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Identification of diagnostic
biomarkers correlate with
immune infiltration in
extra-pulmonary tuberculosis by
integrating bioinformatics and
machine learning

Yanan Wang, Faxiang Jin, Weifang Mao, Yefu Yu and

Wenfang Xu*

Department of Clinical Laboratory, A�liated Hospital of Shaoxing University, Shaoxing, Zhejiang, China

The diagnosis of tuberculosis depends on detectingMycobacterium tuberculosis
(Mtb). Unfortunately, recognizing patients with extrapulmonary tuberculosis
(EPTB) remains challenging due to the insidious clinical presentation and poor
performance of diagnostic tests. To identify biomarkers for EPTB, the GSE83456
dataset was screened for di�erentially expressed genes (DEGs), followed by
a gene enrichment analysis. One hundred and ten DEGs were obtained,
mainly enriched in inflammation and immune -related pathways. Weighted
gene co-expression network analysis (WGCNA) was used to identify 10 co-
expression modules. The turquoise module, correlating the most highly with
EPTB, contained 96 DEGs. Further screening with the least absolute shrinkage
and selection operator (LASSO) and support vector machine recursive feature
elimination (SVM-RFE) narrowed down the 96 DEGs to five central genes. All
five key genes were validated in the GSE144127 dataset. CARD17 and GBP5
had high diagnostic capacity, with AUC values were 0.763 (95% CI: 0.717–
0.805) and 0.833 (95% CI: 0.793–0.869) respectively. Using single sample gene
enrichment analysis (ssGSEA), we evaluated the infiltration of 28 immune cells
in EPTB and explored their relationships with key genes. The results showed
17 immune cell subtypes with significant infiltrations in EPTB. CARD17, GBP5,
HOOK1, LOC730167, and HIST1H4C were significantly associated with 16, 14,
12, 6, and 4 immune cell subtypes, respectively. The RT-qPCR results confirmed
that the expression levels of GBP5 and CARD17 were higher in EPTB compared
to control. In conclusion, CARD17 and GBP5 have high diagnostic e�ciency for
EPTB and are closely related to immune cell infiltration.

KEYWORDS

extra-pulmonary tuberculosis, WGCNA, LASSO, SVM-RFE, biomarker

1 Introduction

Tuberculosis (TB) is caused by infection with Mtb. According to the World Health

Organization’s (WHO) Global Tuberculosis Report 2022, an estimated 10.6 million

people developed TB in 2021 compared with 10.1 million in 2020. The mortality

rate in 2021 is also on an increasing trend compared to 2020 (Bagcchi, 2023).

EPTB refers to Mtb colonizing and growing in organs other than the lungs and

causing tuberculosis-like pathological changes, such as spinal tuberculosis and renal
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tuberculosis. Pulmonary tuberculosis (PTB) and extra-pulmonary

tuberculosis (EPTB) can co-exist (Ohene et al., 2019), and the rate

of drug resistance is even higher in EPTB (Boonsarngsuk et al.,

2018). Unfortunately, current research on biomarkers of TB is

focused on PTB, with less attention paid to EPTB (Sanches et al.,

2015).

Because of the atypical clinical features and symptoms, the

diagnosis of EPTB relies on pathological examination by biopsy

or puncture extraction. Whereas tissue specimens are difficult to

digest and have a low bacterial load, traditional detection methods

are not sensitive enough (Purohit and Mustafa, 2015). Several

studies have suggested that some cytokines, such as tumor necrosis

factor-alpha (TNF-α) (Ranaivomanana et al., 2018), interferon-

gamma (IFN-γ) (Ranaivomanana et al., 2018; Antonangelo et al.,

2019; Wani et al., 2021), IL-27 (Antonangelo et al., 2019) and IL-

10 (Ranaivomanana et al., 2018; Wani et al., 2021) could be used

as diagnostic biomarkers for EPTB. Inflammatory biomarkers are

also altered before and after EPTB treatment (Vinhaes et al., 2019).

