2022).

Confounding Variables such as diet, medication, and lifestyle

can influence the microbiome composition (Li Y. et al., 2023).

Failure to account for confounding variables may lead to spurious

associations (Al Bander et al., 2020).

Feature Selection and Dimensionality Reduction are used

to face the sparsity of microbiome data issue, which makes it

challenging to identify important features and patterns through the

input data (Lee et al., 2023). Feature selection or dimensionality

reduction techniques must be applied during model training.

3.3.6 Model validation and reproducibility
Lack of independent datasets for validation, testing, or failure

to reproduce results can undermine the reliability of ML in

microbiome analysis (Rojas-Velazquez et al., 2024).

Pammi et al. (2023) reviewed the use of artificial intelligence

in integrating “multi-omic” and compared metagenomics analysis

approaches, highlighting the effectiveness of statistically equivalent

signatures for feature selection and random forest modeling in

achieving accurate disease diagnosis and biomarker discovery in

colorectal cancer patients.

4 Understanding metadata: data about
data

Metadata is “data about data” (Cernava et al., 2022) refers to

contextual information associated with metagenomic experimental

data offering a comprehensive understanding of the sample’s

background. In microbiome research, metadata’s definition varies

based on the type of metagenomic sample under analysis. For

instance, metadata for a human gut sample will differ from

that of an ocean sample, yet both serve to contextualize the

data. Metadata plays a pivotal role in providing context by

describing various aspects of the sample, including collection

time points, geographical location, biome type, environmental or

experimental conditions, and sample pre-processing steps (Leipzig

et al., 2021). The structure of metadata can vary by study, but it

typically includes features such as chemical data (e.g., pH, salinity),

physical data (e.g., temperature, incident light), sample collection

time points, host condition (disease/healthy), diet variations,

antibiotic exposure, and geographical location (Nassar et al., 2022).

Moreover, metadata should encompass information on sampling

methods, sample size, and sample preparation techniques. Precise

metadata annotation is crucial for detailing the sample source,

tissue collection methods, environmental characteristics, and

additional specifics like DNA extraction protocols, sequencing

library preparation methods, and sequencing depth. In essence,

metadata enriches metagenomic data by providing the critical

context needed for analysis and interpretation inmicrobiome result

(Nassar et al., 2022).

4.1 The significance of comprehensive
metadata in microbiome research

The collection and utilization of various metadata elements

in microbiome research are of paramount importance. These

elements encompass a wide array of information, from the

characterization of the microbiome’s natural environment

(ecoregion) to the specific host organism (host microbiome) and

even human-made environments (engineered microbiome). For

a microbiome study, metadata exists at multiple stages along the

path from sampling to analysis of omics data as shown (Figure 2).

This metadata falls into twomain categories: assay metadata, which

encompass technical details like machine type, assay date, and

reagent kits, and biological metadata, which describe experimental

aspects like sample conditions, exposure to drugs, animal housing

conditions, or host genetic information. The absence of such

information may affect downstream statistical analysis and even

qualitative interpretation challenging or impossible.

4.1.1 Sample metadata
Information about provenance and characteristics of the

samples: when it was collected (e.g., date and time), where it

was collected from (e.g., latitude, longitude, elevation/depth, site

name, country, etc.), what kind of sample it was (e.g., soil,

seawater, feces/stool), and the properties of the environment during

collection (e.g., temperature, salinity, pH) or if sample is clinical

then phenotypic condition (e.g., age, sex, disease state/normal)

from which the sample was taken and the nature of the sample

material itself all contribute valuable context to microbial studies

(Wood-Charlson et al., 2020; Vangay et al., 2021).

4.1.2 Experimental metadata
It is subjected to preparation steps for nucleotide sequence

analysis or metabolome/metaproteome. Information about

experimental preparation of the original sample (Gohl et al.,

2016; Vangay et al., 2021). A sample could be split (aliquoted)

and processed through multiple preparation methods; therefore,

there could be multiple sets of preparation metadata for a single

set of samples such as controlled or treated. For DNA sequencing

preparation metadata include the type of DNA, extraction
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FIGURE 2

This figure provides an overview of the microbiome workflow for studying microbial communities using shotgun sequencing, 16S rRNA gene

sequencing, metatranscriptomics, metaproteomics, and metabolomics. The figure illustrates the process of sample collection from various sites and

then proceeds through di�erent experimental procedures, bioinformatics pipelines, and ML analyses. The figure was created with https://www.

biorender.com/.

protocol, conditions used for sequencing (e.g., primers, library

kits, sequencing instrumentation, and parameters), and where the

raw sequence data sets are accessible. The information required to

properly describe metabolome and metaproteome data are even

more complex and workflows profoundly change according to the

used platforms and technologies (Rechenberger et al., 2019).

4.1.3 Data pre-processing metadata
Data about the properties and downstream processing of the

raw reads data, including software/tools parameters and version.

For example, if DNA sequences were generated, this could include

the sequence properties (e.g., sequence lengths, sequences per

sample, and total base pairs, total percentage of GC content,

percentage of sequence duplication), quality control and filtering

(e.g., sequencing depth, adapter trimming, quality trimming and

filtering, dereplicating, and chimera sequence removal), assembly

parameters (e.g., assembly tool, binning tool, and finishing

strategy), reference genome used (version and source), gene

annotation (e.g., gene calling tool and annotation database), and

other processing parameters (Roy et al., 2018).

4.1.4 Feature metadata
Data about features detected in the raw data, rather than

about the samples themselves. For example, if amplicon sequencing

was performed, feature metadata might include information (e.g.,

taxonomy, reference genome sequences with version information

and source, and sequence identifiers) about the OTUs or ASVs

generated in the OTU-picking or denoising algorithm, respectively.

If metabolomics analysis was done, feature metadata might include

information (e.g., mass spectrometry (MS2) fragments produced

or candidates for identification) about the metabolites detected.

Obtaining key metadata from sample collection to data analysis

would greatly improve reproducibility. For metaproteomics, it

might include identified proteins and related pathways.
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4.2 FAIR data principles in metagenomics
and machine learning

The FAIR Data Principles are a set of guidelines for making

data more findable (F), accessible (A), interoperable (I), and

reusable (R). These principles are important for both data

sharing and machine learning, as they help to ensure that

data is discoverable, accessible, and compatible with different

machine learning algorithms and tools (Wilkinson et al., 2016).

In the context of metagenomics and machine learning, the FAIR

Data Principles can be applied to the following: Findability:

Metagenomic data should be deposited in public databases, such

as the NCBI Sequence Read Archive (SRA) or the European

Nucleotide Archive (ENA). These databases provide unique

identifiers and searchable metadata for each dataset, making it

access the data they need. Accessibility: Metagenomic data should

be accessible to researchers using standardized protocols, such as

hypertext transfer protocol (HTTP) or file transfer protocol (FTP).

This ensures that researchers can access the data regardless of

their computing environment. Interoperability: Metagenomic data

should be stored in a format that is compatible with different

machine learning algorithms and tools. This allows researchers to

easily use the data to train and evaluate machine learning models.

Reusability: Metagenomic data should be released with clear and

accessible data usage licenses. This consents researchers to reuse

the data for their own research without having to concern about

copyright or other restrictions (ten Hoopen et al., 2017; Vesteghem

et al., 2020).

