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Causal e�ects of gut microbiota
on the prognosis of ischemic
stroke: evidence from a
bidirectional two-sample
Mendelian randomization study

Anning Zhu†, Peng Li†, Yuzhou Chu†, Xiuxiang Wei,

Jiangna Zhao, Longfei Luo, Tao Zhang* and Juntao Yan*

Department of Tuina, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine,

Shanghai University of Traditional Chinese Medicine, Shanghai, China

Background: Increasing research has implicated the possible e�ect of gut

microbiota (GM) on the prognosis of ischemic stroke (IS). However, the

precise causal relationship between GM and functional outcomes after IS

remains unestablished.

Methods: Data on 211 GM taxa from the MiBioGen consortium and data on

prognosis of IS from the Genetics of Ischemic Stroke Functional Outcome

(GISCOME) network were utilized as summary-level data of exposure and

outcome. Four kinds of Mendelian randomization (MR) methods were carried

out to ascertain the causal e�ect of GM on functional outcomes following IS. A

reverse MR analysis was performed on the positive taxa identified in the forward

MR analysis to determine the direction of causation. In addition, we conducted

a comparative MR analysis without adjusting the baseline National Institute of

Health Stroke Scale (NIHSS) of post-stroke functional outcomes to enhance

confidence of the results obtained in the main analysis.

Results: Four taxa were identified to be related to stroke prognosis in both

main and comparative analyses. Specifically, genus Ruminococcaceae UCG005

and the Eubacterium oxidoreducens group showed significantly negative e�ects

on stroke prognosis, while the genus Lachnospiraceae NK4A136 group and

Lachnospiraceae UCG004 showed protective e�ects against stroke prognosis.

The reverse MR analysis did not support a causal role of stroke prognosis in GM.

No evidence of heterogeneity, horizontal pleiotropy, and outliers was found.

Conclusion: This MR study provided evidence that genetically predicted GM

had a causal link with post-stroke outcomes. Specific gut microbiota taxa

associated with IS prognosis were identified, which may be helpful to clarify the

pathogenesis of ischemic stroke and making treatment strategies.
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Introduction

Stroke remains a severe health problem that causes death and

long-term disability worldwide, resulting in increased economic

and social burden (Herpich and Rincon, 2020). More importantly,

such negative impact of stroke will increase as people age across the

globe (Murray and Lopez, 2013). Stroke is usually classified into two

types: ischemic and hemorrhagic. Ischemic stroke (IS) is the most

prevalent one, accounting for approximately 70%−85% of all stroke

cases globally (Pluta et al., 2021; DeLong et al., 2022). At present,

effective treatments targeting IS, such as thrombolytic therapy (Li

et al., 2021; Zhao et al., 2022), thrombectomy (Winkelmeier et al.,

2023), neuroprotective agents (Paul and Candelario-Jalil, 2021),

and early rehabilitation (Gittler and Davis, 2018; Geng et al., 2022),

seem to be related to a better functional outcome.

Recently, increasing evidence indicated that the outcome of

IS can also be influenced by gut microbiota (GM). For example,

animal model-based studies found that altering the gut microbiome

of aged mice after experimental stroke through transplanting

youthful microbiota can reverse the poor recovery in aged stroke

mice (Spychala et al., 2018; Lee et al., 2020). Another animal study

also proved that the cerebral infarct size and post-stroke outcomes

were impacted by transplantation of GM,whichwas associated with

the trimethylamine-N-oxide (TMAO) pathway (Zhu et al., 2021).