Immunity plays a vital role in whether or not a host becomes

infected with Mtb. Immunocompromised Individuals with a

history of close contact with TB are at risk of developing TB (Boom

et al., 2021). However, few studies have focused on biomarkers

associated with immune infiltration of EPTB (Bhattacharya et al.,

2017; Du Bruyn et al., 2022). Developing new serological markers

of EPTB is of great importance for the global control of TB.

Recently, with the evolution and application of gene chips,

bioinformatics techniques can help us quickly find the central gene

clusters of EPTB.WGCNA is a bioinformatics analysis method that

integrates all data from each sample in the dataset, including gene

expression and clinical information data. WGCNA is mainly used

to construct unordered networks and conduct association analysis

by normalized data from each sample. It is now widely used to

identify and screen for markers of complex diseases (Zhang and

Horvath, 2005). LASSO is a regression method that elucidates the

degree of association between two related variables (Cheung-Lee

and Link, 2019). SVM is a supervised learning algorithm, primarily

used in classification, regression and outlier detection. The RFE

algorithm selected the optimal genes from the metadata queue to

avoid over-fitting (Huang et al., 2018). Further LASSO and SVM-

RFE analysis of the WGCNA gene can improve the accuracy of

screening for signature-related genes (Duan et al., 2016). Based on

the immune response to EPTB, we used ssGSEA to analyze the

infiltration of 28 immune cells. WGCNA combined with machine

learning for biomarker screening has been widely used in other

diseases (Xin et al., 2023), but not in EPTB. This study provides

new ideas for further evaluation of EPTB biomarkers (Figure 1).

2 Materials and methods

2.1 Microarray data

We searched the GEO datasets with key word “extra-

pulmonary tuberculosis” or “extra-pulmonary TB,” restricted “entry

type” to “series”; selected “Homo sapiens” for “organization”;

selected “study type” for “Expression profiling by array.” For the

subsequent analyses, datasets were selected based on the inclusion

criteria of blood as the sample type and containing more than

20 samples. GSE83456 (Blankley et al., 2016) was a screening

dataset, including expression data from 47 EPTB patients and 61

controls. GSE144127 (Hoang et al., 2021) was used as a validation

dataset, including 163 EPTB patients and 325 controls. Matrix data

(GSE83456 and GSE144127) and microarray annotation platform

files were downloaded from the Gene Expression Omnibus

(GEO) database.

2.2 Screening of di�erentially expressed
genes

Use the “limma” package (Ritchie et al., 2015) in R4.1.3 for

differential expression analysis. The screening criteria were |logFC|

≥1.0 and adj. p < 0.05. The volcano and heat maps were created

using the “ggplot2” and “pheatmap” packages respectively.

2.3 Gene function enrichment analysis

GO and KEGG analysis to explore the functionalities and

pathways involved in DEGs. The analysis was carried out using

the “clusterProfiler” and “enrichplot” package in R4.1.3. The GO

analysis is visualized through the “ComplexHeatmap” (Gu et al.,

2016). Enrichment is statistically significant if q-value < 0.05.

2.4 Weighted co-expression network
construction and feature module selection

The correlation matrix in the model was constructed using the

’WGCNA’ analysis package in R4.1.3 to calculate the neighborhood

relationships for all genes and to determine the soft threshold

size (Horvath and Dong, 2008; Mason et al., 2009). Based

on the soft threshold, the disordered neighborhoods between

genes are truncated and eventually converted into a topological

overlap matrix (TOM) to gauge the network connectivity

between genes (Yip and Horvath, 2007; Botía et al., 2017).

Hierarchical clustering was carried out according to the degree

of variation in TOM so that genes with a similar degree of

difference in gene expression were included in the same gene

module. The correlation coefficient between the modules and the

samples was calculated by Pearson correlation analysis to identify

the largest contribution module of WGCNA. The maximum

module for the number of links is acquired by accumulating

absolute values.

