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In the current study, endophytic Aspergillus hiratsukae was used for the biosynthesis 
of silver nanoparticles (Ag-NPs) for the first time. The characterizations were 
performed using X ray diffraction (XRD), Transmission electron microscopy (TEM), 
Scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM–
EDX), Dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FT-
IR), and UV–Vis spectroscopy. The obtained results demonstrated the successful 
formation of crystalline, spherical Ag-NPs with particle diameters ranging from 16 
to 31 nm. The FT-IR studied and displayed the various functional groups involved, 
which played a role in capping and reducing agents for Ag-NPs production. 
The SEM–EDX revealed that the main constituent of the AS-formed sample 
was primarily Ag, with a weight percentage of 64.2%. The mycosynthesized 
Ag-NPs were assessed for antimicrobial as well as photocatalytic activities. The 
antimicrobial results indicated that the synthesized Ag-NPs possess notable 
antibacterial efficacy against Staphylococcus aureus, Bacillus subtilis, and 
Escherichia coli, with minimum inhibitory concentrations (MICs) of Ag-NPs ranging 
from 62.5 to 250 μg/mL. Moreover, the biosynthesized Ag-NPs demonstrated 
weak antifungal activity against Aspergillus brasiliensis and Candida albicans, with 
MICs of 500 and 1,000 μg/mL, respectively. In addition, the mycosynthesized Ag-
NPs exhibited photocatalytic activity toward acid black 2 (nigrosine) dye under 
both light and dark stimulation. Notably, After 300 min exposure to light, the 
nigrosine dye was degraded by 93%. In contrast, 51% degradation was observed 
after 300 min in darkness. In conclusion, Ag-NPs were successfully biosynthesized 
using endophytic A. hiratsukae and also exhibited antimicrobial and photocatalytic 
activities that can be used in environmental applications.
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1 Introduction

The exponential growth in population and global 
industrialization have created a huge demand for safe and drinkable 
water. Industrial effluents, dyes, fertilizers, pesticides, herbicides, 
and pharmaceutical wastes from a variety of industries, including 
textile, fertilizer, pharmaceutical, and petrochemical, as well as 
household operations, are the daily causes of huge water pollution. 
These pollutants also contaminate surfaces and groundwater (Ismail 
et  al., 2019; Hanafi and Sapawe, 2020). Moreover, a significant 
amount of fertilizers, pesticides, and insecticides used to boost crop 
quality and yield but also polluted water are present in runoff water 
from agricultural land. If ingested, this chemically tainted water can 
cause severe, acute illnesses such as diarrhea, typhoid, hepatitis, 
skin rash, etc., and its prolonged consumption can be extremely 
harmful to human health (Zahoor and Mushtaq, 2023). Due to their 
chemical interaction with water molecules, textile dyes are among 
the organic contaminants that are the most difficult to remove from 
aqueous systems. Water pollution must be  addressed seriously 
because it is the main cause of the spread of various diseases 
worldwide (Akhtar et al., 2021). Different classification systems for 
synthetic dyes are established based on the dye’s ionic charge in 
aqueous media, industrial application, chemical structure, and 
properties (Benkhaya et al., 2020). Most textile dyes are azo dyes, 
which comprise 65–75% of all textile dyes. They are characterized 
by the presence of an azo group (-N=N-) acting as a chromophore 
and the auxochrome group (-SO3H, sulphonate), which can 
be ionizable in aqueous media and gives the dyes their ability to 
bind to fibers. The three main categories of dyes are cationic dyes, 
nonionic dyes, and anionic dyes. Due to their affinity for forming 
covalent bonds with textiles and their greater brightness when 
compared to other dyes, anionic dyes are widely used in textile 
production (Benkhaya et al., 2020). A higher quantity of anionic 
dyes is therefore typically used. However, because of their positive 
surface charge and chemical characteristics used in smaller amounts 
because they have benign coloring and do not cause malignant 
tumors, while still being water-soluble they water-soluble, inhibit 
certain biological activities. Anthraquinone, xanthene, oxazine, 
cyanine, azine, acridine, azo, and certain anionic dyes including 
nitroso, nitro, triphenylmethane, anthraquinone, azo groups, etc. 
are examples of cationic dyes (Abdelaziz et al., 2023). Anionic and 
cationic dyes both cause cancer, but the risks connected to anionic 
dyes are more mutagenic and include bladder cancer, allergies, 
dermatitis, asthma, and other conditions. Dyes could also 
be categorized as non-ionic dyes in addition to the ionic division. 
These neutrally charged surface molecules are known as non-ionic 
dyes. It consists of two types of dyes: vat dyes, which react with 
leuco salts upon reduction in an alkaline medium and disperse 
dyes, which are water-insoluble and capable forming hydrophobic 
liquid dispersions (Shah H.U.R. et al., 2021). Disperse dyes are more 
carcinogenic in nature than vat dyes, which have very little toxicity. 
Indigoids, anthraquinone, nitro, azo, styryl, and other groups 
associated with chemical structures serve as examples of non-ionic 
dyes (Affat, 2021). Acid black 2 (nigrosine) is used as a dye for 
coloring fabrics such as silk, jute, cotton, and wool, as well as 
leather, plastic and wood; the manufacture of carbon paper; shoe 
polish cream; ink, toners, phenolic resins, styrenics, polyamides and 
urea resins; cosmetics; indicators, and color smoke (Sabnis, 2017). 