Furthermore, some studies reported the relationship between the

composition of GM and the prognosis of human stroke. An

observational study reported that Christensenellaceae_R-7_group

and norank_f_Ruminococcaceae were positively correlated with

the modified Rankin scale (mRS) at 1 month, which was used

to evaluate the stroke outcome, while genus Enterobacter was

negatively correlated with the mRS (Li et al., 2019). Another case–

control study which defined the mRS score of ≥ 3 at 3 months

as a poor functional outcome also analyzed the differences of

microbiota composition between the outcome groups after stroke,

and the results showed that the group with poor outcomes had

a higher abundance of Ruminococcaceae and Prevotella and a

lower abundance ofAnaerococcus, Blautia,Dialister,Aerococcaceae,

Propionibacterium, Microbacteriaceae, and Rothia compared with

the group with good outcomes (Chang et al., 2021). Although

the above two research studies confirmed the association between

GM and IS functional outcomes, the results did not seem to be

entirely consistent, maybe because of the non-uniform functional

outcome indicators. In addition, it is uncertain whether these

associations are causal, given that the evidence obtained mainly

Abbreviations: IS, ischemic stroke; GM, gut microbiota; TMAO,

trimethylamine-N-oxide; mRS, modified Rankin scale; MR, Mendelian

randomization; NIHSS, National Institute of Health Stroke Scale; GWAS,

genome-wide association study; RCT, randomized controlled trial; SNP,

single-nucleotide polymorphism; IV, instrumental variable; GISCOME,

Genetics of Ischemic Stroke Functional Outcome; LD, linkage disequilibrium;

IVW, Inverse variance weighted; InSIDE, instrument strength is independent

of direct e�ect; FDR, false discovery rate; BMI, body mass index; CI,

confidence interval; OR, odds ratio; HDL-C, high-density lipoprotein

cholesterol; MSD, maternal sleep deprivation; LPS, lipopolysaccharide; HFD,

high-fat diet; IEB, intestinal epithelial barrier; BBB, blood–brain barrier; SCFA,

short chain fatty acid; T2DM, type 2 diabetes mellitus.

from observational studies may result in potential bias in results

due to reverse causation and residual confounding.

Mendelian randomization (MR) is an analytic method based

on the summary data of genome-wide association study (GWAS)

to establish the causality between exposure and outcome (Sleiman

and Grant, 2010; Sekula et al., 2016). Given that genetic variants,

such as single-nucleotide polymorphisms (SNPs), are used as

proxies for the modifiable environmental factors (exposure) under

investigation, the MR method has the advantage of reducing

potential bias from confounding factors and reverse causation

because of the random assignment of alleles during human gamete

formation and the perpetually immutable genotype determined

before birth (Sekula et al., 2016). Consequently, with the available

GWAS data over the last decade, MR studies have been widely used

to analyze the causal association between GM and diseases (Smith

and Ebrahim, 2003; Wang et al., 2018; Kurilshikov et al., 2021).

A newly published report has usedMR to reveal the causal effect

of GM on the risk of IS subtypes (Meng et al., 2023). However,

to date, MR studies about the causal inference between GM and

IS prognosis remain unavailable. Furthermore, conducting large-

scale longitudinal cohort studies or randomized controlled trials

(RCTs) currently is unfeasible. In this context, we performed this

MR study using the genetic variation associated with GM to assess

their possible causal relationship with IS functional outcomes.

Methods

Study design

This two-sample MR study was designed to explore the

causal relationship between genetically predicted GM and

functional outcomes after IS. The flowchart of this study is shown

in Figure 1. The analysis results are presented in accordance

with the Strengthening the Reporting of Observational Studies

in Epidemiology-Mendelian Randomization (STROBE-MR)

guidelines, which is recommended for this study type (Skrivankova

et al., 2021) (Supplementary Table S7).

Data sources

GWAS data on GM and functional outcomes after IS were

acquired from the MiBioGen consortium and the Genetics of

Ischemic Stroke Functional Outcome (GISCOME) network,

respectively. Notably, populations from both exposure and

outcome cohorts were independent and non-overlapping.

Moreover, most individuals involved were of European descent,

contributing to decreased bias resulting from population

stratification. The MiBioGen study was the largest-scale genome-

wide meta-analysis of GM to date, identifying a total of 211 taxa

from 18,340 individuals (13,266 of European ancestry) of 24

cohorts (Wang et al., 2018). In this study, 196 taxa (comprising of

9 phyla, 16 classes, 20 orders, 32 families, and 119 genera) were

ultimately retained and used owing to 15 unknown taxa being

excluded. The GISCOME network included 6,021 IS individuals of

mainly European ancestry from 12 population-based cohorts and

defined mRS score at 3 months after IS as the primary outcome
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FIGURE 1

Flowchart of Mendelian randomization analysis. GWAS, genome-wide association study; GM, gut microbiota; IS, ischemic stroke; GISCOME,

Genetics of Ischemic Stroke Functional Outcome; IVs, instrumental variables; SNPs, single-nucleotide polymorphisms; LD, linkage disequilibrium;

IVW, inverse variance weighted; MR, Mendelian randomization.
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(Soderholm et al., 2019). A dichotomized mRS at 3 months of 0–2

(n = 3,741) indicates a better functional outcome and 3–6 (n =

2,280) indicates a worse functional outcome. Data on IS prognosis

we used in main MR analysis was adjusted for age, sex, ancestry,

and baseline NIHSS. Besides, we conducted a comparative analysis

without adjusting baseline NIHSS.