2.5 Machine learning screening for hub
genes

We employed LASSO and SVM-RFE to further identify

the hub genes of EPTB. The LASSO analysis was carried out

using the “glmnet” package (Tibshirani, 1996; Engebretsen and

Bohlin, 2019). Ten-fold cross-validation method was applied on

LASSO regression analysis. The reaction type was set to binomial

and α was set to 1. The smallest regularization parameter,
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FIGURE 1

Flowchart of the identification of biomarkers correlate with immune infiltration in EPTB.

lambda (λ), was selected by 10-fold cross-validation. The value

of λ was substituted into the LASSO regression model, and

the sum of the absolute values of all regression coefficients

was less than or equal to λ. The regression coefficients of

most genes were compressed to 0. Genes without 0 regression

coefficients were considered to be key genes highly associated

with EPTB.

SVM-RFE is a backward search algorithm (Sanz et al., 2018).

It ranks each feature with a score by training the sample with

the model. After removing the features with the minimum feature

score, the model is trained again with the remaining features

for the next iteration, and finally the desired number of features

is selected. SVM-RFE reduces the dimensionality of the space

by eliminating unnecessary features. The SVM-RFE analysis was

done by using the “e1071” (https://CRAN.R-project.org/package=

e1071), “kernlab” (https://CRAN.R-project.org/package=kernlab)

TABLE 1 The primer sequences used for RT-qPCR.

Primer Sequence

GBP5-F GCTTGCCCAACTTGAAACAC

GBP5-R CATTGACCATGATGCCACCT

CARD17-F AGCAGCCAGATGATAAAGCACA

CARD17-R TTCTTCCGGCCCTCAGACA

β-actin-F TCAAGATCATTGCTCCTCCTGAG

β-actin-R ACATCTGCTGGAAGGTGGACA

and “caret” packages (Kuhn, 2008). Internal cross-validation

of the model is performed by SVM-RFE, using the method

“svm Radial.”
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FIGURE 2

Screening and enrichment analysis of di�erentially expressed genes between EPTB and controls. (A) Heat map showing changes in the expression of
DEGs. Blue indicates low expression and red indicates high expression. (B) Volcano plot showing DEGs between EPTB and control samples. Green
indicates low expression and red indicates high expression. (C) GO analysis and (D) KEGG analysis.

2.6 Validation of hub gene expression and
diagnostic value

The intersecting genes of LASSO and SVM-RFE were further

validated in the GSE144127 dataset to confirm the expression

and diagnostic value. The differential expression of hub genes in

EPTB and controls was demonstrated using box plots. The receiver

operating characteristic curve (ROC) estimated the diagnostic value

using the “pROC” package (Robin et al., 2011).

2.7 Immune cell infiltration

The ssGSEA algorithm was used to determine the

extent of immune cell infiltration in the GSE83456 dataset

(Bindea et al., 2013). The violin plot of the 28 immune infiltrating

cells was visualized to show the differential expression. Spearman’s

correlation between key genes and 28 immune infiltrating cells was

calculated and then visualized using the “ggplot2” package.

2.8 Reverse transcription quantitative
polymerase chain reaction (RT-qPCR)

Whole blood samples were collected from 10 HC and 10 EPTB

patients. The diagnosis of EPTB was conducted by two respiratory

specialists. All participants participated in the study with informed

consent. The study was approved by the Medical Ethics Committee

of the Affiliated Hospital of Shaoxing University.
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Total RNA was extracted from whole blood using the

QIAamp R© RNA blood Mini kit (Qiagen, Germany), and the

obtained RNA was reverse transcribed to cDNA using the

HiFiScript cDNA Synthesis Kit (Kangweishiji Biotech, China).

Finally, qPCR was performed using the NovoStart R© SYBR qPCR

SuperMix Plus (novoprotein, China). The primers were designed

and synthesized by Guangzhou RiboBio Co., LTD. The sequences

for the primers targeting the genes are provided in Table 1. As

a housekeeping gene, β-actin served to normalize the expression

levels. The relative mRNA levels of GBP5 and CARD17 were

calculated by the 2−11CT method (Livak and Schmittgen, 2001).