4.3 Metadata standardization: ensuring
data accuracy

Despite the critical nature of metadata, metadata collection

is often poorly standardized and error prone. Tabular formats

(such as Microsoft Excel) continue to be popular options for

metadata collection and record-keeping, yet freeform text entry

without validation is prone to errors (e.g., misspellings, incorrect

data, missing data, and inconsistent values) (Schloss, 2018). These

issues can emerge within a single study and are even more

likely across multiple studies. For example, with standardized

metadata, experimental results from different labs can be grouped

together for combined studies with a scope that can extend

beyond what can be done from a single lab (Thompson et al.,

2020). It also lays the foundation for researchers to quickly

find previous experiments of interest to them. Situations may

arise where obtaining precise coordinates for certain locations

becomes a complex endeavor. These challenges can stem from

various factors, including governmental restrictions imposed in

specific countries or regions, intellectual property protection, or

concerns related to data privacy and property rights. These issues

are particularly prominent in datasets associated with potentially

sensitive subjects, such as high levels of pathogens or antibiotic

resistance genes (Serwecińska, 2020). In some cases, private

landowners may be unwilling to disclose the exact locations of their

facilities. They might wish to avoid negative associations with their

business operations, especially in situations where their facilities

are associated with research findings concerning pathogens or

antibiotic resistance genes. Moreover, researchers in the industrial

sector may be hesitant to make data on specific field sites publicly

available. This averseness may be motivated by the fact that these

sites are involved in testing new plant cultivars and breeding

efforts. The proprietary nature of their work and the competitive

landscape could drive this concern. In the realm of biological data

and microbiome research, there is a growing awareness of the

need to protect the collection coordinates of endangered species,

including those listed on conservation red lists (Zhu et al., 2021).

This keen concern is rooted in efforts to combat poaching and

illegal collection of these species. As a result, there is an ongoing

debate regarding how to balance the imperative of protecting these

species with the need for scientific data sharing (Levesque, 2017).

Lastly, governmental organizations may also have reservations

about disclosing precise locations of sites deemed geopolitically

important or contaminated. Such disclosures could have difficulties

for national security, public safety, or environmental concerns.

4.4 Navigating metadata challenges in
metagenome databases

4.4.1 Lack of Metadata
One major limitation of existing public repositories and

specialized metagenomic databases (e.g., NCBI, ENA, SRA,

MGnify, MG-RAST, NMDC, QIITA) is the often incomplete

and inconsistent metadata associated with metagenomic samples.

Metadata it is frequently missing or inadequately annotated,

making it challenging to perform cross-study comparisons

effectively. Lack of Standardization: Metagenome databases suffer

from a lack of standardized metadata. Metadata across different

studies and databases may use varying terminologies, formats, and

ontologies, leading to difficulties in harmonizing and integrating

data for meaningful analysis. Difficulty of Metadata Annotation:

Manually annotating metadata for metagenomic samples is a

labor-intensive and time-consuming process (Kasmanas et al.,

2020). While some efforts have been made to standardize

metadata using controlled vocabularies and ontologies, these

approaches are not always comprehensive or flexible enough to

capture the diversity of sample origins, particularly in engineered

environments (Cernava et al., 2022). Inefficient Sample Retrieval:

Retrieving samples of interest from existing metagenome databases

can be incompetent and challenging. The lack of standardized

metadata and user-friendly search interfaces makes it difficult for

researchers to select relevant samples based on specific criteria,

such as host characteristics or environmental factors (Clark

et al., 2022). Limited Cross-Study Comparisons: The inconsistent

and incomplete metadata in metagenome databases hinder the

ability to perform meaningful cross-study comparisons (Nassar

et al., 2022). This limitation restricts the potential for meta-

analyses and the discovery of patterns or associations that may

not be evident in individual studies. Dependence on Manual

Annotation: Many existing efforts to improve metadata quality rely

heavily on manual annotation, which is not scalable to handle

the exponentially increasing volume of metagenomic data. This

limitation can lead to delays in data availability and the inability
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to keep up with the pace of data generation (Kasmanas et al.,

2020). Complexity for Non-Bioinformaticians: Some databases that

offer comprehensive metadata are not easily accessible to non-

bioinformaticians. For example, metadata stored as ExpressionSet

objects in R environments can create complexity for researchers

who are not proficient in bioinformatics. Limited Support for

Specific Environments: Hierarchical ontology relationships may

not adequately describe diverse and specific environments, such

as engineered environments. Existing controlled vocabularies and

ontologies may lack the necessary granularity to capture the

full range of sample origins. Inflexible Ontology Relationships:

Some databases rely on hierarchical ontology relationships, which

can be inflexible and may not accommodate the complexity

and diversity of environmental descriptions adequately (Romano

et al., 2011). The limitations of existing metagenome databases

primarily revolve around the challenges related to metadata

quality, standardization, and accessibility. These limitations hinder

the full potential of metagenomic data analysis and the ability

to perform comprehensive cross-study comparisons and meta-

analyses. The development of automated methods for metadata

extraction and more user-friendly interfaces is essential to address

these limitations and unlock the full value of metagenomic datasets.

4.5 Root causes of annotation errors in
public databases

Despite some notable progress in data-sharing policies and

practices, accurate and reliable annotation of metagenomic data

in public repositories is crucial for dry laboratory researchers and

their subsequent applications. In public databases such as NCBI,

European Nucleotide Archive (ENA) (Yuan et al., 2023), Sequence

Read Archive (SRA) (Katz et al., 2022), MGnify (Richardson et al.,

2023), MG-RAST (Meyer et al., 2008), and National Microbiome

Data Collaborative (NMDC) (Wood-Charlson et al., 2020), the

reliability of annotations heavily relies on the metadata provided

by researchers during the submission of sequencing data. However,

following are listed several root causes that have been identified

that contribute to annotation errors within these databases. (i)

User metadata submission errors: Researchers are responsible for

submitting metadata that describes the characteristics of their

raw/processed sequence, including the name of the model or host

organism, pathological conditions (diseased/healthy), biomaterial

provider, collection date and time, tissue or samples, developmental

stage, and geographical location. However, if researchers make

errors or inaccurately assign metadata, it can lead to miss-

annotation of sequences and associated data. For example, if

a researcher studying soybeans from soybean roots mistakenly

assigns the organism’s name as Glycine max instead of Glycine

soja, all sequences tied to that metadata will be incorrectly

labeled as Glycine max, leading to potential misinterpretation and

inaccurate analyses (Nassar et al., 2022). (ii) Contamination errors

in biological samples: During sample collection and processing,

contamination from unintended sources can occur, resulting in

the misidentification of organisms or genetic material. If such

contamination goes unnoticed or unaddressed, it can lead to

incorrect annotations in the public databases. For instance, if

a sample intended for sequencing a specific organism becomes

contaminated with genetic material from different organisms

(usually microbials), the resulting sequences may be incorrectly

labeled and associated with the wrong organism in the database

(Schnoes et al., 2009). (iii) Bioinformatic tools inaccuracies can

lead to erroneous annotations. Different bioinformatics tools and

algorithms are utilized to process and annotate sequencing raw

data. However, these methods can introduce errors or biases

that propagate throughout the database. Imprecise algorithms or

incomplete reference databases and versions can result in miss-

annotations or missing annotations for specific sequences, further

compromising the reliability of the database (Schnoes et al., 2009).

4.6 Challenges and debates in data release
protocols: balancing recognition and
access

Despite developments in data-sharing policies and practices,

many genomic datasets remain restricted even after approval for

public release. This conflicts with the terms of funding agencies,

which support data dissemination for science and society progress.

The lack of clear and comprehensive guidelines for data usage

compounds the issue (Schnoes et al., 2009). Public domain data

release protocols acknowledge the tension between unrestricted

access and data producers desire for recognition through first

publication rights. This conflict has led to multiple interpretations,

fuelling an ongoing debate about how publicly available data

should be used. The pressure to be the first to uncover significant

discoveries can lead to data withholding until after publication,

hindering broader dissemination (Tenopir et al., 2020). Even

after publication, challenges persist, including time constraints in

preparing data for sharing, legal and privacy considerations, and

concerns about misinterpretation or misuse. Researchers often face

difficulty locating the data they need, devoting up to 50-80% of their

time to these obstacles (Eckert et al., 2020). Vangay et al. (2021)

sustained identifying and addressing the root causes of annotation

errors in public databases is essential for maintaining data integrity

and ensuring the accuracy of downstream analyses and research

applications. By taking into consideration of the factors that

contribute to miss-annotations, efforts can be directed toward

implementing quality control measures, improving metadata

validation processes, enhancing contamination detection methods,

and refining computational tools to minimize errors and improve

the reliability of public databases.