Typically, the presence of an azo group and aromatic rings serves to 
define nigrosine dye. These dyes’ complex aromatic chemical 
structures are thought to make them extremely harmful to living 
things and resistant to biodegradation (Homaeigohar, 2020). Due 
to their carcinogenic, mutagenic, allergy issues, vomiting, and 
cyanosis-causing qualities, they are also the ones causing the most 
worry (Karri et al., 2021). Due to these hazardous consequences, it 
is imperative to remove these colors from water bodies using a 
specific process in order to protect aquatic life (Khan et al., 2021). 
Due to size confinement, an increased surface area that enhances 
interfacial processes, and exhibit behaviors distinct from those of 
materials at the macroscale and have highly desired qualities (Baig 
et al., 2021). These specific properties of nanosized materials result 
in enhanced catalytic and adjustable photoactivity performances, 
higher strength, etc., making nanomaterials an important 
component for many different purposes. The use of nanotechnology 
in various approaches to environmental restoration is one of its 
most noteworthy applications (Ahmed et al., 2022; Ali et al., 2022; 
Hashem et  al., 2022a; Hasanin et  al., 2023). The synthesis of 
nanomaterials can be  divided into two main categories: 
conventional methods and green methods. Conventional techniques 
for creating nanomaterials have a lot of enticing benefits. These 
methods produce a diverse array of nanoparticles with multiple 
applications. Novel applications for some of these approaches 
include battery conduction, electrical applications, targeted disease 
therapy, energy storage and conservation, extensive scalability, and 
precise control over nanoparticle morphology (Gour and Jain, 2019; 
Dikshit et  al., 2021; Kumar et  al., 2021). However, the obvious 
disadvantages of employing these outdated methods cannot 
be  ignored. Because organic solvents are extensively used to 
synthesize these nanomaterials, there is a considerable risk to 
reproduction and neurobehavioral health (Huston et  al., 2021). 
Hazardous working conditions may also result from applying high-
pressure and hot conditions. The increased production of cardon 
dioxide, which significantly intensifies the greenhouse effect and 
raises concerns about volatile vapor, represents one of the most 
significant adverse effects of these syntheses. All things considered, 
these methods pose an irreversible risk to both the environment 
and the scientists performing the synthesis. The potential 
disadvantages of traditional methods for synthesizing nanomaterials 
outweigh their benefits. The decline in the popularity of traditional 
synthesis techniques has led to an increase in the popularity of 
green synthesis. Creating novel and forward-thinking methods that 
follow the Principles of green chemistry in light of the present 
climate catastrophe (Gour and Jain, 2019; Dikshit et  al., 2021; 
Huston et al., 2021).

Green synthesis, also known as biosynthesis, is an inexpensive 
technique that is clean, safe, biocompatible, and environmentally 
friendly (Lashin et al., 2023; Shehabeldine et al., 2023). This process 
uses biological entities to reduce, cap, and stabilize metal or metal 
oxide precursors to form nanoparticles (NPs): bacteria, actinomycetes, 
yeast, fungi, algae, and plant extract (Dikshit et al., 2021; Albalawi 
et  al., 2022; Hashem and El-Sayyad, 2023; Hashem et  al., 2023c). 
Active metabolites, either secreted by microorganisms or found in 
plant extracts, facilitate the reduction and capping processes (Qamar 
and Ahmad, 2021). Proteins, amino acids, and enzymes are just a few 
of the many metabolites that fungi produce. These metabolites 
accelerate and improve the stability of nanoparticles produced in a 
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green way. Due to their great stability, these metabolites are well 
known (Saied et al., 2023b). Moreover, fungi can produce NPs both 
intra- and extracellularly, are low in toxicity, easy to scale up, have 
good heavy metal accumulators, and are easy to handle (Rana et al., 
2020; Abu-Elghait et al., 2021; Hashem et al., 2021). Endophytes are 
defined as organisms that live in tissues beneath the epidermal cell 
layers and have no obvious negative effects on the host (Yu et al., 2010; 
Hashem et al., 2023a). The most common microorganisms found as 
endophytes are fungi and bacteria. Fungi are the most commonly 
isolated endophytes. Fungal endophytes form a mutualistic or 
commensal relationship with their host plants. They colonize the 
intercellular spaces or live inside the plant cells, often within the roots, 
stems, leaves, or seeds (Alam et al., 2021). Fungal endophytes are used 
to synthesize silver nanoparticles (Netala et  al., 2016; Guilger-
Casagrande and Lima, 2019). Among the various types of metallic 
nanoparticles, silver nanoparticles are unique because they have a 
broad spectrum of antibacterial activity (Marathe et al., 2023). These 
nanoparticles may even penetrate bacterial cell walls and membranes 
to attach themselves. Cellular structures are damaged, signal 
transduction pathways are altered, and reactive oxygen species are 
generated (Agreles et al., 2022). Several studies have shown that silver 
nanoparticles may effectively suppress harmful bacteria in the medical 
and agricultural fields (Castillo-Henríquez et  al., 2020; Tufail and 
Liaqat, 2021; Husain et al., 2023). Due to their unique biological, 
chemical, and physical properties, Ag-NPs are helpful in many fields, 
involving chemical catalysis, optoelectronics, biomedicine, and other. 
Owing to their toxicity and possible risks to human health and the 
environment, biogenic synthesis techniques are becoming more 
popular (Lekha et al., 2021; Raj et al., 2021). This study aimed to 
biosynthesize Ag-NPs using endophytic Aspergillus hiratsukae for the 
first time. Also, to evaluate their antimicrobial activity as well as the 
potential degradation of hazardous dyes in contaminated water.