2.9 Statistics

R is a programming language for statistics and graphics. All

data analysis, statistics and graphs involved in this paper are done

by R 4.1.3. The significant difference between the two groups was

determined by t-test. The WGCNA’s key modules were identified

using Pearson ’s correlation coefficient. Spearman correlation

analysis was conducted on hub genes and infiltrating immune cells.

p < 0.05 was considered statistically significant.

3 Results

3.1 Di�erentially expressed genes in EPTB

The matrix data from the GSE83456 dataset and the GPL10558

platform annotation file were downloaded. After gene annotation

and data pre-processing, the expression profiles of 31,300 genes

were obtained. One hundred and ten DEGs were identified in EPTB

compared to controls and consisted of 103 up-regulated genes

and seven down-regulated genes. The heat map was constructed

by performing a hierarchical cluster analysis based on DEGs

screening (Figure 2A). The volcano plot in Figure 2B illustrated the

distribution of DEGs.

3.2 Gene enrichment analysis

GO and KEGG analyses were performed on 110 DEGs to

screen for significantly enriched functions and pathways at q-

value < 0.05. GO analysis (Table 2 and Figure 2C) revealed that

the biological processes involved in EPTB were mainly defense

response to virus, defense response to symbiont and regulation of

response to biotic stimulus. The main cellular component enriched

by DEGs is the platelet alpha granule membrane. The molecular

function is mainly related to double-stranded RNA binding,

GTPase activity and adenylyl transferase activity. KEGG analysis

(Table 3 and Figure 2D) showed that the relevant pathways were

mainly involved in the NOD-like receptor signaling pathway and

various virus-related pathways such as Hepatitis C, Influenza A,

Coronavirus disease-COVID-19 and Epstein-Barr virus infection.

TABLE 2 GO analysis of di�erentially expressed genes in EPTB.

ID Description p-
value

q-
value

GO:0051607 Defense response to virus 0.000 0.000

GO:0140546 Defense response to symbiont 0.000 0.000

GO:0009615 Response to virus 0.000 0.000

GO:0002831 Regulation of response to biotic

stimulus

0.000 0.000

GO:0048525 Negative regulation of viral process 0.000 0.000

GO:0045071 Negative regulation of viral

genome replication

0.000 0.000

GO:0031092 Platelet alpha granule membrane 0.000 0.011

GO:0003725 Double-stranded RNA binding 0.000 0.000

GO:0003924 GTPase activity 0.000 0.036

GO:0070566 Adenylyltransferase activity 0.000 0.036

GO:0005525 GTP binding 0.001 0.036

GO:0019001 Guanyl nucleotide binding 0.001 0.036

GO:0032561 Guanyl ribonucleotide binding 0.001 0.036

TABLE 3 KEGG analysis of di�erentially expressed genes in EPTB.

ID Description p-
value

q-
value

hsa04621 NOD-like receptor signaling

pathway

0.000 0.000

hsa05160 Hepatitis C 0.000 0.000

hsa05171 Coronavirus disease—COVID-19 0.000 0.001

hsa05169 Epstein-Barr virus infection 0.000 0.001

hsa05164 Influenza A 0.000 0.003

hsa05162 Measles 0.002 0.038

hsa04610 Complement and coagulation

cascades

0.002 0.038

3.3 Weighted gene co-expression network
analysis

The GSE83456 dataset was pre-processed to remove duplicate

values and add missing values. Genes with expression fluctuations

of <0.5 were removed to reduce noise. According to the scale-free

network distribution fit, β = 3 was automatically selected as the best

soft threshold for this dataset using powerEstimate (Figure 3A).

