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Objective: Tuberculous meningitis (TBM) is the most severe form of tuberculosis 
(TB). The purpose of this study was to explore the relationship between the 
number of natural killer (NK) cells and adaptive immune status, and disease 
severity in TBM patients.

Methods: We conducted a retrospective study on 244  TB patients and 146 
healthy control subjects in the 8th Medical Center of the PLA General Hospital 
from March 2018 and August 2023.

Results: The absolute count of NK cells in the peripheral blood of TBM patients 
was significantly lower than that in normal controls (NC), latent tuberculosis 
infection (LTBI), and non-severe TB (NSTB) patients (p  <  0.05). The proportion of 
TBM patients (48.7%) with a lower absolute count of NK cells than the normal 
reference value was significantly higher than that in NC (5.2%) and LTBI groups 
(4.0%) (p  <  0.05), and slightly higher than that in NSTB group (36.0%) (p  >  0.05). 
The absolute counts of lymphocyte subsets in TBM combined with other active 
TB group, etiology (+) group, IGRA (−) group, and antibody (+) group were 
lower than that in simple TBM group, etiology (−) group, IGRA (+) group, and 
antibody (−) group, respectively. The CD3+ T, NK, and B cells in BMRC-stage III 
TBM patients were significantly lower than those in stage I and stage II patients 
(p  <  0.05). The counts of CD3+ T, CD4+ T, and B cells in the etiology (+) group 
were significantly lower than those in the etiology (−) group (p  <  0.05).

Conclusion: The absolute counts of lymphocyte subsets in the peripheral 
blood of TBM patients were significantly decreased, especially in NK cells. The 
reduction of these immune cells was closely related to the disease severity and 
had a certain correlation with cellular and humoral immune responses. This 
study helps to better understand the immune mechanism of TBM and provides 
reliable indicators for evaluating the immune status of TBM patients in clinical 
practice.
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1 Introduction

Tuberculosis (TB) is a chronic respiratory infectious disease caused 
by Mycobacterium tuberculosis (Mtb). According to the latest World 
Health Organization (WHO) report, there were approximately 10.6 
million new cases and 1.3 million deaths worldwide in 2022 (WHO, 
2023). Worldwide, it is estimated that one-fourth of the population is 
infected with Mtb, and 5–10% of those infected are at risk of further 
progression to active TB (ATB) (Paton et al., 2019). Mtb can infect any 
organ system in the body with pulmonary TB (PTB) being its most 
common presentation, and the rest as extrapulmonary TB (EPTB). 
Among them, tuberculous meningitis (TBM) represents the most 
severe form of TB, with high morbidity and mortality, and with more 
than 100,000 new cases reported by the WHO every year (Poh et al., 
2021; Li et al., 2022).

TB is a typical bacterial infectious disease and also an immune-
related disease, which is affected by a variety of factors, such as bacterial 
load and host immunity, especially local anti-TB immunity of the lung. 
After Mtb invasion, the initial acute immune response against Mtb is 
initiated by the innate immune system of the body to eliminate the 
pathogen. Innate immune cells include macrophages, natural killer 
(NK) cells, dendritic cells, etc., which represent important components 
of the innate immune defense mechanisms. They mainly play the role 
of phagocytosis and antigen presentation, clearing Mtb in macrophages 
and producing cytotoxic effects to destroy lysed target cells (Garand 
et  al., 2018; Choreño-Parra et  al., 2020, 2021). Subsequently, the 
adaptive immune responses are activated, in which the cellular immune 
responses mediated by T cells (including CD4+ and CD8+ T cells) and 
their production of Th1 cytokines (such as IFN-γ and IL-2) play a 
major anti-TB role, and the humoral immune responses mediated by 
B cells and antibodies exert an adjuvant effect (Mi et al., 2021; Wu 
Xueqiong, 2022). Therefore, the activation of the body’s immune 
system and inflammatory responses play a critical role in the immune 
pathogenesis of diseases. Studies have found that these changes in 
immune responses were closely related to the occurrence and 
development of this disease (An et al., 2022). However, most current 
research has only been conducted in ATB patients, latent TB infection 
(LTBI), or tuberculous pleurisy, and few studies have reported the 
clinical immunological characteristics of TBM patients.