2 Materials and methods

2.1 Chemical and reagents

Silver nitrate (AgNO3) and sodium hydroxide (NaOH) of 99% 
purity were utilized as analytical grade chemicals in the current work 
and were bought from Sigma Aldrich in Cairo, Egypt. Both the 
Mueller Hinton agar and Malt Extract agar (MEA) media, which were 
bought ready-made from Himedia in Cairo, Egypt, were employed for 
antibacterial activity. Distilled water (dis. H2O) was used to conduct 
all biological processes.

2.2 Green synthesis of Ag-NPs

Endophytic Aspergillus hiratsukae (Accession No. MT089951) was 
isolated from the leaves of Avicennia marina and identified 
morphologically and genetically, as detailed in our previous study 
(Khalil et al., 2021). In 100 mL of malt extract broth (MEB) medium, 
two disks of A. hiratsukae were inoculated and then incubated for 
5 days at 28 ± 2°C with 150 rpm shaking. After the incubation period, 
the incubated MEB was centrifuged to extract the fungal biomass. The 
fungal biomass was resuspended for 48 h at 30 ± 2°C and 150 rpm 
shaking in 100 mL of distilled water. The previously mixed material 

was centrifuged at 10,000 rpm for 5 min to form AgNPs in a green 
manner. Fungal biomass filtrate was gathered and used (Al-Soub et al., 
2022). The final concentration of the solution was 4.0 mM after mixing 
100 mL of cell-free filtrate with silver nitrate. The mixture was left in 
the dark for 24 h at 28°C ± 2°C, with the pH adjusted to 10. Once the 
filtrate was dark brown, it was collected and rinsed with deionized 
water to remove any remaining impurities before being oven-dried for 
8 h at 200°C. The experiment was conducted under the same 
conditions as the controls, which included AgNO3 solutions and 
fungal biomass filtrate (Hassan et al., 2021).

2.3 Characterization of Ag-NPs

UV–Vis analysis was carried out to measure absorbance between 
300 and 800 nm using a UV–Vis spectrophotometer (JENWAY 6305 
spectrophotometer). The size and shape of Ag-NPs were characterized 
using transmission electron microscopy (TEM) (JEM1230, Japan, 
Akishima, Tokyo, 196–8558) (Hashem et al., 2023b). SEM–EDX was 
used to analyze the elemental compositions of Ag-NPs produced 
during biosynthesis. The crystalline structure of Ag-NPs was 
determined using X-ray diffraction (XRD) analysis performed with 
an X’Pert Pro diffractometer (Philips, Eindhoven, Netherlands). The 
values of 2θ were measured between 4° and 80°. The Debye–Scherrer 
equation was used to calculate the average size of Ag-NP (Thakar 
et  al., 2022). Furthermore, the size distribution of Ag-NPs in the 
colloidal solution was analyzed using dynamic light scattering (DLS) 
analysis. The material was tested using a tiny scattering spectrometer 
from Malvern Instruments Ltd. in Worcestershire called the Malvern 
Zetasizer Nanoseries. The polydispersity index (PDI) considers the 
homogeneity of the NPs solutions (Soliman et al., 2021). Alternatively, 
the functional groups associated with the stability, capping, and 
reduction of Ag-NPs in the fungal biomass filtrate were investigated 
using Fourier transform infrared (FT-IR) spectroscopy (Agilent 
System Cary 660 FT-IR Model). The 400–4,000 cm−1 range was used 
for the scanning.

2.4 Antimicrobial activity

The antimicrobial activity of Ag-NPs, silver nitrate, and fungal 
extract (FE) was evaluated against Escherichia coli ATCC 25922, 
Bacillus subtilis ATCC 6051, Staphylococcus aureus ATCC 25923, 
Candida albicans ATCC 90028, and A. brasiliensis ATCC 16404 using 
the agar well diffusion method. Bacterial suspensions with a 
concentration of 1.5 × 107 CFU/mL were individually prepared. These 
suspensions were inoculated into Muller Hinton agar media and 
aseptically poured into sterilized petri plates. The fungal suspensions 
were evenly dispersed onto agar Potato Dextrose Agar (PDA) plates. 
In each plate, four agar wells with a diameter of 8 mm were created 
using a cork borer, then 100 μL of Ag-NPs, silver nitrate, FE (fungal 
extract), SAM (Ampicillin/sulbactam)/ Fluc (Fluconazole) at 
concentrations of 1,000 μg/mL were transferred to wells separately, 
and incubated for 24/72 h at 37/30°C for bacterial and fungal strains, 
respectively. After that, the inhibition zone diameters were measured. 
Different concentrations of Ag-NPs, silver nitrate, and FE (1,000, 500, 
125, 62.5, 31.25, 15.62, 7.8, and 3.9 μg/mL) were used to detect MIC 
(Valgas et al., 2007).
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2.5 Decolorization of acid black 2 
(nigrosine) dye by Ag-NPs

The decolorization of nigrosine dye by biosynthesized Ag-NPs 
was studied at different concentrations (100, 150, and 200 mg/mL) 
over various contact times (30, 60, 120, 180, 240, and 300 min). The 
test was carried out in a 250 mL conical flask with 100 mL of 100 ppm 
nigrosine dye mixed with various Ag-NPs concentrations. The 
identical responses in a different portion of the experiment 
were carried out in the dark for a comparison examination. Prior to 
the experiment, the liquid was agitated for 30 min to achieve 
equilibrium between absorption and desorption. After each 
incubation period, 1.0 mL of the combination (nigrosine dye and NPs) 
was removed, centrifuged for 7 min at 5,000 rpm, and its optical 
density was assessed using a spectrophotometer (721 
spectrophotometers, M-ETCAL) to determine its optical density at the 
nigrosine dye’s maximum absorption band (λmax) (570 nm) 
(Kumawat et  al., 2019). The decolorization percentages (%) of 
nigrosine dye were calculated according to the following equation:  

   Decolorization percentages (%) = C Cf

C

0

0

−  × 100.

where C0 is the absorbance at zero time and Cf is the absorbance 
after a specific time t (min). To boost the dye adsorption even further, 
the catalyst’s reusability was examined through five cycles. The nano-
catalyst was used in the second cycle after being retrieved from the 
first cycle and having undergone three washes with distilled water to 
eliminate any leftover water.