4.7 Privacy concerns in metagenomics:
uncovering personal information

The availability of open-access metagenomic datasets provides

a valuable resource for studying health- and disease-associated

signatures of microbial communities. However, an ongoing debate

within microbiome research revolves around addressing privacy

concerns to protection of personal information (Guccione et al.,

2023). Franzosa et al. (2015) investigated the human microbiome

by utilizing metagenomic codes. These metagenomic codes were
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designed to identify individuals based on specific microbial taxa

or genes that are distinct and consistent across different body sites.

Combining insights from microbial ecology and computer science,

researchers discovered that it is possible to distinguish individuals

from groups of hundreds based solely on their microbiomes,

with over 80% accuracy even after a year, particularly notable in

the case of the gut microbiome (Franzosa et al., 2015). While

this underscores the fascinating individuality of human microbial

signatures, it also raises significant privacy concerns for participants

in microbiome research projects, highlighting the need for robust

privacy safeguards in the handling of such health data (Chuong

et al., 2017).

In Japan Tomofuji et al. (2023), uncovered a potential

concern about metagenomic data obtained from human fecal

samples. Specifically, they achieved a remarkable 93.7% accuracy in

predicting biological gender by analyzing the read depth of non-

pseudo-autosomal regions of sex chromosomes. This report has

significant effects, especially in the context of human microbiome

studies, where it can help rectifymislabelled samples and contribute

to the field of human genetics. However, the accurate prediction of

genetic sex bearing privacy concerns, particularly for individuals

who may not wish to disclose this information. This concern

is especially relevant to transgender individuals, who may face

varying degrees of legal protection worldwide. To address these

privacy issues, methods for removing human DNA reads from

metagenomic data were developed during the National Institutes

of Health’s Human Microbiome Project (Wagner et al., 2016). It

is worth noting that sex prediction based on DNA extracted from

fecal samples had previously been predominantly conducted for

wild animals using PCR amplification of marker genes (Guccione

et al., 2023).

Furthermore, another study demonstrates sensitivity

in identifying matched genotype data and accurately

predicted ancestral backgrounds in samples. Ancestral

backgrounds were defined as American, European, African,

East Asian, and South Asian (Tomofuji et al., 2023). These

findings highlight the importance of considering the ethical

implications and privacy concerns when utilizing open-source

microbiome data.

4.8 Improving metadata quality in
microbiome research

Metadata is essential for the interpretation, reproducibility,

and reuse of microbiome data. However, metadata quality is often

variable, which can hinder research progress. To improve metadata

quality, we can consider employing Manual and Automated

curation. The first one is the most accurate approach, but it is

also the most time-consuming and expensive. The latter employs

ML approaches and other techniques to extract metadata from raw

sample data. It is the most scalable approach, but it can be less

accurate than the first one. One example of an automated curation

approach is the ML framework developed by Nassar et al. (2022)

that automatically extracts important metadata from a vast number

of metagenomics studies found in the Europe PMC literature

repository. This integration allows for the continual enhancement

of current metadata in ENA and MGnify metagenomics studies by

sourcing information from research articles. As a result, theMGnify

database now displays these annotations, providing information

on metadata like health status, disease conditions, geographic

locations, and sequencing methods. Gonçalves and Musen (2019)

study shed light on the varying quality of metadata available in

prominent databases such as NCBI’s BioSample and the European

Bioinformatics Institute’s BioSamples. One of the contributing

factors to this variability is the infrequent use of controlled

vocabularies during themetadata submission process. Additionally,

the allowance for the creation of user-defined attributes has resulted

in a proliferation of heterogeneity within the metadata landscape.

This diversity often poses challenges for researchers, making it

difficult to harness the full potential of information within a

specific dataset or across multiple datasets (Gonçalves and Musen,

2019).

Klie et al. (2021) aimed to enhance the metadata coverage of

SRA BioSample entries using deep learning-based named entity

recognition (NER). The study achieved high prediction accuracies

for certain metadata categories when extracting information from

sample titles (TITLEs). It is worthy to note, they processed all the

available BioSample up to May 2018, and Genus/Specie and strains

generally refers to processed samples. However, lower accuracies

and the absence of predictions for other metadata categories

underscored existing issues with the current metadata annotations

in BioSample. These findings demonstrate the effectiveness of

recurrent neural networks for NER-based metadata prediction

and suggest the potential of such models to expand metadata

coverage in BioSample, reducing the reliance on manual curation

(Klie et al., 2021). Below some additional thoughts on the

future directions of machine learning for metadata retrieval in

metagenomics. Firstly, ML algorithms (De et al., 2022; Nassar

et al., 2022; Raghavendra Nayaka and Ranjan, 2023) could be

developed to extract metadata from scientific literature, abstracts,

and environmental monitoring data. This would allow researchers

to extract more reliable metadata with less effort. Secondly, ML

algorithms could be used to develop new metadata standards that

are tailored to specific research questions. This would help to ensure

that metadata is collected in a way that is most useful for the

scientific community.

5 Metadata exploitation for robust ML
models

During development of ML-based classifiers, the incorporation

of metadata emerges as a crucial factor for accurate predictions

and robust model development. A series of studies mark the

significance of considering host associated metadata elements,

ranging from geographical location to dietary habits and

perinatal factors, host genetic factor (Lopera-Maya et al., 2022;

New et al., 2022) shedding light on microbial compositions.

Below we have highlighted examples of why researchers

should consider host associated factors to train supervised

predictive ML model for better generalization capability on the

unseen dataset.
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5.1 Changes in the gut microbiome: from
infancy to adulthood and beyond

Studies have shown that the gut microbiome of infants

undergoes significant changes during the first 3 years of life,

with differences observed between populations and influenced by

factors, such as delivery mode. Yatsunenko et al. (2012) compared

fecal samples from Amerindians in Venezuela and residents

of U.S. metropolitan areas, finding that the gut microbiome

exhibited similar functional maturation patterns across the initial

3 years of life across populations. Palmer et al. (2007) also,

observed substantial variation in the composition of gut bacteria

in infants during the first year of life, with reduced variation

within twin pairs and decreased variation with age. Orrhage and

Nord (1999) emphasized the impact of delivery mode on the

infant microbiome (Fanaro et al., 2003; Penders et al., 2006;

Yatsunenko et al., 2012). Studies have shown that cesarean section

(CS) results in a different microbiota compared to vaginal delivery

(VD) (Bennet and Nord, 1987; Hällström et al., 2004; Elovitz

et al., 2019). Cheng et al. (2022) emphasized the importance of

further investigation to comprehensively delineate the multifaceted

factors shaping microbiota dynamics during maternal-neonatal

interactions, extending beyond traditional perinatal considerations.

Gudnadottir et al. (2022) employed the network-meta-analysis

method and revealed that the microbiome demonstrates predictive

potential for preterm birth and emphasizes the significance of

specific microbial compositions in the vaginal microbiome as

potential indicators for the likelihood of preterm birth.

Odamaki et al. (2016) and Meng et al. (2022) delved into the

alterations in gut microbiota across different age groups and their

associations with gut inflammation, particularly during the sexual

maturity stage in healthy individuals. As individuals progress in

age, there is a significant increase in the relative abundance of

Firmicutes, accompanied by a concurrent decrease in the relative

abundance of Bacteroides. The study further identified a positive

correlation between body weight and the Firmicutes:Bacteroides

ratio, shedding light on potential associations between microbiota

composition and physiological parameters.

In addition to the age-related patterns identified in gut

microbiota, the investigation also observed variations in microbial

compositions across different body sites, including the vagina, skin,

oral cavity, and respiratory tract. Detailed information on these

variations is available at (Hou et al., 2022).