Instrumental variables selection

Choosing genetic variants meeting three key assumptions

(Figure 2) as valid IVs is fundamental to obtain a reliable and robust

conclusion on causal inference. Valid IVs must be: (i) significantly

associated with the exposure (the relevance assumption); (ii)

independent of any confounding factors related to the exposure

or the outcome (the independence assumption); (iii) associated

with the outcome only through the exposure rather than any

other ways (the exclusion restriction criteria) (Davies et al., 2018;

Carter et al., 2021). Rigorous criteria and steps (Figure 1) were

performed as below to obtain the optimal IVs. First, SNPs related

to GM were identified as potential IVs under a significance level

(P < 1 × 10−5) (Li C. et al., 2022). Second, SNPs with the

lowest p-value were eventually retained by performing a linkage

disequilibrium (LD) analysis with r2 < 0.001 and clumping distance

= 10,000 kb based on the data of European samples from the

1,000 Genomes Project. Third, SNPs associated with the outcome

under the significance level of P < 5 × 10−5 were removed after

extracting the corresponding information of the selected SNPs from

the GWAS outcome data. Fourth, palindromic and ambiguous

SNPs were removed during the harmonizing process. Fifth, weak

IVs referring to SNPs with F-statistics <10 were excluded. The F-

statistics was calculated using the formula: F = (beta/se)2. Finally,

SNPs significantly associated (P < 5 × 10−8) with confounding

factors were checked through the PhenoScanner GWAS database

and were manually removed. Meanwhile, the MR Steiger test was

used to ensure the directional accuracy of the causality for each IV.

Only SNPs that were retained through the above screening steps

can be finally used for the subsequent MR analysis.

MR analysis

Four different methods were used for this bidirectional

MR study to explore the causal relationship between GM and

IS functional outcomes. Inverse variance weighted (IVW) was

conducted as the primary analysis approach, complemented by

the MR-Egger, weighted median, and weighted mode methods

(Long et al., 2023). IVW can provide unbiased causal results in

the case of the balanced horizontal pleiotropy or no horizontal

pleiotropy (Hemani et al., 2018). Under the assumption that

instrument strength is independent of direct effect (InSIDE),

MR-Egger regression could provide evidence of no horizontal

pleiotropy and a consistent result with IVW if the intercept equals

zero (Bowden et al., 2015). The efficiency of weighted median is

similar to IVW if up to 50% of the weights is from valid IVs

(Bowden et al., 2016). The weighted mode method is proved to

have fewer biases than MR-Egger regression if InSIDE assumption

is falsified (Li P. et al., 2022). As a whole, if the results of the above

methods are inconsistent, the results of IVW will be given priority.

To address multiple comparisons (196 exposures), p-values of

the IVW method have been adjusted by false discovery rate (FDR)

correction. PFDR < 0.05 was considered to indicate a significant

association (Xu et al., 2021; Gu et al., 2023).

Sensitivity analysis

Sensitivity analysis for potential heterogeneity and horizontal

pleiotropy have also been performed to detect the robustness of

causal inference results. The Cochran’s Q test with an insignificant

P value (P > 0.05) was defined as having no heterogeneity. The

MR-Egger intercept test with an insignificant P value (P > 0.05)

indicated no horizontal pleiotropy. Furthermore, the MR-PRESSO

test was performed to eliminate the effect of horizontal pleiotropy

by re-analyzing it after removing pleiotropic SNPs. The leave-one-

out analysis was applied to rule out potential pleiotropy driven by

a single SNP by excluding one instrumental SNP each time and

repeating the IVW analysis.

All statistical analyses, including the MR analysis and the

sensitivity analysis, were performed using TwoSampleMR and

MRPRESSO packages in R (version 4.2.1). In addition, ggplot2

package in R was used for data visualization.