2.6 Statistical analysis

The means of three separate replications were used to calculate all 
the findings. A statistical tool called SPSS v.17 was used to statistically 
analyze the data. With a p-value of 0.05 or less, the mean difference 
between the treatments was compared using the Tukey HSD test.

3 Results and discussion

3.1 Biosynthesis and characterization of 
Ag-NPs

The green synthesis of silver nanoparticles has various benefits 
compared to alternative synthesis methods, such as reduced 
manufacturing costs, decreased environmental pollution, lower 
toxicity, and enhanced biological compatibility (Nangare and Onkar, 
2020). Ag-NPs generated biologically have been shown to exhibit 
intriguing antibacterial and photocatalytic capabilities in recent years 
(El-Ansary et  al., 2023; Omran, 2023). The results of this study 
revealed that metabolites of A. hiratsukae can biosynthesize Ag-NPs, 
leading to enhance production, reduce aggregation, and yield smaller-
sized AgNPs (Alfryyan et  al., 2022). Aspergilli have the ability to 
synthesize various NPs such as Ag-NPs. The presence of metal 
precursors affected the color of the biomass filtrate, which was the first 
sign that NPs were being biosynthesized. Saied E. et al. (2023) utilized 
the extracellular extract of Rhizopus oryzae to synthesize Ag-NPs. 
Additionally, Ahmed and Dutta (2019) synthesized the AgNPs 

utilizing the supernatants of Trichoderma asperellum. Saied et  al. 
(2022a) successfully synthesized AgNPs using Cytobacillus firmus. 
According to Eid et al. (2020), Streptomyces laurentii biomass was used 
to biofabricate Ag-NPs. Furthermore, several studies focused on the 
biosynthesis of AgNPs using different biological extractions, like plant 
extract or microbial media (Shah M.Z. et al., 2021; Hamed and Kelany, 
2023). Additionally, Moges and Goud (2022) created Ag-NPs by using 
methanol and successive aqueous extracts of the underutilized berries 
and leaves of Hippophae salicifolia, which is grown in northeast India.

Ag-NPs have been characterized using physiochemical analysis 
and topographical examinations. Figure  1 shows the UV–visible 
spectra of Ag-NPs. The first indication of Ag-NPs production is a 
change in color to deep brown. The UV–Vis spectrophotometer 
investigation provided preliminary confirmation for Ag-NPs 
production. Variations in color intensity might be attributed to the 
surface plasmon resonance excitation of the synthesized nanoparticles 
(Abo-Elmagd et  al., 2022). The production of Ag-NPs through 
mycosynthesis was confirmed when a peak at 420 nm was detected in 
the Ag-NPs spectra. A similar observation was made by Balaraman 
et al. (2020), who identified a distinct peak of Ag-NPs at 420 nm by 
using the marine algae Sargassum myriocystum. Dara et al. (2020) 
synthesized a Chi-Ag-NPs composite and exhibited a peak at 419 nm. 
Alwhibi et  al. (2021) reported that Ag-NPs’ plasmon absorbance 
peaked at 450 nm. Conversely, higher maximum wavelength values 
are linked to lower Ag-NP concentrations, while lower average Ag-NP 
sizes are linked to higher concentrations (Awad et  al., 2022). 
Alkhathlan et al. (2020) reported that GE-Ag-1 showed an absorption 
peak at 430 nm, while NSE-Ag-1 showed an absorption peak at 
410 nm. The quality of the resulting NPs can be ascribed to the minor 
variation (~20 nm) in the positions of the UV peaks of AgNPs 
prepared using low concentrations of GE and NSE extracts.

The TEM data provided insightful information about the 
morphology, dimensions, and distribution of the Ag nanoparticles 
produced through biological methods. The TEM analysis showed that 
the Ag-NPs produced with the mycelial-free filtrate of A. hiratsukae 
were spherical in shape and varied in size, ranging from 16 to 31 nm. 
The nanoparticles were evenly distributed, and there was no indication 

FIGURE 1

UV–Vis absorption spectra of silver nanoparticles synthesized by A. 
hiratsukae.
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of particle aggregation or clumping, as shown in Figure 2A. Saied 
E. et al. (2023), who created Ag-NPs, reported the same outcome and 
discovered they were spherical with a 17–35 nm diameter. Alharbi and 
Alsubhi (2022), synthesized Ag-NPs with TEM imaging that were 
spherical with diameters of 27 nm. Based on a study conducted by 
El-fallal et  al. (2022), the TEM analysis revealed that the AgNPs 
synthesized by Agrocybe cylindracea exhibited a spherical shape and 
a range of sizes from 3.47 to 13.99 nm. In a recent study by Nguyen 
et al. (2020), it was found that the P.uri. AgNPs exhibited a range of 
sizes, from 4 to 52 nm, and predominantly had a spherical and oval 
shape. Additionally, Fouda et  al. (2022) synthesized Ag-NPs with 
spherical shapes, varying in size from 3 to 28 nm, with an average 
diameter of 12.5 ± 5.1 nm. Ag-NPs generated by the stem barks of the 
medicinal Pyrus pashia plant were analyzed for size and shape using 
TEM by Khanal et al. (2023). The average size of Ag-NPs was found 
to be  23.92 ± 7.04 nm, and they were found to be  spherical and 
polydispersed. The compounds found in A. hiratsukae extract may 
be used to biosynthesize Ag-NPs with unique structures. Furthermore, 
the modest size of Ag-NPs generated in this study presents an 
opportunity for a range of size-dependent biotechnological applications.