Kim et al. (2020) outlined that gender constitutes a

significant variable shaping the composition of the gut

microbiota. Furthermore, an investigation involving male

and female germ-free C57BL/6J mice, Wang et al. (2016) and

Zhao et al. (2019) revealed distinctive microbial preferences

in the intestines of male and female mice. Despite these

findings highlighting the relevance of gender in microbiota

dynamics, a comprehensive understanding of this association

remains elusive.

Cheng et al. (2022) emphasized geographical location as a

paramount variable influencing the overall structure of maternal

and neonatal microbiota, especially evident in two distinct

populations from Asia and Europe. Elsherbiny et al. (2022) in

Egypt elucidated the impact of geographical location on the gut

microbiota in children with Type-1 Diabetes Mellitus, revealing

differences in alpha diversity between controls and diabetic groups.

The Chinese healthy gut project (Ren et al., 2023), outlined

on the correlation between gut microbiota and various dietary

and lifestyle factors among healthy individuals in China. Notably,

lifestyle phenotypes, including sleep procrastination, negative

mood, and drinking habits, exhibited substantial influence on gut

microbiota composition, with these factors showing the largest

effect sizes.

5.1.1 Role of diets
Noble et al. (2021) investigated the impact of sugar-sweetened

beverage consumption during adolescence on the gut microbiome,

which was linked to alterations in hippocampal function, as already

demonstrated by David et al. (2014). Vujkovic-Cvijin et al. (2020)

identified unexpected sources of gut microbiota variance, including

alcohol consumption frequency and bowel movement quality.

Singh and Mittal (2020) and Gacesa et al. (2022) comprehensively

reviewed the profound impact of diet on the pathophysiology of

mental disorders, highlighting its crucial role in shaping mental

health outcomes. Ren et al. (2023) delved into the effects of

dietary factors on the structure of the gut microbiota, while

Manor et al. (2020) highlighted the composition-specific nature

of host-microbe associations, providing insights into the intricate

connections between microbiome composition, clinical markers,

and lifestyle factors.

5.1.2 Medication and antibiotic exposure
BMI and insulin level: Bäckhed et al. (2004) has illuminated

a substantial connection between the gut microbiota and the

regulation of body weight. Also, Ridaura et al. (2013) demonstrated

weight gain in germ-free mice following gut microbiota transplants

from individuals with obesity. These findings highlight the intricate

relationship between gut microbiota composition and its role

in regulating body weight. Gupta et al. (2020) emphasized the

use of BMI scores to classify underweight, overweight, or obese

individuals. Evans et al. (2014) shows that physical activity could

shifts in the composition of the gut microbiome in animal

models (Kang et al., 2014) but the robustness of this association

at population-level remains uncertain. Concerning antibiotics,

two cohort studies, utilizing a difference-in-differences approach,

demonstrated that antibiotic exposure in infancy altered the relative

abundance of off-target species and antibiotic resistance genes

(Ramirez et al., 2020; Ribeiro et al., 2020; Lebeaux et al., 2022;

Patangia et al., 2022).

In the realm of machine learning challenges, MetAML, an ML-

based classifier, revealed variable results between prediction tasks,

cautioning against potential overestimation of disease prediction

due to confounding factors like active antibiotic treatment (Pasolli

et al., 2016).

Abdul Rahman et al. (2023) developed supervised and

unsupervised ML models to predict colorectal cancer using global

dietary data, encompassing both younger and older adults from

seven major countries (Canada, India, Italy, South Korea, Mexico,

Sweden, and the United States) and diverse sociodemographic
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factors. Su et al. (2022) show that the limitation of using a

combined public dataset did not specify the co-morbidities and

antibiotics; thus, model performance depends on the exclusion of

these metadata.

5.2 Future direction

Previous studies show that the composition of the human

gut microbiome varies significantly among individuals. This

variability suggests that incorporating metadata, including

confounding factors and dietary information, into ML models

is highly beneficial. Figure 1 illustrates a potential approach for

integrating metadata information alongside microbiome features.

This integrated analysis can lead to novel research questions,

refine sample and feature selection, and improve the robustness

of predictive statistical and ML models, e.g. develop ML model to

predict the phenotype of a host organism. The interplay between

ML and metadata is crucial for effective model implementation.

Incorporating host metadata into microbiota studies can ensure

that groups are well-matched, enhancing the reliability and

reproducibility of studies investigating diseases or phenotypes

associated with distinct pathological, physiological, lifestyle, or

dietary traits.

6 Conclusion

Integrated metadata analysis is essential for maximizing the

potential of ML and other advanced techniques in microbiome

research. While recent advances in metagenomics, metabolomics,

and metaproteomics have generated a wealth of publicly available

data, its comprehensive utilization is hindered by several

challenges, including the need for substantial time investments,

accessibility issues with metadata, computational resource

requirements, and the need for specialized bioinformatic expertise.

As widely discussed in the previous sections, the inclusion of

metadata information in ML models development is crucial to

avoid erroneous outcomes. Metadata become essential to attenuate

the negative impact of confounding factors, both technical and

biological. Moreover, either when multi-omics data integration

is considered, the inclusion of clinical metadata about enrolled

subjects emerge as a source of knowledge leveraging the models

accuracy, as demonstrated by Leung et al. (2022). Indeed, this

review highlights the importance of integrated metadata analysis in

microbiome research. By combining microbial data with sample-

specific information, researchers can gain a deeper understanding

of the microbial communities that inhabit the human body and

their role in health and disease. This knowledge can be used

to develop new diagnostic and therapeutic strategies. However,

integrated metadata analysis is also challenging due to issues

related to data management, computational demands, integration

approaches, and the selection of appropriate analysis tools. To

fully leverage the potential of integrated metadata analysis in

microbiome research, it is essential to address these challenges

through the development of new tools and resources, as well as the

training of researchers in the necessary skills.

Author contributions

BK: Conceptualization, Writing—original draft, Writing—

review & editing. EL: Writing—review & editing. BF:

Writing—review & editing, Conceptualization, Supervision,

Writing—original draft. GP: Conceptualization, Funding

acquisition, Supervision, Writing—review & editing.

Funding

The author (s) declare financial support was received for

the research, authorship, and/or publication of this article.

This work was supported by ELIXIR-IT, the Italian Node of

the European research infrastructure for life-science data, CUP

B53C22000690005. Moreover, this research was co-funded by the

Complementary National Plan PNC-I.1 “Research initiatives for

innovative technologies and pathways in the health and welfare

sector” D.D. 931 of 06/06/20-2, DARE-DigitAl lifelong pRevEntion

initiative, code PNC0000002, CUP B53C22006420001.

Acknowledgments

BK is a PhD student within the European School of Molecular

Medicine (SEMM). We also thank Maria Rosa Mirizzi and Luigi

Boccaccio for technical administrative assistance. LLM service

chatGPT was used to grammatically check the manuscript.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

The author(s) declared that they were an editorial board

member of Frontiers, at the time of submission. This had no impact

on the peer review process and the final decision.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Frontiers inMicrobiology 17 frontiersin.org

https://doi.org/10.3389/fmicb.2024.1343572
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Kumar et al. 10.3389/fmicb.2024.1343572

References

Abdul Rahman, H., Ottom, M. A., and Dinov, I. D. (2023). Machine learning-
based colorectal cancer prediction using global dietary data. BMC Cancer 23, 144.
doi: 10.1186/s12885-023-10587-x

Al Bander, Z., Nitert, M. D., Mousa, A., and Naderpoor, N. (2020). The gut
microbiota and inflammation: an overview. Int. J. Environ. Res. Public Health 17, 7618.
doi: 10.3390/ijerph17207618

Alter, O., Brown, P. O., and Botstein, D. (2000). Singular value decomposition for
genome-wide expression data processing and modeling. Proc. Natl. Acad. Sci. U.S.A.
97, 10101–10106. doi: 10.1073/pnas.97.18.10101