Presently, the pathogenesis of TBM is still insufficiently understood. 
Researchers in the last century have found that Mtb infected the central 
nervous system long before TBM patients showed symptoms, but the 
associated clinical symptoms did not manifest immediately in the brain 
(Rich, 1933). NK cells are a unique group of granular lymphocytes of the 
innate immune system with innate cytotoxicity and immune regulatory 
ability, playing a crucial role in the early stages of infection. NK cells can 
present signals to infected dendritic cells and macrophages to assist the 
body in clearing Mtb (Esin et al., 2013; Choreño Parra et al., 2017). NK 
cells can also exert classical cytotoxic effects by secreting perforin and 
granzymes to clear mycobacterium and Mtb-infected host cells (Brill 
et al., 2001; Lu et al., 2014). Additionally, NK cells can secrete cytokines 
to regulate the immune response, such as IFN-γ, TNF-α, and IL-22 (Feng 
et al., 2006; Zhang et al., 2006). However, little work has been reported 
on the phenotypic changes of NK cells in TBM patients. Only several 
studies found that the NK cells in the peripheral blood of TBM patients 
were lower than those in healthy controls, and CD56brightCD16− NK cells 
were significantly lower than those in LTBI population and PTB patients, 
while neutrophils and classical monocytes were significantly higher, but 
the number of TBM patients enrolled was limited (van Laarhoven et al., 

2019; Choreño-Parra et al., 2021; Shridhar et al., 2022). There were no 
studies on the mechanisms involved in the immune response after Mtb 
infection in TBM patients. Therefore, the study of the number of NK 
cells and the adaptive immune status of TBM patients can provide new 
insights and ideas to elucidate the pathogenesis of TBM.

Currently, flow cytometry (FCM) is commonly used to analyze 
peripheral blood lymphocyte subsets in TB patients to assess immune 
status, immune function, and immune balance. In this study, 
we analyzed the changes in the percentages and absolute counts of 
CD3+, CD4+, CD8+, NK, NKT, and B lymphocytes in peripheral blood 
of TBM patients, non-severe TB (NSTB) patients, LTBI persons, and 
normal controls (NC) through FCM. In addition, the relationship 
between the number of immune cells in TBM patients and the disease 
severity, bacterial load in the body, cytokines, and antibody levels, as 
well as the changes in NK cells in the TBM population were 
emphatically analyzed, providing a reference basis for further 
understanding of the immune mechanism of TBM and clinical 
evaluation of the immune status of TBM patients.

2 Materials and methods

2.1 Subjects

This study was approved by the Ethics Committee of the 8th 
Medical Center of the PLA General Hospital (approval number: 
309201904081530). A total of 244 hospitalized TB patients from the 
8th Medical Center of the PLA General Hospital from March 2018 
and August 2023 were included in the present study. The diagnosis of 
TB was carried out and guided according to the People’s Republic of 
China’s Health Standards “Diagnosis for Pulmonary Tuberculosis 
(WS 288–2017)” and “Classification of Tuberculosis (WS 196–2017)” 
issued by the National Health and Family Planning Commission of 
the People’s Republic of China: (1) TB-related symptoms included at 
least one of cough, expectoration, hemoptysis, fever, loss of appetite, 
fatigue, night sweats, etc.; (2) Chest X-ray or CT indicated abnormal 
lesions; (3) Histopathological examination revealed tuberculous 
lesions; (4) The smear, culture, and/or molecular biology detection 
on clinical samples exhibited positive; (5) Anti-TB treatment was 
effective and excludes other non-TB diseases.

 (1) TBM group: 119 cases (73 males and 46 females, aged 
18–79 years) diagnosed with TBM were further divided into the 
following subgroups based on clinical parameters: according to 
clinical diagnosis, the cases were divided into a simple TBM 
group (n = 40) and a TBM combined with other ATB group 
(TBM-ATB, n = 79); According to the duration of treatment, the 
cases were divided into an initial treatment group (In-TBM, 
n = 37) and a re-treatment group (Re-TBM, n = 82); According 
to the results of smear, culture, and/or molecular biological test 
on clinical samples [cerebrospinal fluid (CSF)/sputum], the 
cases were divided into an etiology-positive group [EG (+), 
n = 17] and an etiology-negative group [EG (−), n = 58]; 
According to the modified British Medical Research Council 
(BMRC) grading system and the Glasgow Coma Scale, the cases 
were classified into stage I (n = 87), stage II (n = 22), and stage III 
(n = 10) (Alarcón et al., 2013; Poh et al., 2021); According to the 
results of interferon-gamma release assay (IGRA), the cases 
were divided into an IGRA (+) group (n = 55) and an IGRA (−) 
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group (n = 33); According to the results of antibody IgG 
detection, the cases were divided into an antibody-positive 
group [Ab (+), (n = 46)] and an antibody-negative group [Ab 
(−), (n = 39)]. The data were collected and reviewed 
retrospectively based on clinical records, and not all patients 
have been undergoing etiological and immunological testing, 
resulting in fewer grouped cases than the total number of cases.

 (2) NSTB group: 125 cases (81 males and 44 females aged 
18–97 years), including PTB, tuberculous pleurisy, bronchial 
TB, and other TB patients, excluding PTB complicated by 
massive hemoptysis, PTB complicated by respiratory failure, 
hematogenous disseminated TB, TBM, and other severe 
TB patients.