The DLS analysis was employed to ascertain the size and particle 
distribution of NPs in colloidal solutions, much like a microbiologist 
would do. Scattering intensities from time-dependent data can be used 
to determine the hydrodynamic diameter, just as a microbiologist 

would do. Understanding the role of capping and stabilizing agents 
and the electrical layers on nanoparticle surfaces, is essential for 
controlling the hydrodynamic diameter of these particles 
(Divyalakshmi and Thoppil, 2023). DLS is more appropriate for early-
stage aggregation monitoring because of its sensitivity to the presence 
of aggregates. The DLS analysis conducted in this study yielded an 
average size of 72 nm (70% volume) for the biosynthesized Ag-NPs 
(Figure 2B). According to Hashem et al. (2022b), the biosynthesized 
Ag-NPs had an average size of 32.7 nm and a size distribution 
histogram from 30 to 47 nm. The average size of the biosynthesized 
Ag-NPs, according to Saied E. et al. (2023), was 78 nm. The average 
diameter sizes of Ag-NPs and AgNPs-cis, using dynamic light 
scattering analysis, according to Alharbi and Alsubhi (2022), were 
found to be 249 and 260 nm, respectively. The polydispersity index 
(PDI) value was used to determine whether the colloidal NPs were 
homogeneous or heterogeneous (Soliman et  al., 2021). A 
homogeneous solution is characterized by a PDI number less than 0.4; 
while a value greater than 0.4 signifies a heterogeneous solution, 
reflecting the degree of homogeneity. During our investigation, a PDI 
value of 0.163 was recorded, denoting a high level of homogeneity.

FT-IR spectroscopy is commonly employed in the analysis of 
biomolecules that encompass nanoparticles and serve as capping and 
stabilizing agents. The filtrate derived from fungal biomass comprises 
proteins and enzymes that play a crucial role in the stability and 

FIGURE 2

(A) The TEM image of the Ag-NPs produced by A. hiratsukae revealed a spherical shape, and (B), the DLS analysis revealed the size distribution.
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production of nanoparticles (Li et  al., 2021). FT-IR analysis was 
utilized to explore the interaction between silver nanoparticles 
(AgNPs) and the supernatant of A. hiratsukae, as illustrated in 
Figure  3Ab. FT-IR spectra of the Ag-NPs synthesized through 
biosynthesis exhibited notable absorption peaks at 3,400, 2966, 1,642, 
1,409, 1,150, 966, 623, 509, and 411 cm−1 wavenumbers. Figure 3Aa 
displays the FT-IR spectra, which exhibit prominent absorption peaks 
at 3,463, 2,925, 2,499, 1,963, 1,533, and 916 cm−1. The peaks observed 
at 3,400 and 3,463 cm−1 wavenumbers can be attributed to the O-H 
stretching groups present in phenols and alcohols, and the N-H 
groups found in amino acids inside proteins, respectively (Fouda et al., 
2022). The peaks detected at 2,965 and 2,925 cm−1 indicate the 
vibrational stretching of C–H bonds in alkanes (Nefri and Djamaan, 

2020). Nevertheless, the N-H bending of amines coincided with the 
peak observed at 1,640 cm−1, which was attributed to the stretching 
vibrations of C=O and C=N bonds. The presence of C-N stretching in 
aromatic and aliphatic amines is evidenced by the peak observed at 
1,409 cm−1 (Iqbal et  al., 2022). The peak seen at 1,150 cm−1 can 
be attributed to the asymmetric stretching of the C–O–C bond, as well 
as the stretching of the C–O bond and the rocking motion of the NH2 
group in the polysaccharide groups (Al-Soub et  al., 2022). The 
1,533 cm−1 peak is associated with the stretching of the C=O bond in 
carboxylate salt, as well as the adsorption of CO3

2− and CO2 (Hashem 
et  al., 2022b). Amide IV (OCN) stretch bending in proteins was 
identified through spectral peaks observed at wavenumbers of 623, 
916, and 966 cm−1 (de Souza and Rodrigues, 2015). The protein stretch 

FIGURE 3

(Aa,b) FT-IR chart showing Ag-NPs made from Aspragillus hiratsukae and extra tact of the mycelial-free filtrate of A. hiratsukae. (B) Analysis of AgNPs 
using X-ray diffraction (XRD).
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band was observed at a wavenumber of 509 cm−1 (Salem et al., 2022). 
The calcinated Ag-NPs exhibited a peak at a wavenumber of 411 cm−1 
(Saied E. et  al., 2023). The data identified and confirmed several 
functional groups, including alkanes, alkenes, aliphatic and aromatic 
amines, and alkyls. The compounds mentioned above have a crucial 
role in the stabilization, capping, and reduction of Ag-NPs, and they 
may be identified within the cell-free filtrate of A. hiratsukae. These 
results are consistent with the findings of El-fallal et al. (2022), on 
Agrocybe Cylindracea and Agrocybe aegerita by Nagalakshmi (2015).