Asshauer, K. P., Wemheuer, B., Daniel, R., and Meinicke, P. (2015). Tax4Fun:
predicting functional profiles from metagenomic 16S rRNA data. Bioinformatics 31,
2882–2884. doi: 10.1093/bioinformatics/btv287

Bäckhed, F., Ding, H., Wang, T., Hooper, L. V., Koh, G. Y., Nagy, A., et al. (2004).
The gut microbiota as an environmental factor that regulates fat storage. Proc. Nat.
Acad. Sci. 101, 15718–15723. doi: 10.1073/pnas.0407076101

Bakir-Gungor, B., Bulut, O., Jabeer, A., Nalbantoglu, O. U., and Yousef, M. (2021).
Discovering potential taxonomic biomarkers of type 2 diabetes from human gut
microbiota via different feature selection methods. Front. Microbiol. 12, 628426.
doi: 10.3389/fmicb.2021.628426

Bakir-Gungor, B., Hacilar, H., Jabeer, A., Nalbantoglu, O. U., Aran, O., and Yousef,
M. (2022). Inflammatory bowel disease biomarkers of human gut microbiota selected
via different feature selection methods. PeerJ 10, e13205. doi: 10.7717/peerj.13205

Balestriero, R., Bottou, L., and LeCun, Y. (2022). The effects of regularization
and data augmentation are class dependent. arXiv [Preprint]. arXiv:2204.03632
doi: 10.48550/arXiv.2204.0363

Bao, W., Kojima, K. K., and Kohany, O. (2015). Repbase Update, a
database of repetitive elements in eukaryotic genomes. Mob. DNA 6, 11.
doi: 10.1186/s13100-015-0041-9

Bashiardes, S., Zilberman-Schapira, G., and Elinav, E. (2016). Use of
metatranscriptomics in microbiome research. Bioinform. Biol. Insights 10, 19–25.
doi: 10.4137/BBI.S34610

Bengtsson-Palme, J. (2020). Microbial model communities: To understand
complexity, harness the power of simplicity. Comput. Struct. Biotechnol. J. 18,
3987–4001. doi: 10.1016/j.csbj.2020.11.043

Benito, M., Parker, J., Du, Q., Wu, J., Xiang, D., Perou, C. M., et al. (2004).
Adjustment of systematic microarray data biases. Bioinformatics 20, 105–114.
doi: 10.1093/bioinformatics/btg385

Bennet, R., and Nord, C. E. (1987). Development of the faecal anaerobic microflora
after caesarean section and treatment with antibiotics in newborn infants. Infection 15,
332–336. doi: 10.1007/BF01647733

Berden, P., Wiederkehr, R. S., Lagae, L., Michiels, J., Stakenborg, T., Fauvart, M.,
et al. (2022). Amplification efficiency and template accessibility as distinct causes of
rain in digital PCR: Monte Carlo modeling and experimental validation. Anal. Chem.
94, 15781–15789. doi: 10.1021/acs.analchem.2c03534

Bhattacharya, C., Tierney, B. T., Ryon, K. A., Bhattacharyya, M., Hastings, J. J.
A., Basu, S., et al. (2022). Supervised machine learning enables geospatial microbial
provenance. Genes 13, 1914. doi: 10.3390/genes13101914

Bikel, S., Valdez-Lara, A., Cornejo-Granados, F., Rico, K., Canizales-Quinteros,
S., Soberón, X., et al. (2015). Combining metagenomics, metatranscriptomics
and viromics to explore novel microbial interactions: towards a systems-level
understanding of human microbiome. Comput. Struct. Biotechnol. J. 13, 390–401.
doi: 10.1016/j.csbj.2015.06.001

Bingol, K. (2018). Recent advances in targeted and untargeted metabolomics by
NMR and MS/NMR methods. High Throughput 7, 9. doi: 10.3390/ht7020009

Brill, B., Amir, A., and Heller, R. (2022). Testing for differential abundance in
compositional counts data, with application to microbiome studies. Ann. Appl. Stat.
16, 2648–2671. doi: 10.1214/22-AOAS1607

Casimiro-Soriguer, C. S., Loucera, C., Peña-Chilet, M., and Dopazo, J.
(2022). Towards a metagenomics machine learning interpretable model for
understanding the transition from adenoma to colorectal cancer. Sci. Rep. 12,
450. doi: 10.1038/s41598-021-04182-y

Cernava, T., Rybakova, D., Buscot, F., Clavel, T., McHardy, A. C., Meyer,
F., et al. (2022). Metadata harmonization–Standards are the key for a better
usage of omics data for integrative microbiome analysis. Environ. Microb. 17, 33.
doi: 10.1186/s40793-022-00425-1

Cheng, Y., Selma-Royo, M., Cao, X., Calatayud, M., Qi, Q., Zhou, J., et al.
(2022). Influence of geographical location on maternal-infant microbiota: study in
two populations from Asia and Europe. Front. Cell. Infect. Microb. 11, 663513.
doi: 10.3389/fcimb.2021.663513

Chuong, K. H., Hwang, D. M., Tullis, D. E., Waters, V. J., Yau, Y. C. W., Guttman,
D. S., et al. (2017). Navigating social and ethical challenges of biobanking for human
microbiome research. BMCMed. Ethics 18, 1. doi: 10.1186/s12910-016-0160-y

Clark, S., Bleken, F. L., Stier, S., Flores, E., Andersen, C. W., Marcinek, M., et al.
(2022). Toward a unified description of battery data. Adv. Energy Mat. 12, 2102702.
doi: 10.1002/aenm.202102702

David, L. A., Maurice, C. F., Carmody, R. N., Gootenberg, D. B., Button, J. E., Wolfe,
B. E., et al. (2014). Diet rapidly and reproducibly alters the human gut microbiome.
Nature 505, 559–563. doi: 10.1038/nature12820

De, S., Moss, H., Johnson, J., Li, J., Pereira, H., and Jabbari, S. (2022). Engineering
a machine learning pipeline for automating metadata extraction from longitudinal
survey questionnaires. IASSIST Quart. 46. doi: 10.29173/iq1023

Desiere, F., Deutsch, E. W., King, N. L., Nesvizhskii, A. I., Mallick, P., Eng,
J., et al. (2006). The PeptideAtlas project. Nucleic Acids Res. 34, D655–D658.
doi: 10.1093/nar/gkj040

Deutsch, E. W., Bandeira, N., Perez-Riverol, Y., Sharma, V., Carver, J. J., Mendoza,
L., et al. (2022). The ProteomeXchange consortium at 10 years: 2023 update. Nucleic
Acids Res. 51, D1539–D1548. doi: 10.1093/nar/gkac1040

Deutsch, E. W., Csordas, A., Sun, Z., Jarnuczak, A., Perez-Riverol, Y., Ternent,
T., et al. (2017). The ProteomeXchange consortium in 2017: supporting the cultural
change in proteomics public data deposition. Nucleic Acids Res. 45, D1100–D1106.
doi: 10.1093/nar/gkw936

Douglas, G. M., Maffei, V. J., Zaneveld, J. R., Yurgel, S. N., Brown, J. R., Taylor, C.
M., et al. (2020). PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol.
38, 685–688. doi: 10.1038/s41587-020-0548-6

Duvallet, C., Gibbons, S. M., Gurry, T., Irizarry, R. A., and Alm, E. J. (2017). Meta-
analysis of gutmicrobiome studies identifies disease-specific and shared responses.Nat.
Commun. 8, 1784. doi: 10.1038/s41467-017-01973-8

Eckert, E. M., Cesare, A. D., Fontaneto, D., Berendonk, T. U., Bürgmann, H.,
Cytryn, E., et al. (2020). Every fifth published metagenome is not available to science.
PLoS Biol. 18, e3000698. doi: 10.1371/journal.pbio.3000698