 (3) LTBI group: 50 cases (28 males and 22 females, aged 
19–65 years) who were defined as close contacts of active PTB 
patients in the same period, with positive IGRA, no clinical 
symptoms of TB, and no abnormalities in imaging examination.

 (4) NC group: 96 cases (50 males and 46 females, aged 18–70 years), 
with negative IGRA, no history of TB, no clinical manifestations 
of TB, and no abnormality in imaging examination.

Exclusion criteria were as follows: having autoimmune diseases; 
severe liver and kidney dysfunction; HIV positive; and during 
pregnancy or lactation.

2.2 Etiological detection methods

CSF/sputum was obtained from all TBM patients and detected 
using smear, conventional culture, and/or molecular biology 
methods. Any participant with at least one positive test result was 
defined as a TB patient with positive etiology. Ziehl-Neelsen (ZN) 
acid-fast staining and BACTEC MGIT 960 system (BD Biosciences, 
Franklin Lake, United  States) were used for smear and culture, 
respectively. Real-time qPCR (CapitalBio Corporation, China) and/
or Xpert MTB/RIF (Cepheid, Sunnyvale, United States) were used to 
detect Mtb DNA in specimens.

2.3 IGRA test methods

A total of 3–4 mL venous blood from the subjects was collected and 
allowed to store at room temperature for a maximum of 6 h before 
analysis. Peripheral blood mononuclear cells (PBMCs) were isolated by 
Ficoll-PaquePLUS (GE Healthcare Life Sciences) gradient centrifugation. 
Then, IGRA tests [including ELISPOT (Mabtech, Sweden) and ELISA 
(Wantai Biological Pharmacy Enterprise, Beijing, China) kits] were used 
to quantitatively detect the specific T-cell immune response of human 
whole blood samples stimulated by Mtb-specific antigen in vitro, which 
is used to assist the diagnosis of Mtb infection.

2.4 Antibody test method

A total of 3–5 mL peripheral venous blood from the subjects was 
collected, and serum was separated by centrifugation. The detection 
of Mtb IgG antibody in human serum samples was performed in vitro 
using the Mtb IgG antibody detection kits (colloidal gold method) 

(Beijing Zhongjian Antai Diagnostic Technology Co., Ltd.; Shanghai 
Aopu Biopharmaceutical Co., Ltd., China).

2.5 BMRC grading system

According to the BMRC grading criteria, we divided TBM patients 
into stage I, stage II, and stage III based on their mental status and 
neurological signs. Stage I: has alertness and directional ability, without 
any signs of neurological localization. Stage II: conscious but lack of 
concentration, blurred consciousness, and drowsiness, with possible 
mild focal signs such as cranial nerve palsy or mild hemiplegia (Glasgow 
Coma Scale score 11–15) (Table 1). Stage III: in advanced stages of the 
disease, accompanied by delirium, lethargy, coma, epileptic seizures, 

TABLE 1 Glasgow coma scale and pediatric Glasgow coma scale.

Sign Glasgow coma 
scale (Teasdale 
and Jennett, 
1974)

Pediatric 
Glasgow 
coma scale 
(Holmes 
et al., 2005)

Score

Eye opening Spontaneous Spontaneous 4

To command To sound 3

To pain To pain 2

None None 1

Verbal 

response

Oriented Age-appropriate 

vocalization, smile, 

or orientation to 

sound; interacts 

(coos, babbles); 

follows objects

5

Confused, disoriented Cries, irritable 4

Inappropriate words Cries to pain 3

Incomprehensible 

sounds

Moans to pain 2

None None 1

Motor 

response

Obeys commands Spontaneous 

movements (obeys 

verbal command)

6

Localizes pain Withdraws to 

touch (localizes 

pain)

5

Withdraws Withdraws to pain 4

Abnormal flexion to 

pain

Abnormal flexion 

to pain 

(decorticate 

posture)

3

Abnormal extension to 

pain

Abnormal 

extension to pain 

(decorticate 

posture)

2

None None 1

Best total 

score

15
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multiple cranial nerve palsy, and/or hemiplegia with equal involvement 
of the upper and lower limbs (Glasgow Coma Scale score ≤ 10) (Table 1) 
(Teasdale and Jennett, 1974; Holmes et al., 2005; Tuberculous meningitis 
Professional Committee, 2020; Glasgow Coma Scale, n.d.).