Results

IV selection

We first obtained 196 taxa at the phylum, class, order,

family, and genus levels after excluding 15 unknown taxa

(Supplementary Table S1). Subsequently, several screening steps

mentioned above were implemented. Confounding factors, such as

smoking (Zhang et al., 2022), migraine (Wang et al., 2023), frailty

(Cai et al., 2023), depression (Gill et al., 2019), diabetes (Lau et al.,

2019), body mass index (BMI), and insomnia (Zhang et al., 2023),

were determined by reviewing the literature.Wemanually removed

35 SNPs, and a total of 2038 SNPs from 196 taxa were eventually

chosen as IVs (Supplementary Table S2).

Causal e�ects of GM on functional
outcomes after IS

The main IVW results of 196 GM taxa in the forward MR

analysis were shown in the lollipop plot in Figure 3. A total of

13 taxa which have the possibility of causal associations with the

functional outcome after IS were initially selected. We further

excluded class Verrucomicrobiae, family Verrucomicrobiaceae,

genus Akkermansia, genus Lachnospiraceae ND3007 group, genus

Ruminococcaceae UCG013, order Verrucomicrobiales, and phylum

Cyanobacteria from the analysis results because of the inconsistent

direction of effect estimates produced by the four MR methods

(Supplementary Table S3). Finally, a total of six significant GM taxa

were obtained. The Forest plot of four analyses is shown in Figure 4.

Based on the results of the IVW analysis, genus Ruminococcaceae
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FIGURE 2

Three key assumptions of Mendelian randomization analysis. IVs, instrumental variables; SNP, single-nucleotide polymorphism; LD, linkage

disequilibrium; IS, ischemic stroke.

UCG005 (odds ratio [OR] = 1.842, 95% confidence interval

[CI] 1.210–2.804, P = 0.004, PFDR = 0.017) and the genus

Eubacterium oxidoreducens group (OR = 1.771, 95% CI 1.105–

2.837, P = 0.018, PFDR = 0.026) were demonstrated to have a

positive correlation with worse functional outcomes after IS. Family

Peptostreptococcaceae (OR= 0.635, 95% CI 0.413–0.975, P= 0.038,

PFDR = 0.046), the genus Lachnospiraceae NK4A136 group (OR

= 0.653, 95% CI 0.427–0.997, P = 0.048, PFDR = 0.048), genus

Lachnospiraceae UCG004 (OR = 0.493, 95% CI 0.292–0.834, P

= 0.008, PFDR = 0.017), and genus Odoribacter (OR = 0.399,

95% CI 0.208–0.766, P = 0.006, PFDR = 0.017) were negatively

correlated with worse functional outcomes after IS. According

to the MR estimates of the weighted median, genus Odoribacter

(OR = 0.377, 95% CI, 0.154–0.920, P = 0.032) was considered as

protective factors for functional outcomes after IS, whereas genus

Ruminococcaceae UCG005 (OR = 1.895, 95% CI 1.068–3.362, P

= 0.029) and the genus Eubacterium oxidoreducens group (OR

= 1.809, 95% CI 1.068–3.270, P = 0.0499) were considered as

risk factors (Figure 4). The results of the sensitivity analysis for

six significant taxa show no evidence of horizontal pleiotropy and

heterogeneity (Supplementary Table S4). The MR-PRESSO global

test (P> 0.05) indicated no outliers in the results. Furthermore, the

leave-one-out analysis did not provide any evidence that one single

SNP was responsible for the inferred causal relationship between

GM and functional outcomes after IS (Figure 5). The results of the

above analysis confirmed the accuracy and robustness of causal

inference of genetically predicted GM and functional outcomes

after IS.

In addition, the positive results of the analysis without

adjustment for the baseline NIHSS were used as a comparison.