Elovitz, M. A., Gajer, P., Riis, V., Brown, A. G., Humphrys, M. S., Holm,
J. B., et al. (2019). Cervicovaginal microbiota and local immune response
modulate the risk of spontaneous preterm delivery. Nat. Commun. 10, 1305.
doi: 10.1038/s41467-019-09285-9

Elsherbiny, N. M., Ramadan, M., Faddan, N. H. A., Hassan, E. A., Ali, M. E.,
El-Rehim, A. S. E.-D. A., et al. (2022). Impact of geographical location on the gut
microbiota profile in Egyptian children with type 1 diabetes mellitus: a pilot study.
IJGM 15, 6173–6187. doi: 10.2147/IJGM.S361169

Erickson, A. R., Cantarel, B. L., Lamendella, R., Darzi, Y., Mongodin,
E. F., Pan, C., et al. (2012). Integrated metagenomics/metaproteomics reveals
human host-microbiota signatures of Crohn’s disease. PLoS ONE 7, e49138.
doi: 10.1371/journal.pone.0049138

Evans, C. C., LePard, K. J., Kwak, J. W., Stancukas, M. C., Laskowski, S.,
Dougherty, J., et al. (2014). Exercise prevents weight gain and alters the gut
microbiota in a mouse model of high fat diet-induced obesity. PLoS ONE 9, e92193.
doi: 10.1371/journal.pone.0092193

Fanaro, S., Chierici, R., Guerrini, P., and Vigi, V. (2003). Intestinal microflora
in early infancy: composition and development. Acta Paediatr. Suppl. 91, 48–55.
doi: 10.1111/j.1651-2227.2003.tb00646.x

Farrah, T., Deutsch, E. W., Kreisberg, R., Sun, Z., Campbell,
D. S., Mendoza, L., et al. (2012). PASSEL: the PeptideAtlas
SRMexperiment library. Proteomics 12, 1170–1175. doi: 10.1002/pmic.20110
0515

Ferry-Dumazet, H., Gil, L., Deborde, C., Moing, A., Bernillon, S., Rolin, D.,
et al. (2011). MeRy-B: a web knowledgebase for the storage, visualization, analysis
and annotation of plant NMR metabolomic profiles. BMC Plant Biol. 11, 104.
doi: 10.1186/1471-2229-11-104

Franzosa, E. A., Huang, K., Meadow, J. F., Gevers, D., Lemon, K. P., Bohannan, B.
J. M., et al. (2015). Identifying personal microbiomes using metagenomic codes. Proc.
Nat. Acad. Sci. 112, E2930–E2938. doi: 10.1073/pnas.1423854112

Gacesa, R., Kurilshikov, A., Vich Vila, A., Sinha, T., Klaassen, M. A. Y., Bolte, L. A.,
et al. (2022). Environmental factors shaping the gut microbiome in a Dutch population.
Nature 604, 732–739. doi: 10.1038/s41586-022-04567-7

Gilbert, J., Blaser, M. J., Caporaso, J. G., Jansson, J., Lynch, S. V., and Knight, R.
(2018). Current understanding of the human microbiome. Nat. Med. 24, 392–400.
doi: 10.1038/nm.4517

Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V., and Egozcue, J. J. (2017).
Microbiome Datasets Are Compositional: And This Is Not Optional. Frontiers in
Microbiology 8. Available at: https://www.frontiersin.org/articles/10.3389/fmicb.2017.
02224 (accessed January 2, 2024).

Gohl, D. M., Vangay, P., Garbe, J., MacLean, A., Hauge, A., Becker, A., et al. (2016).
Systematic improvement of amplicon marker gene methods for increased accuracy in
microbiome studies. Nat. Biotechnol. 34, 942–949. doi: 10.1038/nbt.3601

Frontiers inMicrobiology 18 frontiersin.org

https://doi.org/10.3389/fmicb.2024.1343572
https://doi.org/10.1186/s12885-023-10587-x
https://doi.org/10.3390/ijerph17207618
https://doi.org/10.1073/pnas.97.18.10101
https://doi.org/10.1093/bioinformatics/btv287
https://doi.org/10.1073/pnas.0407076101
https://doi.org/10.3389/fmicb.2021.628426
https://doi.org/10.7717/peerj.13205
https://doi.org/10.48550/arXiv.2204.0363
https://doi.org/10.1186/s13100-015-0041-9
https://doi.org/10.4137/BBI.S34610
https://doi.org/10.1016/j.csbj.2020.11.043
https://doi.org/10.1093/bioinformatics/btg385
https://doi.org/10.1007/BF01647733
https://doi.org/10.1021/acs.analchem.2c03534
https://doi.org/10.3390/genes13101914
https://doi.org/10.1016/j.csbj.2015.06.001
https://doi.org/10.3390/ht7020009
https://doi.org/10.1214/22-AOAS1607
https://doi.org/10.1038/s41598-021-04182-y
https://doi.org/10.1186/s40793-022-00425-1
https://doi.org/10.3389/fcimb.2021.663513
https://doi.org/10.1186/s12910-016-0160-y
https://doi.org/10.1002/aenm.202102702
https://doi.org/10.1038/nature12820
https://doi.org/10.29173/iq1023
https://doi.org/10.1093/nar/gkj040
https://doi.org/10.1093/nar/gkac1040
https://doi.org/10.1093/nar/gkw936
https://doi.org/10.1038/s41587-020-0548-6
https://doi.org/10.1038/s41467-017-01973-8
https://doi.org/10.1371/journal.pbio.3000698
https://doi.org/10.1038/s41467-019-09285-9
https://doi.org/10.2147/IJGM.S361169
https://doi.org/10.1371/journal.pone.0049138
https://doi.org/10.1371/journal.pone.0092193
https://doi.org/10.1111/j.1651-2227.2003.tb00646.x
https://doi.org/10.1002/pmic.201100515
https://doi.org/10.1186/1471-2229-11-104
https://doi.org/10.1073/pnas.1423854112
https://doi.org/10.1038/s41586-022-04567-7
https://doi.org/10.1038/nm.4517
https://www.frontiersin.org/articles/10.3389/fmicb.2017.02224
https://www.frontiersin.org/articles/10.3389/fmicb.2017.02224
https://doi.org/10.1038/nbt.3601
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Kumar et al. 10.3389/fmicb.2024.1343572

Gonçalves, R. S., and Musen, M. A. (2019). The variable quality of metadata
about biological samples used in biomedical experiments. Sci Data 6, 190021.
doi: 10.1038/sdata.2019.21

Gou,W., Ling, C., He, Y., Jiang, Z., Fu, Y., Xu, F., et al. (2020). Interpretable machine
learning framework reveals robust gut microbiome features associated with type 2
diabetes. Diabetes Care 44, 358–366. doi: 10.2337/dc20-1536

Guccione, C., McDonald, D., Fielding-Miller, R., Curtius, K., and
Knight, R. (2023). You are what you excrete. Nat Microbiol 8, 1002–1003.
doi: 10.1038/s41564-023-01395-x

Gudnadottir, U., Debelius, J. W., Du, J., Hugerth, L. W., Danielsson, H.,
Schuppe-Koistinen, I., et al. (2022). The vaginal microbiome and the risk of
preterm birth: a systematic review and network meta-analysis. Sci. Rep. 12, 7926.
doi: 10.1038/s41598-022-12007-9

Gupta, V. K., Kim, M., Bakshi, U., Cunningham, K. Y., Davis, J. M., Lazaridis, K. N.,
et al. (2020). A predictive index for health status using species-level gut microbiome
profiling. Nat. Commun. 11, 4635. doi: 10.1038/s41467-020-18476-8

Haas, B. J., Gevers, D., Earl, A. M., Feldgarden, M., Ward, D. V., Giannoukos, G.,
et al. (2011). Chimeric 16S rRNA sequence formation and detection in Sanger and 454-
pyrosequenced PCR amplicons. Genome Res. 21, 494–504. doi: 10.1101/gr.112730.110