Figure 3B illustrates the X-ray diffraction (XRD) pattern of the 
Ag-NPs synthesized by a biological process. A total of four discrete 
peaks were seen at certain 2θ angles: 37.84°, 44.3°, 64.1°, and 77.56°. 
The peaks seen in the data correspond to the crystal planes (111), 
(200), (220), and (311), respectively. This suggests a favorable 
alignment between the formation of Ag-NPs and the crystalline phase 
of silver (Balaji et al., 2023; Saied E. et al., 2023). The detected peaks 
for various 2θ values exhibited a face-centered cubic morphology. 
Significantly, the distinct peak at 2θ = 37.8° (111) showed a 
considerable degree of alignment with the investigated facet (111), 
indicating a high purity level in the synthesized Ag-NPs. The average 
size of nanoparticles was determined using the Debye–Scherrer 
equation, based on the X-ray diffraction (XRD) data. The average size 
of the AgNPs was 37.96 nm, while the full width at half maximum 
(FWHM) value of their 2θ peak was measured to be 0.23111. In line 

with our observations, Nirmala and Sridevi (2021) reported that the 
average diameter of the nanoparticles synthesized from endophytic 
bacteria was measured to be  16.8 nm. Additionally, Kareem et  al. 
(2019) show five intense peaks in the X-ray diffractogram of the 
AgNPs synthesized using A. alternata. Sudarsan et  al. (2021). 
determined that the mean size of the synthesized nanoparticles 
derived from the endophytic bacteria Cytobacillus firmus was 
14.23 nm. AgNPs displayed a crystalline face-centered cubic (fcc) 
structure with an average size of approximately 49.3 nm (Sharma 
et al., 2022).

The morphologies of Ag-NPs formed during biosynthesis were 
analyzed using SEM. Figure 4A displays the results of the Scanning 
Electron Microscope (SEM) analysis conducted on the silver 
nanoparticles that were synthesized using a biological process. The 
findings of this study offer evidence of the nanoparticles’ small 
dimensions and spherical morphology, as identified through X-ray 
diffraction (XRD) analysis. Scanning electron microscopy reveals 
the presence of aggregate structure inside the powder particles. The 
observation was made that Ag-NPs tended to aggregate into small 
clusters, ultimately resulting in the formation of bigger particles. 
The outcome of this experiment yielded Ag-NPs that were 
consistent with prior research findings (Nirmala and Sridevi, 2021; 
M et al., 2022; Saied E. et al., 2023). Due to their excellent electrical 
conductivity, metal nanoparticles such as gold and silver can 

FIGURE 4

(A) SEM image of AgNPs. (B) EDX spectrum of the mycosynthesized Ag-NPs.
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FIGURE 5

Antibacterial and antifungal activity of Ag-NPs, AgNO3, Fungal extract (FE) and SAM toward E. coli, S. aureus, B. subtilis, C. albicans, and A. brasiliensis 
using agar well diffusion method.

be easily examined using a SEM. SEM cannot analyze the internal 
structure of materials. However, it can provide valuable 
information on the integrity and aggregation of particles 
(Osterberg et al., 2023). The EDX profile of the Ag-NPs, Figure 4B, 
indicates the presence of the Ag element. The Ag element is present 
at a 22.6% atomic percentage. Ag accounts for 64.2% of the total 
weight, while O makes up  35.7%. O has the greatest atom 
percentage (77.3%). According to Hikmet and Hussein (2021), the 
EDX analysis revealed that the sample contained a high weight 
percentage of silver (82.4%). Additionally, the graph of EDX 
displayed signals corresponding to atoms of gold, carbon, oxygen, 
and chlorine.

3.2 Antimicrobial activity

The antimicrobial efficacy of silver nanoparticles has been 
evaluated for the control of both multidrug-resistant (MDR) and 
non-MDR variants of bacteria, fungi, and viruses In the current 
study, the antimicrobial activity of mycosynthesized Ag-NPs was 
assessed, as shown in Figure 5 and Table 1. Results revealed that 
the mycosynthesized Ag-NPs exhibited promising antibacterial 
activity against all bacterial tested strains compared to the 
standard antibiotic Ampicillin/sulbactam (SAM). The inhibition 
zones of Ag-NPs toward E.coli, S. aureus and B. subtilis were 
19.3 ± 1.5, 14.9 ± 1.1, and 22.0 ± 1.0 mm, respectively. Furthermore, 
antibacterial results showed that both E.coli and B. subtilis were 

the most sensitive to Ag-NPs where the MIC was 62.5 μg/mL for 
each one, while as S. aureus was the least sensitive, where the MIC 
was 250 μg/mL. On the other hand, fungal extract (FE) and 
AgNO3 did not give any inhibition against all tested strains except 
S. aureus which was weakly sensitive to FE where the inhibition 
zone was 10.2 ± 1.4 mm. As well, Ag-NPs showed weak antifungal 
activity toward unicellular and multicellular fungi, where 
inhibition zones and MIC were (12.2 ± 1.4 and 10.3 ± 0.6 mm) and 
(500 and 1,000 μg/mL) against C. albicans and A. brasiliensis, 
respectively. Conversely, both FE and AgNO3 exhibited no activity 
toward C. albicans and A. brasiliensis. Previous studies reported 
that endophytic fungi could biosynthesize Ag-NPs, which are used 
for different biological applications (Hu et al., 2019; Sharma et al., 
2022). Netala et al. (2016) used Aspergillus versicolor ENT7 for the 
mycosynthesis of Ag-NPs, which exhibited promising antibacterial 
as well as antifungal activity. Ahluwalia et al. (2014) synthesized 
Ag-NPs using Trichoderma harzianum, which showed 
antibacterial activity against S. aureus and Klebsiella pneumoniae. 
Balakumaran et  al. (2015) demonstrated the efficacy of the 
potential of silver nanoparticles synthesized using the fungus 
Guignardia mangiferae in controlling gram-negative bacteria The 
effects observed of Ag-NPs included increased permeability, 
modification of membrane transport, and the release of 
nucleic acids.