Notably, we obtained five significant taxa (Figure 4), four

of which had similar results to the main analysis, and no

evidence of pleiotropy, heterogeneity or outliers were found

(Supplementary Table S4). The results of leave-one-out analysis

from the comparative analysis are presented in Figure 5. Similar to

the main IVW analysis, genus Ruminococcaceae UCG005 (OR =

1.842, 95% CI 1.210–2.804, P= 0.004, PFDR = 0.011) and the genus

Eubacterium oxidoreducens group (OR = 1.913, 95% CI 1.275–

2.871, P = 0.002, PFDR = 0.009) showed a positive correlation

with the worse prognosis after IS, whereas genus Lachnospiraceae

NK4A136 group (OR = 0.688, 95% CI 0.473–0.999, P = 0.049,

PFDR = 0.049) and genus Lachnospiraceae UCG004 (OR = 0.612,

95% CI 0.386–0.970, P = 0.037, PFDR = 0.046) showed a negative

correlation with worse prognosis after IS. GenusOscillospira (OR=

0.605, 95% CI 0.385–0.949, P = 0.029, PFDR = 0.046) also showed

a negative correlation with the poor outcome in the comparative

analysis, which is different from Family Peptostreptococcaceae and

genus Odoribacter in the main analysis. In terms of risk factors

for functional outcomes after IS, the weighted median method

produced results similar to themain analysis, further suggesting the

confidence of genus Ruminococcaceae UCG005 (OR = 1.895, 95%

CI 1.094–3.284, P = 0.023) and genus Eubacterium oxidoreducens

group (OR= 1.776, 95% CI 1.022–3.086, P = 0.042) as risk factors.

However, for protective factors, the weighted median method

yielded a different result than the main analysis for the genus

Oscillospira (OR= 0.506, 95% CI, 0.289–0.886, P = 0.017).

Causal e�ects of functional outcomes after
IS on GM

We also performed a reverse MR analysis on seven positive

taxa that were identified to be causally related to functional

outcomes after IS in the forward MR analysis to explore

the direction of causation. The reverse MR analysis showed

no suggestive causal association between prognosis of IS and

GM (Supplementary Table S5). Additionally, the results of the

sensitivity analysis did not provide any evidence of horizontal

pleiotropy and heterogeneity (Supplementary Table S6).

Frontiers inMicrobiology 05 frontiersin.org

https://doi.org/10.3389/fmicb.2024.1346371
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Zhu et al. 10.3389/fmicb.2024.1346371

FIGURE 3

Lollipop plot was constructed to illustrate the outcomes of the IVW analysis concerning the impact of 196 gut microbiota (GM) taxa on functional

outcomes after ischemic stroke (IS). In this plot, positive beta values are represented in purple, while negative beta values are represented in pink.

Dashed lines positioned above the plot indicate p-values below the 0.05 threshold. Taxa that achieved statistical significance are explicitly labeled in

the plot.

Discussion

To our knowledge, this is the first MR analysis, overcoming

environmental confounding and reverse causation, to investigate

the causal effect of genetically determined gut microbiota on

functional outcomes after ischemic stroke. Evidence from this

study supported a causal association between the abundance

of specific bacterial traits and the prognosis of IS. However,

positive findings in this study were mainly at the genus level,

and no causal associations between GM and IS prognosis at

the level of the phylum, class, and order were found. Strikingly,

genus Ruminococcaceae UCG005 and the genus Eubacterium

oxidoreducens group showed significantly negative effects on

stroke prognosis, while genus Lachnospiraceae NK4A136 group

and genus Lachnospiraceae UCG004 showed protective effects

against stroke prognosis in both main and comparative IVW

analysis. Additionally, although the results of the main and

comparative weighted median analyses were inconsistent in

terms of protection factors, genus Ruminococcaceae UCG005

and genus Eubacterium oxidoreducens group as risk factors for

poor prognosis of IS were indisputable. We also performed a

reverse MR analysis of these positive taxa, and the results did

not support a causal effect of post-stroke prognosis on these

taxa. These findings may provide important implications for the

discovery of novel biomarkers in future IS experiments and provide

prevention and therapeutic strategies targeting dysbiosis of specific

GM taxa.

Previous research found that Ruminococcaceae UCG005

increased in severe stroke patients who usually have a worse stroke

outcome (Li et al., 2019). This is consistent with our research.

A network analysis suggested that Ruminococcaceae UCG005 was

one of the genera driving the progress of the type 2 diabetes in a

Mexican cohort (Esquivel-Hernandez et al., 2023). An animal study

reported a significantly negative correlation of Ruminococcaceae

UCG005 with high-density lipoprotein cholesterol (HDL-C) and

a positive correlation with body weight (Qin et al., 2022). It

is well known that abnormal glucose and lipid metabolism

are the dominant causes of cerebrovascular diseases. Genus

Ruminococcaceae UCG005 may influence the stroke prognosis

by the pathway of glucose and lipid metabolism. Furthermore,

ample evidence shows that imbalance in GM contributes to the

neuroinflammation and worse stroke outcomes (Huang et al., 2023;

Park et al., 2023). An animal-based study found that maternal sleep

deprivation (MSD) caused high expression of pro-inflammatory

cytokines in offspring rats Moreover, pro-inflammatory cytokines

were positively associated with Ruminococcaceae UCG005 (Yao

et al., 2022). Therefore, it is speculated that Ruminococcaceae

UCG005 may also be involved in the inflammatory response after

stroke, thereby adversely affecting the prognosis of stroke. These

results may support the conclusion of Ruminococcaceae UCG005 as

a risk factor for stroke prognosis.