Hällström, M., Eerola, E., Vuento, R., Janas, M., and Tammela, O. (2004). Effects of
mode of delivery and necrotising enterocolitis on the intestinal microflora in preterm
infants. Eur. J. Clin. Microbiol. Infect. Dis. 23, 463–470. doi: 10.1007/s10096-004-1146-0

Haug, K., Salek, R. M., and Steinbeck, C. (2017). Global open data management in
metabolomics. Curr. Opin. Chem. Biol. 36, 58–63. doi: 10.1016/j.cbpa.2016.12.024

Hernández Medina, R., Kutuzova, S., Nielsen, K. N., Johansen, J., Hansen, L.
H., Nielsen, M., et al. (2022). Machine learning and deep learning applications in
microbiome research. ISME COMMUN. 2, 1–7. doi: 10.1038/s43705-022-00182-9

Holoch, D., and Moazed, D. (2015). RNA-mediated epigenetic regulation of gene
expression. Nat. Rev. Genet. 16, 71–84. doi: 10.1038/nrg3863

Hou, K., Wu, Z.-X., Chen, X.-Y., Wang, J.-Q., Zhang, D., Xiao, C., et al.
(2022). Microbiota in health and diseases. Sig Transduct Target Ther 7, 1–28.
doi: 10.1038/s41392-022-00974-4

Huttenhower, C., Finn, R. D., and McHardy, A. C. (2023). Challenges and
opportunities in sharing microbiome data and analyses. Nat Microbiol 8, 1960–1970.
doi: 10.1038/s41564-023-01484-x

Huttenhower, C., Gevers, D., Knight, R., Abubucker, S., Badger, J. H., Chinwalla, A.
T., et al. (2012). Structure, function and diversity of the healthy human microbiome.
Nature 486, 207–214. doi: 10.1038/nature11234

Jiang, R., Li, W. V., and Li, J. J. (2021). mbImpute: an accurate and
robust imputation method for microbiome data. Genome Biol. 22, 192.
doi: 10.1186/s13059-021-02400-4

Johnson, J. S., Spakowicz, D. J., Hong, B.-Y., Petersen, L. M., Demkowicz, P., Chen,
L., et al. (2019). Evaluation of 16S rRNA gene sequencing for species and strain-level
microbiome analysis. Nat. Commun. 10, 5029. doi: 10.1038/s41467-019-13036-1

Kang, S. S., Jeraldo, P. R., Kurti, A., Miller, M. E. B., Cook, M. D., Whitlock,
K., et al. (2014). Diet and exercise orthogonally alter the gut microbiome and
reveal independent associations with anxiety and cognition. Mol. Neurodegener. 9, 36.
doi: 10.1186/1750-1326-9-36

Kasmanas, J. C., Bartholomäus, A., Corrêa, F. B., Tal, T., Jehmlich, N., Herberth,
G., et al. (2020). HumanMetagenomeDB: a public repository of curated and
standardized metadata for human metagenomes. Nucleic Acids Res. 49, D743–D750.
doi: 10.1093/nar/gkaa1031

Katz, K., Shutov, O., Lapoint, R., Kimelman, M., Brister, J. R., and O’Sullivan, C.
(2022). The sequence read archive: a decade more of explosive growth. Nucleic Acids
Res. 50, D387–D390. doi: 10.1093/nar/gkab1053

Kim, Y. S., Unno, T., Kim, B.-Y., and Park, M.-S. (2020). Sex differences in gut
microbiota.World J. Mens. Health 38, 48–60. doi: 10.5534/wjmh.190009

Klie, A., Tsui, B. Y., Mollah, S., Skola, D., Dow, M., Hsu, C.-N., et al. (2021).
Increasing metadata coverage of SRA BioSample entries using deep learning–based
named entity recognition. Database 2021, baab021. doi: 10.1093/database/baab021

Kodikara, S., Ellul, S., and and, L.ê, Cao, K.-A. (2022). Statistical challenges
in longitudinal microbiome data analysis. Briefings Bioinform. 23, bbac273.
doi: 10.1093/bib/bbac273

La Reau, A. J., Strom, N. B., Filvaroff, E., Mavrommatis, K.,Ward, T. L., and Knights,
D. (2023). Shallow shotgun sequencing reduces technical variation in microbiome
analysis. Sci. Rep. 13, 7668. doi: 10.1038/s41598-023-33489-1

Lam, T. J., and Ye, Y. (2022). Meta-analysis of microbiome association
networks reveal patterns of dysbiosis in diseased microbiomes. Sci. Rep. 12, 17482.
doi: 10.1038/s41598-022-22541-1

Langille, M. G., Zaneveld, J., Caporaso, J. G., McDonald, D., Knights, D., Reyes, J.
A., et al. (2013). Predictive functional profiling of microbial communities using 16S
rRNA marker gene sequences. Nat. Biotechnol. 31, 814–821. doi: 10.1038/nbt.2676

Lassalle, F., Spagnoletti, M., Fumagalli, M., Shaw, L., Dyble, M., Walker, C., et al.
(2018). Oral microbiomes from hunter-gatherers and traditional farmers reveal shifts

in commensal balance and pathogen load linked to diet. Mol. Ecol. 27, 182–195.
doi: 10.1111/mec.14435

Lebeaux, R. M., Madan, J. C., Nguyen, Q. P., Coker, M. O., Dade, E. F., Moroishi,
Y., et al. (2022). Impact of antibiotics on off-target infant gut microbiota and resistance
genes in cohort studies. Pediatr. Res. 92, 1757–1766. doi: 10.1038/s41390-022-02104-w

Lee, P. Y., Chin, S.-F., Neoh, H., and Jamal, R. (2017). Metaproteomic
analysis of human gut microbiota: where are we heading? J. Biomed. Sci. 24, 36.
doi: 10.1186/s12929-017-0342-z

Lee, Y., Cappellato, M., and Di Camillo, B. (2023). Machine learning–based feature
selection to search stable microbial biomarkers: application to inflammatory bowel
disease. GigaScience 12, giad083. doi: 10.1093/gigascience/giad083

Leipzig, J., Nüst, D., Hoyt, C. T., Ram, K., and Greenberg, J. (2021). The
role of metadata in reproducible computational research. Patterns 2, 100322.
doi: 10.1016/j.patter.2021.100322

Leung, H., Long, X., Ni, Y., Qian, L., Nychas, E., Siliceo, S. L., et al. (2022). Risk
assessment with gut microbiome and metabolite markers in NAFLD development. Sci
Transl Med 14, eabk0855. doi: 10.1126/scitranslmed.abk0855

Levesque, R. J. R. (2017). Data sharing mandates, developmental science,
and responsibly supporting authors. J. Youth Adolesc. 46, 2401–2406.
doi: 10.1007/s10964-017-0741-1

Li, L., Wang, T., Ning, Z., Zhang, X., Butcher, J., Serrana, J. M., et al. (2023).
Revealing proteome-level functional redundancy in the human gut microbiome using
ultra-deep metaproteomics. Nat. Commun. 14, 3428. doi: 10.1038/s41467-023-39149-2

Li, L., Yang, K., Li, C., Zhang, H., Yu, H., Chen, K., et al. (2022). Metagenomic
shotgun sequencing and metabolomic profiling identify specific human gut microbiota
associated with diabetic retinopathy in patients with type 2 diabetes. Front. Immunol.
13, 943325. doi: 10.3389/fimmu.2022.943325

Li, Y., Xie, G., Zha, Y., and Ning, K. (2023). GAN-GMHI: a generative adversarial
network with high discriminative power for microbiome-based disease prediction. J.
Genet. Genomics 50, 1026–1028. doi: 10.1016/j.jgg.2023.03.009

Linardatos, P., Papastefanopoulos, V., and Kotsiantis, S. (2021). Explainable
AI: a review of machine learning interpretability methods. Entropy 23, 18.
doi: 10.3390/e23010018