2.6 Flow cytometry

A total of 4 mL fasting venous blood samples from subjects were 
collected in heparin anticoagulant tubes in the early morning and 
stored at room temperature. 50 μL whole blood was added in a test 
tube, followed by adding 10 μL BD Multitest 6-Color TBNK Reagent 
(BD Biosciences, United States) and mixed gently with vortex. The 
mixture was incubated at room temperature in the dark for 15 min. 
Then 450 μL fluorescence-activated cell sorter (FACS) lysing solution 
(BD Biosciences, United  States) was added and mixed well, and 
further incubated at room temperature in the dark for 15 min. The 
absolute numbers and percentages of peripheral blood T lymphocyte 
subsets were determined using the FACS Aria II flow cytometer (BD 
Bioscience, United States). At least 5,000 lymphocytes were collected 
for each specimen and analyzed by FACS DIVA software. According 
to CD45-SSC, white blood cells were divided into lymphocytes, 
monocytes, and neutrophils. Lymphocytes were defined as follows: 
CD3+ T cells were defined as CD3+, CD4+ T cells were defined as 
CD3+CD4+CD8−, CD8+ T cells were defined as CD3+CD4−CD8+, NK 
cells were defined as CD3−CD16+ or/and CD56+, NKT cells were 
defined as CD3+CD16+ or/and CD56+, and B cells were defined as 
CD3−CD19+. The absolute numbers and percentages of CD3+ T, CD4+ 
T, CD8+ T, NK, NKT, and B cells were calculated, respectively. We used 
previously published normal values of lymphocyte subsets in Chinese 
Han people as a reference (Xu et al., 2021).

2.7 Statistical analysis

All data were statistically analyzed using GraphPad Prism 8.0 
software (GraphPad Software, Inc.). The comparison between the two 
groups was conducted with the Wilcoxon rank sum test, multiple 
group comparisons were performed using the Kruskal-Wallis rank 
sum test. Chi-squared test was used to compare categorical data 
between groups. Differences less than 0.05 (p < 0.05) were considered 
statistically significant.

3 Results

3.1 Demographic and clinical data of the 
study population

A total of 390 cases were included in this investigation. There were 
no statistical differences in age and gender among the NC, LTBI, 
NSTB, and TBM groups (Table 2).

3.2 Comparison of lymphocyte subset 
levels in peripheral blood among all groups

The gating strategy of this study is shown in Figure 1. In the 
percentage of lymphocyte subsets in each group, the percentages of 

CD3+ and CD4+ T cells in the TBM and NSTB groups were 
significantly higher than that in the NC group and LTBI group 
(p < 0.05), while the percentages of NK cells in the TBM and NSTB 
groups were significantly lower than that in the NC group and LTBI 
group (p < 0.05) (Supplementary Table S1). The absolute counts of 
CD3+ T, CD4+ T, CD8+ T, NK, NKT, and B cells in the TBM group 
and NSTB group were significantly lower than those in the NC and 
LTBI group, with significant differences (p < 0.05) (shown in 
Figure 2). Among them, the absolute counts of all cell subsets in TBM 
group were decreased compared with those in the NSTB group, but 
only the differences in NK cells achieved statistical significance 
(p < 0.05).

The proportion of the cases with lymphocyte subsets below the 
normal reference values in the NSTB and TBM groups was 
significantly higher than that in the NC and LTBI groups (p < 0.05) 
(shown in Figure 3A). Compared to the NSTB group, the TBM group 
showed an increasing trend in the proportion of the cases below 
normal reference values, but without significant differences.

The proportion of the cases with lymphocyte subsets below the 
normal reference values in the TBM-ATB, BMRC-Stage III, and EG 
(+) groups was significantly higher than that in the simple TBM, 
BMRC-stage I and II, and EG (−) groups, respectively. Among them, 
there was a significant difference (p < 0.05) between the BMRC-stage 
III group and BMRC-stage II group, and the proportion of the cases 
with CD3+ T, CD8+ T, and NK cells below the normal reference values 
in the EG (+) group was significantly higher than that in the EG (−) 
group (p < 0.05) (Figure  3B). The proportion of the cases with 
peripheral blood lymphocyte subsets below the normal reference 
values in the IGRA (−) group and Ab (+) group was higher than that 
in the IGRA (+) group and Ab (−) group, respectively, and the 
incidence of IGRA (−) and Ab (+) in the TBM patients tends to 
increase with the increase of the disease severity 
(Supplementary Table S2), but there was no significant difference 
(p > 0.05). And there was also no significant difference between the 
In-TBM group and the Re-TBM group (Figure 3B).

3.3 Relationship between absolute counts 
of peripheral blood lymphocyte subsets 
and disease severity, etiological 
examination, and immune responses in 
TBM cases

The relationship between absolute counts of peripheral blood 
lymphocyte subsets and disease severity, etiological examination, and 
immune responses in TBM groups is shown in Table 3.