For the Eubacterium oxidoreducens group, we failed to find

some direct evidence of its role in stroke prognosis from existing

research. Research on the role of the Eubacterium oxidoreducens
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FIGURE 4

Forest plot was used to present the results of four analyses on the genetic associations between gut microbiota (GM) and functional outcomes after

ischemic stroke (IS).

group in other diseases is also rare. However, a previous study

reported a significantly elevated relative abundance of Eubacterium

oxidoreducens group which was positively correlated with the levels

of serum and fecal lipopolysaccharide (LPS) in high-fat diet (HFD)-

fed mice (Zhang X. Y. et al., 2020). Increased LPS contents could

impair the intestinal epithelial barrier (IEB) (Guo et al., 2015)
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FIGURE 5

Leave-one-out analysis for (A) six GM taxa in the main analysis, (B) five GM taxa in the comparative analysis.

and blood–brain barrier (BBB) (Peng et al., 2021). Recent studies

have revealed that gut barrier integrity and BBB are involved in

the influence of GM on IS (Gwak and Chang, 2021; Zeng et al.,

2023). A new study found that intraperitoneal injection of LPS

after stroke exhibited intestinal morphology damage, decreased

expression of tight-junction proteins associated with the BBB, and
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more neuronal loss, and these changes were consistent with stroke

mice transplanted with gut microbiota associated with post-stroke

cognitive impairment (Wang et al., 2022). Therefore, we speculate

that the Eubacterium oxidoreducens group, as a risk factor, may

have adverse effects on stroke prognosis by affecting intestinal

epithelial integrity and blood–brain barrier.

The results of another MR study evaluating the causal effect

of GM on cardioembolic IS support the protective effect of the

genus Lachnospiraceae NK4A136 group on IS prognosis in this MR

analysis (Dai et al., 2024). A previous study reported a significant

negative association of the genus Lachnospiraceae NK4A136 group

with intestinal permeability and the plasma LPS level (Ma et al.,

2020), which means that genus Lachnospiraceae NK4A136 group

is beneficial for protecting the intestinal barrier. The intestinal

barrier acts as the first barrier to prevent harmful substances from

penetrating the intestinal mucosa and damaging other tissues of

the body. The disruption of IEB after stroke contributes to the

microbial translocation which will increase the risk of post-stroke

infections (Zhao et al., 2023). Therefore, the protective effect of the

genus Lachnospiraceae NK4A136 group on IEB may be helpful in

IS prognosis.

High abundance of genus Lachnospiraceae UCG004 was

also identified useful for IS prognosis. As probiotics in the

body, it is beneficial for reducing obesity (Xu et al., 2024).

Evidence from a clinical study also showed a negative correlation

between Lachnospiraceae UCG004 and cardiovascular disease

risk factors (Tindall et al., 2020). Another case–control study

found a low abundance of Lachnospiraceae UCG004 in lacunar

cerebral infarction patients compared with healthy controls

(Ma et al., 2023). It is worth noting that both the genus

Lachnospiraceae NK4A136 group and Lachnospiraceae UCG004

belong to family Lachnospiraceae which is recognized as short

chain fatty acid (SCFA)-producer. In most studies, increased

inflammation response and decreased SCFAs could be observed

in stroke individuals and were significantly related to poor IS

outcomes (Spychala et al., 2018; Tan et al., 2021). Animal-based

studies proved that transplantation of SCFAs-rich gut microbiota

or SCFA supplementation in drinking water can effectively promote

the recovery following ischemic stroke (Chen et al., 2019; Lee et al.,

2020; Sadler et al., 2020). Studies showed that SCFAs participate

in the regulatory process of inflammatory responses, including

promoting the anti-inflammatory cytokines and suppressing the

pro-inflammatory cytokines (Maslowski et al., 2009; Vinolo et al.,

2011). This regulatory effect of SCFAs on inflammation may be one

of the mechanisms by which GM affects the prognosis of stroke

(Iadecola and Anrather, 2011; Chamorro et al., 2012).