The adjacency matrix and topological overlap TOM between genes

were calculated. A hierarchical clustering tree between genes was

constructed based on the TOM. The modules with high similarity

of MEs were merged using the dynamic shearing tree method to

cluster the genes into 10 modules (Figure 3B). The 10 modules

consist of the black module (122 genes), blue module (1,192 genes),

brown module (382 genes), green module (298 genes), magenta

module (79 genes), pink module (89 genes), purple module (57

genes), red module (168 genes), turquoise module (1,455 genes),

and yellow module (348 genes). The genes that could not be
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FIGURE 3

Construction of weighted gene co-expression network and module selection. (A) Scale-free network distribution plot, where the optimal power-law
exponent (β = 3) is determined for subsequent network analysis. (B) Cluster tree diagram of genes. Each branch in the diagram represents a gene,
and each color below represents a co-expression module. (C) Heat map of module-trait relationships. Turquoise module is the most strongly
correlated with EPTB. (D) Scatter plot of correlations between genes and gene importance in the turquoise module. (E) Intersecting genes of
di�erentially expressed genes and turquoise module genes.

clustered into any of the modules were grouped into Gray modules

and removed in subsequent analyses.

According to Figure 3C, the Pearson correlation coefficient

between the turquoise module and EPTB was 0.79 (p = 5e-24).

With turquoise as the key module, GS and MM analysis was

performed. The genes within the module were significantly linearly

correlated with EPTB. The correlation coefficient was 0.92 (p <

1e-200), and the results are shown in Figure 3D. The co-expressed

genes in the turquoise module were intersected with the DEGs

to narrow down further, resulting in 96 EPTB critical pathogenic

genes (Figure 3E).

3.4 Machine learning to identify EPTB key
genes

We screened for EPTB biomarkers with two different machine

learning algorithms. By using the LASSO regression, 10 variables

were identified among the 96 overlapping genes (Figures 4A,

B). The SVM-RFE identified 19 signature genes out of 96

intersecting genes (Figure 4C). Ultimately, five overlapping DEGs

(GBP5, HIST1H4C, CARD17, LOC730167, and HOOK1) between

the two algorithms were selected for the following analysis

(Figure 4D).

3.5 Expression validation of characteristic
biomarkers

CARD17, GBP5, and LOC730167 were over-expressed, while

HIST1H4C and HOOK1 were under-expressed in the GSE83456

dataset, with all p-values <0.001 (Figure 5A). Gene expression

levels were validated by using 325 controls and 163 EPTB

samples from the GSE144127 dataset. Consistent with the results

of the GSE83456 dataset, the results showed high expression

of CARD17 (p < 0.001), GBP5 (p < 0.001), and LOC730167

(p < 0.01), and low expression of HIST1H4C (p < 0.01)

and HOOK1 (p < 0.05) in EPTB (Figure 5B). Although the

differential expression of LOC730167, HIST1H4C, and HOOK1

in the GSE144127 dataset is still statistically significant, the extent

of the difference is weaker compared to their expression in the

GSE83456 dataset.
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FIGURE 4

Narrowing down candidate biomarkers for EPTB by LASSO analysis and SVM-REF. (A) and (B) LASSO analysis. (C) SVM-REF analysis to identify
signature genes. (D) Venn diagram of intersecting genes by LASSO analysis and SVM-REF.

3.6 Diagnostic validity of characteristic
biomarkers

The model performance was evaluated with well-known

metrics area under the ROC curve (AUC). As shown in Table 4

and Figure 5C, the five biomarkers showed good diagnostic value

in differentiating between EPTB and control samples (all the

AUC > 0.9). The AUC was 0.977 (95% CI: 0.952–0.994) for

GBP5, 0.966 (95% CI: 0.932–0.988) for CARD17, 0.961 (95%

CI: 0.923–0.988) for HIST1H4C, 0.934 (95% CI: 0.885–0.975)

for LOC730167 and 0.918 (95% CI: 0.862–0.966) for HOOK1. It

was further validated in the GSE144127 dataset to confirm its

diagnostic value, and the results are shown in Figure 5D. The

AUC for GBP5 and CARD17was 0.833 (95% CI: 0.793–0.869)

and 0.763 (95% CI: 0.717–0.805) respectively. Unfortunately, the

diagnostic efficiency of HIST1H4C, LOC730167, and HOOK1

was poor. The AUC values for all three were <0.6. Thus, we

believe that GBP5 and CARD17 promise diagnostic markers

for EPTB.