The counts of all lymphocyte subsets in TBM-ATB were lower 
than those in the simple TBM group, but the count of only B 
lymphocytes showed a significant difference (p < 0.05). The counts of 
lymphocyte subsets in the In-TBM group were higher than those in 
the Re-TBM, but with no significant difference (p > 0.05). In addition, 
there was no significant difference in the counts of all lymphocyte 
subsets between BMRC-stage II and stage I  patients, while their 
counts in BMRC-stage III patients were significantly lower than those 
in stage I and stage II except for NKT cells, in which CD3+ T, NK, and 
B cells had significant differences (p < 0.05). Besides, the EG (+) group 
showed lower counts than those in the EG (−) group, with statistical 
significance in the counts of CD3+ T, CD4+ T, and B lymphocytes 
(p < 0.05). In the cellular immunity grouping, the number of CD3+ T, 
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CD4+ T, CD8+ T, NK, and NKT cells in the IGRA (+) group was 
higher than those in IGRA (−) group, with only NKT cells having 
significant difference (p < 0.05), while the B cell count was lower than 
the IGRA (−) group without significant difference (p > 0.05). In the 
humoral immunity grouping, the absolute counts of lymphocyte 
subsets in the Ab (+) group were lower than those in the Ab (−) 
group, with significant differences in the counts of CD4+ T and B cells 
(p < 0.05).

4 Discussion

When Mtb invades the body, the host’s innate immune response 
is rapidly activated to play an early defense role and then initiates a 

specific cellular immune response leading to the formation of 
tuberculous granuloma. Cellular immunity is the main immune 
protection mechanism for TB, and TB will be developed when the 
human immune function becomes unbalanced or abnormal. TBM 
occurs if Mtb succeeds in crossing the blood–brain barrier through 
blood circulation or other means when the infection is not effectively 
controlled. The pathogenesis of TBM is still unclear, and it is known 
that T lymphocyte-mediated chronic inflammation is an important 
link in the body’s resistance to Mtb. The reduction of T lymphocytes 
and loss of their function are common pathological changes in the 
occurrence and development of TBM. NK cells, as important innate 
immune cells, can exert cytotoxicity in the initial stage of Mtb 
infection, kill extracellular Mtb, trigger the effector mechanisms of the 
macrophage and dendritic cell, and limit the intracellular growth of 

TABLE 2 Comparison of patient clinical data for each group.

Parameters NC (n  =  96) LTBI (n  =  50) NSTB (n  =  125) TBM (n  =  119) χ2 p value

Age, years, median (range) 35 (18–70) 47.5 (19–65) 44 (18–97) 34 (18–79)

Age (%) 10.636 0.1006

<25 18 (18.8%) 8 (16.0%) 27 (21.6%) 27 (22.7%)

25–59 63 (65.6%) 34 (68.0%) 66 (52.8%) 76 (63.9%)

≥60 15 (15.6%) 8 (16.0%) 32 (25.6%) 16 (13.4%)

Gender (%) 4.070 0.2540

Male 50 (52.1%) 28 (56.0%) 81 (64.8%) 73 (61.3%)

Female 46 (47.9%) 22 (44.0%) 44 (35.2%) 46 (38.7%)

FIGURE 1

The flow cytometry gating strategy of subjects in this study. The gating strategy for leukocytes (A), B cells and T cells (B), CD4+ T cells (C), CD8+ T cells 
(D), NK and NKT cells (E).
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Mtb. In addition, NK cells can produce cytokines (such as IFN-γ, 
IL-12, etc.) and regulate the activation and function of Mtb-specific T 
cells (Esin and Batoni, 2015), thereby participating in the immune 
defense process of LTBI and active PTB (Choreño-Parra et al., 2021). 
However, there is currently limited research on NK cells in TBM, and 
their role in TBM is not yet fully understood.

Previous studies have shown that TB patients, including TBM 
and NSTB, were significantly immunocompromised, and their 
absolute counts of lymphocyte subsets were significantly lower than 
those of the NC and LTBI populations (Al Majid and Abba, 2008; Mi 
et  al., 2021; Wu Xueqiong, 2022), which is consistent with the 
findings of our study. If CD3+ T, CD4+ T, CD8+ T, and NK cells are 
significantly reduced in PTB patients, it indicates that the body is 
prone to expand the range of lesions, appear cavities, and even 

spread outside the lungs to further develop into patients with EPTB 
including TBM (Guglielmetti et al., 2013). The study by Choreno 
Parra et al. demonstrated that NK cells were only activated during 
the active phase of Mtb infection and entered tissues (Choreño-Parra 
et  al., 2021). Our study also found that compared with NSTB 
patients, the decrease of NK cells in TBM patients was particularly 
noticeable, indicating that the local innate immune responses of the 
lungs in TBM patients may be significantly attenuated, which causes 
the spread of Mtb in the lungs, thereby leading to the occurrence of 
TBM (Choreño-Parra et al., 2021). It is also possible that peripheral 
blood NK cells migrate to the central nervous system and produce 
pro-inflammatory cytokines, causing clinically common brain injury 
or other symptoms. Van Laarhoven et al. also found that the αβT, 
γδT, and NK cells in the blood of TBM patients were significantly 

FIGURE 2

Comparison of absolute counts of peripheral blood lymphocyte subsets among NC, LTBI, NSTB, and TBM groups. NC: n  =  96, LTBI: n  =  50, NSTB: 
n  =  125, TBM: n  =  119. The absolute counts of lymphocyte subsets in peripheral blood were measured by flow cytometry. The error bars represent the 
median and interquartile range. The green shaded region represents the reference ranges in the Chinses population (Xu et al., 2021). The comparison 
between the two groups was conducted with the Wilcoxon rank sum test, multigroup comparisons were performed using the Kruskal-Wallis rank sum 
test. NC, normal population; LTBI, latent tuberculosis infection; NSTB, non-severe tuberculosis; TBM, tuberculous meningitis.