The antimicrobial properties of Ag-NPs are associated with 
four distinct mechanisms. To begin with, it should be noted that 
silver nanoparticles tended to cling to both the cell wall and 

https://doi.org/10.3389/fmicb.2024.1345423
https://www.frontiersin.org/journals/microbiology


Saied et al. 10.3389/fmicb.2024.1345423

Frontiers in Microbiology 09 frontiersin.org

membrane. Furthermore, silver nanoparticles can infiltrate cellular 
structures and induce harm to several intracellular components, 
including mitochondria, vacuoles, and ribosomes, as well as 
biomolecules such as proteins, lipids, and DNA. Furthermore, the 
cellular toxicity and oxidative stress induced by Ag-NPs can 
be attributed to their ability to generate reactive oxygen species 
(ROS) and free radicals. Additionally, Ag-NPs possess the ability 
to modulate signal transduction pathways. In addition to those 
above four established methods, silver nanoparticles also exert 
influence on the immune system of human cells by regulating the 
inflammatory response, thus contributing to the suppression of 
microbes (Tian et al., 2007).

3.3 Ag-NPs-mediated photocatalytic 
nigrosine dye degradation

Synthetic dyes are widely used in various industries, such as 
textiles, paper, adhesives, cosmetics, food, ink, medicines, etc. 
Heterocyclic azo dyes, such as nigrosine dye, are commonly released 
into the environment through effluents from the textile industry. It 
reduces the amount of oxygen on the water’s surface, impacting 
aquatic life. It is known to be toxic to humans and a hazard to the 
environment (Tripathi et al., 2021). Therefore, effluents’ nigrosine dye 
must degrade to eliminate its harmful effects. Ag-NPs of the 
appropriate size and shape possess a significant surface area-to-
volume ratio, rendering them efficient catalysts for the decomposition 
of dyes (David and Moldovan, 2020; Rani et  al., 2020). The 
degradation process can be carried out through photosensitization or 
direct application of high-energy light sources to the nanomaterials’ 
surface. Light activates nanoparticles, causing electrons to transition 
from the valence band to the conduction band. This process, known 
as photoexcitation, is crucial in direct photocatalytic degradation 
(Mehtab et al., 2022). This study aimed to explore the decolorization 
of nigrosine dye using Ag-NPs at various concentrations (1.0, 1.5, and 
2.0 mg/mL) and contact times (30.0, 60.0, 120.0, 180.0, 240.0, and 
300.0 min) under different lighting conditions. The findings indicated 
that the experiment’s duration and concentration influenced the 
catalytic activity of Ag-NPs. It’s fascinating to observe that the 
breakdown of Ag-NPs occurred faster when exposed to sunlight than 
when exposed to darkness (Figures 6A–C). Compared to the control, 
the decolorization percentages at 1.0 mg mL−1 of Ag-NPs were 
significantly higher under sunlight and dark conditions after 300 min. 
After 30 min, the decolorization percentages at 1.5 mg ml−1 of Ag-NPs 
increased to 30% ± 0.43, and after 300 min, they reached 80.7% ± 0.77. 
Under sunlight, a remarkable decolorization rate of 93.3% ± 0.95% 

was achieved within 300 min at a concentration of 2.0 mg ml−1 of 
Ag-NPs. However, in the absence of light, the decolorization rate 
dropped to 51.8% ± 0.83% at the same NPs concentrations and time 
duration. Based on the results, it was determined that a contact time 
of 300 min and a concentration of 2.0 mg ml − 1 of Ag-NPs yielded 
the most favorable outcome. Fouda et  al. (2021) state that light 
stimulators must be present for biosynthesized MgO-NPs to degrade 
textile effluent effectively. According to Saied et al. (2022b) hematite 
(α-Fe2O3) nanoparticles were found to remove 97% of the CV dye 
after 150 min. The maximum dye decolorization is achieved by 
increasing the concentration of Ag-NPs, as their surface provides 
more adsorption sites (Ali and Khan, 2020). According to a study 
conducted by Amirtham et  al. (2023), it was discovered that the 
CuNPs synthesized by myco exhibited different levels of degradation 
efficiency for various dyes. The degradation rates of the dyes varied 
significantly. The fast green dye degraded at a higher rate, the Congo 
red dye degraded at a moderate rate, and the brilliant blue dye 
degraded at a very low rate. Pure or single dyes’ decolorization and 
degradation times were compared to those of complex solutions 
consisting of multiple dye types or unknown compounds (Al-Askar 
et al., 2023). This study’s photocatalytic activities are due to sunlight 
stimulators activating biosynthesized Ag-NPs rather than the 
dark condition.

3.3.1 Prospective mechanism
The results obtained indicate that the decolorization of nigrosine 

dye using AgNPs under light irradiation was more effective than that 
observed in dark conditions. The researchers proposed three distinct 
methods for removing dyes’ color using nanomaterials. One approach 
is to either decrease the dye in an alkaline solution or transform it into 
its white indigo (leuco) form. Due to the extensive surface area of 
nanoparticles and the wide range of dyes that can be eliminated through 
this process, another mechanism involves the dye being adsorbed onto 
the surface of nanoparticles. According to the current work, Ag-NPs 
may effectively remove the nigrosine dye at low light levels through the 
second method (Raghavendra et al., 2022). The third process is the 
degradation of dyes on the surface of the NPs. Considering the detection 
of hole electrons on the surface, which result from the electron transition 
induced by the SPR, this mechanism appears to be the most suitable for 
the Ag-NP-mediated degradation of nigrosine dye under light 
irradiation (Vieira et al., 2023). When electrons from the valence band 
(VB) are excited to the conducting band (CB) in the presence of light, 
electron–hole pairs [Ag (eCB and h+VB)] are formed (Scheme 1). When 
h+VB and H2O combine, hydroxyl radicals (•OH) and H+ are formed, 
while when O2 is reduced by eCB, superoxide radicals (•O2

─) and 
hydrogen peroxide radicals (•OOH) are formed. Subsequently, the 

TABLE 1 Inhibition zones and MIC of mycosynthesized AgNPs and other start materials.