The underlying mechanisms involved in the influence of GM

on outcomes following IS are multifaceted. In addition to the

above-mentioned content, neurotransmitters and TMAO pathway

(Zhu et al., 2021), among others are involved in the regulation of

GM on stroke. In conclusion, more research is needed to confirm

whether and how the four taxa identified in this study are involved

in these mechanisms.

To date, most studies evaluating the role of gut microbiome

in stroke have focused on bacteria due to the overwhelming

abundance of bacteria. Research on viruses, fungi, and archaea

is scarce. However, these non-bacteria gut microbes play an

important role in human health and diseases (Goralska et al.,

2018; Mukhopadhya et al., 2019; Coker, 2022; Ezzatpour et al.,

2023). There is a growing body of evidence that suggests non-

bacteria gut microbes are associated with neurological diseases,

including stroke (Forbes et al., 2018). A new study found that

fecal viral taxa was altered significantly after stroke and dissimilar

phage protein networks in mice (Chelluboina et al., 2022). Phages

are regarded as the most identified human gut virus components

with significant roles. Phages can infect diverse bacterial phyla

in the gut, such as Firmicutes, Bacteroidetes, Proteobacteria,

and Actinobacteria (Mirzaei and Maurice, 2017). When healthy

people took phage dietary supplements orally, there was an

increase in the butyrate-producing genus, Eubacterium (Febvre

et al., 2019). In addition to the viruses, some fungi housed

in the gastrointestinal tract are considered to be pathogenic

and can destroy CNS astrocytes, leading to BBB disruption and

central infection. Colonizing the gut by archaea has also been

demonstrated to decrease levels of trimethylamine (Forbes et al.,

2018), a compound produced by intestinal bacteria that is linked

to an increased risk of atherosclerosis as well as cardiovascular

and cerebrovascular diseases. Hence, the role of non-bacterial

microorganisms in stroke is also one of the important directions

of future stroke research. Unfortunately, there is no GWAS data

for non-bacterial microorganisms, and the causal relationship

between stroke and stroke prognosis cannot be further explored

in this study. Nevertheless, we are eagerly looking forward to the

improvement of the GWAS data that will enable us to delve deeper

into this fascinating area of research in the future.

The MR analysis we designed is unlikely to be biased because of

confounding factors and reverse causality. We also drew a relatively

consistent and reliable conclusion from the data obtained from

two sets of outcomes which were with or without adjustment for

the baseline NIHSS. Although we have tried our best to make

the conclusions accurate and robust, there are still some limiting

factors that need to be considered in our research. First, the study’s

limitation in not being able to mine data below the genus level

indeed restricts the depth of understanding of the potential links

between the gut microbiota and outcomes of ischemic stroke.

Second, a test about the associations between GM and post-stroke

outcomes for different stroke subtypes was not performed because

of the lack of available GWAS data in the GISCOME database.

Different types, localization of stroke have a decisive influence on

recovery in survivors (Biffi et al., 2015; Zhang K. et al., 2020),

which may contribute to some bias in our results. Third, we

did not adequately control for age and sex among the patients

included in the study. Thus, age and sex need to be taken into

account in further investigations on the relationship between GM

and post-stroke outcomes because the formation and shaping of

the GM are easily influenced by sex and lifespan (Snigdha et al.,

2022). Fourth, a previous MR analysis has indicated that genetically

determined GM was associated with the onset of ischemic stroke

(Meng et al., 2023), which made the collider bias a non-negligible

issue in this MR investigation of IS prognosis (Paternoster et al.,

2017). Fifth, a small sample size of subjects (n = 6,021) included

in this study were only of European ancestry, which may restrict

the generalizability of our findings to other populations. Thus,

future studies with a larger sample size of other ancestries are
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needed to explore the associations between GM and ischemic

stroke outcomes.

Conclusion

In summary, this MR analysis demonstrated that genetically

predicted gut microbiota is causally associated with worse

post-stroke outcomes. Our results suggest that interventions

addressing particular GM taxa, such as Lachnospiraceae NK4A136,

Lachnospiraceae UCG004, Ruminococcaceae UCG005, and

Eubacterium oxidoreducens groups, may provide new opportunities

to improve recovery after ischemic stroke.
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