FIGURE 3

Proportion of the population in each group below the normal reference values for the absolute counts of lymphocyte subsets. (A) Comparison of 
population proportions among NC, LTBI, NSTB, and TBM groups. (B) Comparison of population proportions in TBM groups grouped according to 
different characteristics. The reference values for CD3+, CD4+, CD8+, B, and NK cells were 834 cells/μL, 395 cells/μL, 269 cells/μL, 92 cells/μL, and 136 
cells/μL, respectively (Xu et al., 2021).
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reduced compared with PTB and healthy control groups, while the 
increased leucocyte activation and a predominance of αβT and NK 
cells in CSF were associated with better survival (van Laarhoven 
et al., 2019). Also, TBM patients have shown increased myeloid cell 
responses with diverse immune functions (van Laarhoven et al., 
2019). In addition, flow cytometry confirmed the presence of αβT, 
γδT, B, NK, NKT, and MAIT cells in the CSF of TBM patients, with 
NK cells being the most abundant cell type besides αβT cells (Dieli 
et al., 1999; Simmons et al., 2005; van Laarhoven et al., 2019). The 
above literature studies have indirectly supported our findings that 
NK cells in TBM patients may be transferred from peripheral blood 
to CSF, but the number and functional changes of the transfers are 
still unknown. Therefore, we  will simultaneously study the 
lymphocyte subsets in both CSF and peripheral blood of TBM 
patients to analyze the distribution, quantity, and function of 
lymphocyte subsets, especially NK cells in different clinical 
specimens of these patients, in order to discover more effective 
blood and CSF biomarkers and provide more reliable indices for 
future host-directed treatment of TBM.

At present, there are two methods for analyzing lymphocyte 
subsets in clinical practice. Among them, the relative counting 
method is to analyze the percentage of each subset of cells in the total 
number of lymphocytes, so the results are easily affected by changes 

in various cell subsets. The absolute counting method can understand 
the independent changes of various cell subsets. The change in the 
absolute count of one lymphocyte subset does not affect the changes 
in the absolute count of other cell subsets, but may affect the changes 
in the relative count of lymphocyte subsets (Morais-Papini et al., 
2017). In this study, the percentage of NK cells in the TBM and NSTB 
groups significantly decreased, leading to significant increases in the 
percentages of CD3+ and CD4+ T cells, but the absolute counts of 
these three types of cells were significantly reduced. Guglielmetti 
et al. also found that the absolute count of all lymphocyte subsets in 
patients with severe TB decreased, but the percentage of all 
lymphocyte subsets may not change significantly, still in the normal 
range (Guglielmetti et al., 2013). Therefore, it is recommended to 
simultaneously detect and analyze the relative and absolute counts of 
lymphocyte subsets in TB patients, to objectively and accurately 
reflect the immune cell status of TB patients. Our findings provided 
further evidence that TBM was associated with a decrease in 
peripheral blood lymphocytes, which was also closely related to 
disease severity (Guglielmetti et al., 2013). In particular, the decreases 
of NK cells and B cells were closely associated with the degree of 
disease spread and bacterial load in TBM patients, which is consistent 
with the results of previous studies (Davoudi et al., 2008; Yang Ming 
et al., 2017), suggesting that severe TBM patients may have immune 

TABLE 3 The relationship between absolute counts of peripheral blood lymphocyte subsets and disease severity, etiological examination results, and 
immune response in TBM population.

Groups n CD3+ (cells/μL) 
(median, 

range)

CD4+ (cells/μL) 
(median, 

range)

CD8+ (cells/μL) 
(median, 

range)

NK (cells/μL) 
(median, 

range)

NKT (cells/μL) 
(median, 

range)

B (cells/μL) 
(median, 

range)

TBM 119 1,027 (148–2,680) 579 (69–1,600) 389 (36–1,407) 132 (21–564) 73 (5–822) 144 (3–1,001)

  Simple TBM 40 1,322 (148–2,573) 767 (73–1,600) 410 (61–1,001) 146 (21–440) 66 (15–821) 222 (14–1,001)

  TBM-ATB 79 955 (158–2,680) 525 (69–1,525) 341 (36–1,407) 126 (21–564) 73 (5–822) 117 (3–857)a

Treatment duration

  In-TBM 37 1,243 (148–2,302) 585 (69–1,467) 386 (61–1,407) 137 (21–513) 91 (13–578) 158 (3–1,001)