Liñares-Blanco, J., Fernandez-Lozano, C., Seoane, J. A., and López-Campos,
G. (2022). Machine learning based microbiome signature to predict inflammatory
bowel disease subtypes. Front. Microbiol. 13, 872671. doi: 10.3389/fmicb.2022.87
2671

Ling, W., Lu, J., Zhao, N., Lulla, A., Plantinga, A. M., Fu, W., et al. (2022). Batch
effects removal for microbiome data via conditional quantile regression.Nat. Commun.
13, 5418. doi: 10.1038/s41467-022-33071-9

Lloyd-Price, J., Mahurkar, A., Rahnavard, G., Crabtree, J., Orvis, J., Hall, A. B., et al.
(2017). Strains, functions and dynamics in the expanded Human Microbiome Project.
Nature 550, 61–66. doi: 10.1038/nature23889

Logares, R., Haverkamp, T. H. A., Kumar, S., Lanzén, A., Nederbragt, A. J., Quince,
C., et al. (2012). Environmental microbiology through the lens of high-throughput
DNA sequencing: synopsis of current platforms and bioinformatics approaches. J.
Microbiol. Methods 91, 106–113. doi: 10.1016/j.mimet.2012.07.017

Long, S., Yang, Y., Shen, C., Wang, Y., Deng, A., Qin, Q., et al. (2020).
Metaproteomics characterizes human gut microbiome function in colorectal cancer.
NPJ Biofilms Microb. 6, 1–10. doi: 10.1038/s41522-020-0123-4

Lopera-Maya, E. A., Kurilshikov, A., van der Graaf, A., Hu, S., Andreu-Sánchez,
S., Chen, L., et al. (2022). Effect of host genetics on the gut microbiome in
7,738 participants of the Dutch Microbiome Project. Nat. Genet. 54, 143–151.
doi: 10.1038/s41588-021-00992-y

Lu, J., Breitwieser, F. P., Thielen, P., and Salzberg, S. L. (2017). Bracken:
estimating species abundance in metagenomics data. PeerJ Comput. Sci. 3, e104.
doi: 10.7717/peerj-cs.104

Lugli, G. A., Mancabelli, L., Milani, C., Fontana, F., Tarracchini, C., Alessandri, G.,
et al. (2023). Comprehensive insights from composition to functional microbe-based
biodiversity of the infant human gut microbiota. NPJ Biofilms Microbiomes 9, 1–13.
doi: 10.1038/s41522-023-00392-6

Luo, J., Schumacher, M., Scherer, A., Sanoudou, D., Megherbi, D., Davison, T., et al.
(2010). A comparison of batch effect removal methods for enhancement of prediction
performance using MAQC-II microarray gene expression data. Pharmacogenomics J.
10, 278–291. doi: 10.1038/tpj.2010.57

Mallick, H., Franzosa, E. A., Mclver, L. J., Banerjee, S., Sirota-Madi, A.,
Kostic, A. D., et al. (2019). Predictive metabolomic profiling of microbial
communities using amplicon or metagenomic sequences. Nat. Commun. 10, 3136.
doi: 10.1038/s41467-019-10927-1

Mallick, H., Ma, S., Franzosa, E. A., Vatanen, T., Morgan, X. C., and Huttenhower,
C. (2017). Experimental design and quantitative analysis of microbial community
multiomics. Genome Biol. 18, 228. doi: 10.1186/s13059-017-1359-z

Manor, O., Dai, C. L., Kornilov, S. A., Smith, B., Price, N. D., Lovejoy, J. C., et al.
(2020). Health and disease markers correlate with gut microbiome composition across
thousands of people. Nat. Commun. 11, 5206. doi: 10.1038/s41467-020-18871-1

Frontiers inMicrobiology 19 frontiersin.org

https://doi.org/10.3389/fmicb.2024.1343572
https://doi.org/10.1038/sdata.2019.21
https://doi.org/10.2337/dc20-1536
https://doi.org/10.1038/s41564-023-01395-x
https://doi.org/10.1038/s41598-022-12007-9
https://doi.org/10.1038/s41467-020-18476-8
https://doi.org/10.1101/gr.112730.110
https://doi.org/10.1007/s10096-004-1146-0
https://doi.org/10.1016/j.cbpa.2016.12.024
https://doi.org/10.1038/s43705-022-00182-9
https://doi.org/10.1038/nrg3863
https://doi.org/10.1038/s41392-022-00974-4
https://doi.org/10.1038/s41564-023-01484-x
https://doi.org/10.1038/nature11234
https://doi.org/10.1186/s13059-021-02400-4
https://doi.org/10.1038/s41467-019-13036-1
https://doi.org/10.1186/1750-1326-9-36
https://doi.org/10.1093/nar/gkaa1031
https://doi.org/10.1093/nar/gkab1053
https://doi.org/10.5534/wjmh.190009
https://doi.org/10.1093/database/baab021
https://doi.org/10.1093/bib/bbac273
https://doi.org/10.1038/s41598-023-33489-1
https://doi.org/10.1038/s41598-022-22541-1
https://doi.org/10.1038/nbt.2676
https://doi.org/10.1111/mec.14435
https://doi.org/10.1038/s41390-022-02104-w
https://doi.org/10.1186/s12929-017-0342-z
https://doi.org/10.1093/gigascience/giad083
https://doi.org/10.1016/j.patter.2021.100322
https://doi.org/10.1126/scitranslmed.abk0855
https://doi.org/10.1007/s10964-017-0741-1
https://doi.org/10.1038/s41467-023-39149-2
https://doi.org/10.3389/fimmu.2022.943325
https://doi.org/10.1016/j.jgg.2023.03.009
https://doi.org/10.3390/e23010018
https://doi.org/10.3389/fmicb.2022.872671
https://doi.org/10.1038/s41467-022-33071-9
https://doi.org/10.1038/nature23889
https://doi.org/10.1016/j.mimet.2012.07.017
https://doi.org/10.1038/s41522-020-0123-4
https://doi.org/10.1038/s41588-021-00992-y
https://doi.org/10.7717/peerj-cs.104
https://doi.org/10.1038/s41522-023-00392-6
https://doi.org/10.1038/tpj.2010.57
https://doi.org/10.1038/s41467-019-10927-1
https://doi.org/10.1186/s13059-017-1359-z
https://doi.org/10.1038/s41467-020-18871-1
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Kumar et al. 10.3389/fmicb.2024.1343572

Marcos-Zambrano, L. J., Karaduzovic-Hadziabdic, K., Loncar Turukalo, T.,
Przymus, P., Trajkovik, V., Aasmets, O., et al. (2021). Applications of machine
learning in human microbiome studies: a review on feature selection, biomarker
identification, disease prediction and treatment. Front. Microbiol. 12, 634511.
doi: 10.3389/fmicb.2021.634511

Mathieu, A., Leclercq, M., Sanabria, M., Perin, O., and Droit, A. (2022).
Machine learning and deep learning applications in metagenomic taxonomy and
functional annotation. Front. Microbiol. 13, 811495. doi: 10.3389/fmicb.2022.8
11495

McLaren, M. R., Willis, A. D., and Callahan, B. J. (2019). Consistent
and correctable bias in metagenomic sequencing experiments. Elife 8, e46923.
doi: 10.7554/eLife.46923.027

Meng, C., Feng, S., Hao, Z., Dong, C., and Liu, H. (2022). Changes in gut microbiota
composition with age and correlations with gut inflammation in rats. PLoS ONE 17,
e0265430. doi: 10.1371/journal.pone.0265430

Meyer, F., Paarmann, D., D’Souza, M., Olson, R., Glass, E., Kubal, M., et al.
(2008). The metagenomics RAST server – a public resource for the automatic
phylogenetic and functional analysis of metagenomes. BMC Bioinform. 9, 386.
doi: 10.1186/1471-2105-9-386
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