Fungal strain AgNPs FE AgNO3 SAM/Fluc

IZ MIC IZ MIC IZ MIC IZ MIC

E. coli 19.3 ± 1.5a 62.5 ND ND ND ND 10.5 ± 0.9b 1,000

S. aureus 14.9 ± 1.1b 250 10.2 ± 1.4a 1,000 ND ND 19.5 ± 1.2a 125

B. subtilis 22.0 ± 1.0a 62.5 ND ND ND ND ND ND

C. albicans 12.2 ± 1.4bc 500 ND ND ND ND ND ND

A. brasiliensis 10.3 ± 0.6c 1,000 ND ND ND ND ND ND

FE, SAM and Fluc mean Fungal extract, Ampicillin/sulbactam and Fluconazole. Letters a, b, c means significance power.
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FIGURE 6

(A–C) Dye decolorization of nigrosine dye at varying Ag-NPs concentrations, under different stimulation conditions (dark and sunlight), and different 
contact times. (D) The image of nigrosine dye decolorization. Letters a, b, c means significance power.

SCHEME 1

Photo-degradation mechanism of nigrosine dye by Ag-NPs synthesized by A. hiratsukae.
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nigrosine dye reacts with the various active radical species (•OH, •O2
−, 

and •OOH), thereby enhancing the dye’s degradation.

3.3.2 Recyclability of Ag-NPs
Evaluating the photostability and reusability of the catalysts is 

essential to making the process economically viable (Samuel et al., 
2022). The investigation in this study focused on evaluating the 
stability of biologically synthesized AgNPs as a biocatalyst for the 
recycling of nigrosine dye. The stability assessment was conducted 
under optimal circumstances, as depicted in Figure 6 (2.0 mg ml−1 
biocatalyst concentration, 300 min of contact duration in the presence 
of photocatalytic sunlight). Following the centrifugation of the 
catalyst from each cycle, any residual water was eliminated through 
a series of three deionized water rinses, followed by a drying period 
of 1 h at a temperature of 120°C. Subsequently, the desiccated catalyst 
was utilized as a bioinoculant in the subsequent iteration. When the 
process was performed for four cycles, the decolorization percentages 
of the nigrosine dye were decreased to up to 85% ± 1.02%, as shown 
in the data in Figure 7. The reduced decolorization of 70% ± 0.99% is 
shown in cycle five. Saied et al. (2022b) reported that upon repeating 
the process for the fourth cycle, the decolorization percentages of 
crystal violet dye decreased to as low as 63.5% ± 1.04%. According to 
Shan et al. (2020), there was very little activity loss, and the Ag/TiO2/
biochar composite catalysts showed good stability for up to five 
cycles. As stated by Paramesh et al. (2021), the recovered catalyst 
exhibited comparable activity for up to five cycles, and the Ag-NPs 
were recovered in good yield. The progressive degradation of catalyst 
performance was primarily caused by metal leaching concentration, 
adsorption of intermediate products on catalytic sites, and 
degradation of catalytic sites (Chen et al., 2022).

4 Conclusion

In conclusion, we have for the first time demonstrated a simple 
and cost-effective method for preparing biogenic Ag-NPs using the 

mycelial-free filtrate of Aspergillus hiratsukae. Utilizing A. hiratsukae 
offers benefits such as ease of cultivation. The biosynthesized AgNPs 
were characterized using a suite of analytical techniques, including 
UV–visible spectroscopy, X-ray diffraction (XRD), transmission 
electron microscopy (TEM), Fourier-transform infrared (FT-IR) 
spectroscopy, scanning electron microscopy-energy dispersive X-ray 
(SEM–EDX) analysis, and dynamic light scattering (DLS). The 
maximum SPR for biosynthesized AgNPs was observed at 420 nm. 
The TEM image shows particle diameters ranging from 16 to 31 nm. 
DLS analysis shows the size distribution, and the average particle size 
was 72 nm. Additionally, a crystalline nature with an average size of 
37.96 nm was detected by XRD. The EDX profile of the Ag-NPs 
indicates the presence of the Ag element with an atomic percentage of 
22.6%. The optimal conditions for the mycosynthesis of Ag-NPs were 
pH 10, 4 mM of the precursor, and 24 h. AgNPs also demonstrated 
antimicrobial activity against fungi that are unicellular, multicellular, 
Gram-positive, and Gram-negative. The minimum inhibitory 
concentrations (MICs) of the synthesized Ag-NPs ranged from 62.5 
to 250 μg/mL, demonstrating remarkable antibacterial effects on 
S. aureus, B. subtilis, and E. coli. The minimum inhibitory 
concentrations (MIC) of A. brasiliensis and C. albicans are 500 and 
1,000 μg/mL, respectively. Also, the maximum photocatalytic 
nigrosine dye degradation of 93% was done at 2.0 mg ml─1 biocatalyst 
concentration and 300 min of contact duration in the presence of 
photocatalytic sunlight. The findings reveal promising potential for 
employing photocatalytic dye degradation activity in environmental 
bioremediation, effectively removing harmful dyes from various 
industrial effluents.
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