  Re-TBM 82 1,001 (158–2,680) 543 (102–1,600) 352 (36–1,002) 129 (21–564) 64 (5–822) 136 (4–870)

BMRC

  Stage I 87 1,025 (162–2,680) 579 (69–1,600) 379 (58–1,407) 146 (21–564) 75 (7–822) 144 (3–1,001)

  Stage II 22 1,185 (158–1854) 620 (109–1,153) 466 (36–883) 129 (32–440) 51 (14–222) 202 (15–505)

  Stage III 10 671 (148–1720)b,c 415 (73–917) 238 (61–610) 76 (40–166)b 108 (5–325) 60 (14–242)b,c

CSF/sputum

  EG (−) 58 1,124 (162–2,302) 650 (69–1,467) 396 (90–1,407) 146 (21–564) 84 (7–578) 153 (3–505)

  EG (+) 17 671 (237–2,134)d 407 (102–1,335)d 254 (58–765) 103 (32–267) 53 (8–381) 95 (10–337)d

Cellular immune

  IGRA (−) 33 1,077 (158–2,573) 524 (109–1,600) 344 (36–1,407) 120 (32–513) 46 (14–824) 156 (44–1,001)

  IGRA (+) 55 1,105 (237–2,259) 622 (102–1,467) 380 (111–1,011) 146 (52–525) 90 (11–578)e 131 (15–440)

Humoral immune

  Ab (−) 39 1,259 (162–2,259) 711 (69–1,467) 440 (90–865) 150 (21–564) 69 (11–578) 222 (5–505)

  Ab (+) 46 886 (148–2,573) 441 (73–1,600)f 296 (36–1,011) 111 (32–314) 64 (5–821) 99 (4–1,001)f

TBM, Tuberculous meningitis; TBM-ATB, TBM combined with other ATB; In-TBM, Initial treatment TBM; Re-TBM, Re-treatment TBM; BMRC, British Medical Research Council; CSF, 
Cerebrospinal fluid; EG, Etiology; IGRA, Interferon-gamma release assay; AB, Antibody.
ap < 0.05 vs. simple TBM.
bp < 0.05 vs. BMRC-Stage I.
cp < 0.05 vs. BMRC-Stage II.
dp < 0.05 vs. EG (−).
ep < 0.05 vs. IGRA (−).
fp < 0.05 vs. Ab (−).
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cell exhaustion and more severe cellular immunosuppression in 
the body.

In the process of adaptive immune against TB, effector CD4+ and 
CD8+ T cells activated play a major role in anti-TB. As is well known, 
IFN-γ in peripheral blood is mainly produced by activated CD4+ 
effector T cells and a small amount of CD8+ effector T cells. IFN-γ, as 
a macrophage activating factor (MAF), induces the release of 
hydrogen peroxide (H2O2) and mediates antibacterial effects. In 
addition, IFN-γ, also as an immune modulator, mainly limits 
neutrophil recruitment and tissue inflammation-induced damage by 
inhibiting CD4+ T cell-mediated IL-17 generation (Saghazadeh and 
Rezaei, 2022). IFN-γ plays an important role in immune-mediated 
inhibition on Mtb infection. Our study found that the absolute counts 
of lymphocyte subsets in IGRA (+) TBM patients were higher than 
those in the IGRA (−) group, except for B cells (Yu Shan et al., 2021). 
The absolute counts of peripheral blood lymphocytes in IGRA (+) 
patients were mostly within the normal range, that is, the positive rate 
of IGRA in the patients with the absolute count of peripheral blood 
lymphocytes within the normal range was significantly higher than 
that in other patients (Xueqiong, 2020). These results demonstrated 
that the elevation of IFN-γ may be the key to host defense against 
TBM. Our study showed that the negative rate of IGRA in TBM 
patients was as high as 41.25% (33/80), significantly higher than that 
of PTB, and there was a trend of positive correlation between negative 
IGRA and the severity of TBM, which is consistent with the results of 
previous studies (Di and Li, 2018; Kim et al., 2018). It has been found 
that IGRA-negative TB patients had higher mortality, suggesting that 
IGRA-negative results may be a risk factor for the development of 
TBM, which may be caused by the reduction of CD4+ T cells and 
CD8+ T cells (Ngai et al., 2007; Nguyen et al., 2018; Yamasue et al., 
2020). Multiple meta-analyses have shown that advanced age, low 
peripheral blood lymphocyte count, and decreased NKT cells may 
be common risk factors for false-negative IGRA (Nguyen et al., 2018; 
Yamasue et al., 2020), suggesting that cellular immune function is 
impaired in TBM patients (Wu Xueqiong, 2022). In addition, the 
absolute number of NKT cells in IGRA (+) TBM patients was 
significantly higher than that in the IGRA (−) group, which may 
be  due to the proliferation of NKT cells to recognize glucolipid 
antigens after Mtb infection. It has been found that NKT cells were 
significantly higher in “rapid responders” (Kulpraneet et al., 2007; 
Pandey et  al., 2019). Subsequently, activated NKT produces large 
amounts of IFN-γ and promotes the increase of other T lymphocyte 
subsets to combat Mtb invasion. Therefore, double detection of T 
lymphocyte subset absolute count and IGRAs in clinical practice may 
assist in identifying immunocompromised TB patients for timely 
immune intervention (Xu et al., 2018).

The humoral immune response of the body is mainly the specific 
antibody response generated by the differentiation of mature B 
lymphocytes induced by Mtb antigen into plasma cells, which plays 
a protective role in anti-TB immunity in collaboration with cellular 
immunity (Encinales et al., 2010; Achkar et al., 2015; Jacobs et al., 
2016; Lu et al., 2016). Here we provide the first comparison of the 
changes in lymphocyte subsets in the peripheral blood of TBM 
patients with negative and positive antibodies. Our results showed 
that the absolute counts of all lymphocyte subsets in TBM patients in 
the Ab (−) group were higher than those in the Ab (+) group, 
suggesting that Th1-type protective immune response was dominant 
in TBM patients in the Ab (−) group, while T and B lymphocytes in 

the peripheral blood of TBM patients in the Ab (+) group were 
reduced, especially CD4+ T cells and B lymphocytes were significantly 
reduced, which may be  caused by the migration of B cells to 
peripheral lymphoid organs, possibly indicating a decrease in the 
number of “protective” B cell subsets and an increase in potential 
pathological B cell subsets (Rijnink et  al., 2021). After being 
stimulated by antigens, mature B cells migrated to peripheral 
lymphoid organs and became activated B cells, which then 
differentiate into plasma cells and increase the synthesis and secretion 
of antibodies, leading to the patient’s immune imbalance, with 
Th1-type immunity shifting toward Th2-type immunity, resulting in 
a weakened Th1-type immune response and an enhanced Th2-type 
immune response. This may be the reason why Ab (+) TBM patients 
have a positive correlation with disease severity. B cells not only 
produce antibodies, but also an antigen-presenting cell (APC) that 
produces pro-inflammatory and anti-inflammatory cytokines, such 
as IL-1β, IL-10, IL-17, IL-21, and TNF-α (du Plessis et al., 2016), 
which play an important role in the production and regulation of 
anti-TB immunity. In addition, we  studied for the first time the 
changes in the number of peripheral blood immune cells in TBM 
patients at different BMRC stages. It was found that there was no 
significant difference in the lymphocyte absolute count between 
BMRC-stage I  and stage II TBM patients, and the decrease was 
particularly obvious in BMRC-stage III TBM patients, and the 
proportion of the cases with NK cells and B cells below the normal 
reference value was significantly higher than that in BMRC-stage 
I and stage II patients. It is suggested that the decrease of NK cells 
may be one of the factors leading to the increase in the severity of 
clinical TBM patients, and the body’s immune response will also 
decrease, resulting in the decline of its resistance ability to Mtb, and 
the number of people with immune abnormalities will also increase 
(Holub et al., 2015; Thao et al., 2018). Thwaites et al. have found that 
among the HIV-negative TBM patients, the mortality was 20% in 
BMRC-stage I patients, 30% in BMRC-stage II patients, and 55% in 
BMRC-stage III patients (Tunkel, 2005). Therefore, in the early 
diagnosis and clinical treatment monitoring process of TBM patients, 
when the absolute count of various lymphocyte subsets in patients 
plummeted, especially NK cell changes, it is necessary to timely judge 
the disease progression to adjust the clinical treatment regimen, 
reduce mortality, prevent disease deterioration, and 
improve prognosis.

The main limitations of this study are as follows: (1) Due to the 
low incidence of TBM, the sample size of this study is not large 
enough, especially for severe TBM patients with BMRC-stage III; (2) 
This study focused on the number and function of immune cells in 
peripheral blood, without simultaneously studying immune cells in 
CSF. Therefore, we will further study the distribution and functional 
changes of immune cells, especially NK cells, in CSF of TBM patients 
in future studies.

5 Conclusion

In conclusion, the absolute counts of lymphocyte subsets, especially 
NK cells, in the peripheral blood of TBM patients were significantly 
reduced. Moreover, the reduction of these immune cells was closely 
related to the disease severity and had a certain correlation with cellular 
and humoral immune responses. Therefore, this study understood the 
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clinical immunological characteristics of TBM patients, which helps to 
better understand the immune mechanism of TBM caused by Mtb 
infection. It can provide reliable indicators for evaluating the immune 
status of TBM patients in clinical practice and provide the experimental 
basis for future host-directed therapy of TBM patients.
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