3.7 Immune cell infiltration and its
correlation with the hub gene

With the help of the ssGSEA algorithm, we assessed the

differences between EPTB and healthy controls in regards to

immune cell infiltration. The infiltration of 17 immune cell

subtypes, including Memory B cells (p = 6.83e-6), Mast cells (p

= 2.13e-5) and Regulatory T cells (p = 2.13e-5), was significantly

different compared to healthy controls. It indicated an essential

role of immune cells in the progression of EPTB (Figure 6A).

The distribution of the 28 immune cells in the GSE83456 sample

was shown in Figure 6B, and correlation analysis with the hub

gene was shown in Figure 6C. CARD17, GBP5, and HOOK1

were significantly associated with 16, 14, and 12 subtypes of

immune cells, respectively. Fewer immune cell subtypes were

associated with HIST1H4C and LOC730167, with only four and

six subtypes. CARD17 and GBP5 exhibit a positive correlation with

activated dendritic cells and a negative correlation with memory

B cells, effector memory CD4T cells, and central memory CD4T
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FIGURE 5

Validation and receiver operating characteristic curve of diagnostic biomarkers. (A) Expression of 5 hub genes in GSE83456. (B) Expression of 5 hub
genes in the validation set GSE144127. (C) ROC curves for the 5 hub genes in GSE83456. (D) ROC curves for 5 hub genes in the validation set
GSE144127.
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TABLE 4 The area under the ROC curve of hub genes.

Gene AUC (95%CI)

GSE83456 GSE144127

GBP5 0.977 (0.952–0.994) 0.833 (0.793–0.869)

HIST1H4C 0.961 (0.923–0.988) 0.572 (0.520–0.623)

CARD17 0.966 (0.932–0.988) 0.763 (0.717–0.805)

LOC730167 0.934 (0.885–0.975) 0.574 (0.519–0.629)

HOOK1 0.918 (0.862–0.966) 0.570 (0.516–0.620)

cells. Combined with the expression of characteristic biomarkers

and diagnostic efficiency, we suggest that immune cells may be

regulated by GBP5 and CARD17 in EPTB progression.

3.8 Validation of GBP5 and CARD17
expression in clinical samples

To validate the expression of GBP5 and CARD17 in

clinical samples, we conducted qPCR on samples from 10

EPTB patients and 10 healthy controls. The qPCR results

demonstrated a significant upregulation of GBP5 (p = 0.029)

and CARD17 (p < 0.001) in EPTB compared to the control

group (Figures 6D, E). These findings are consistent with the

expression data from the GEO dataset, further confirming that

these genes may play a critical role in EPTB and can serve as a

potential biomarker.

4 Discussion

Tuberculosis is the major infectious disease causing death

worldwide. EPTB is an infectious disease caused by Mtb infection

of organs other than the lungs (Sharma et al., 2021). Currently,

studies on TB diagnosis mainly focus on PTB, and the diagnosis

of EPTB from diseased tissue remains a challenge. Highly accurate

blood tests are needed to improve the diagnosis of EPTB and to

initiate anti-tuberculosis treatment promptly. Several studies have

focused on EPTB diagnostic markers. Matrix metalloproteinases

(MMPs) and tissue inhibitors of metalloproteinase (TIMPs) were

found to be pathological regulators of TB, with MMP-13 and

TIMP-2 differentiating EPTB from latent TB and healthy controls

(Kathamuthu et al., 2020). Five inflammatory biomarkers (MIG, IP-

10, MIF, CCL22 and CCL23) can be used to monitor the efficacy of

EPTB treatment (Ambreen et al., 2021). Serum immunoglobulin

response to cell wall products of Mycobacterium may be a valuable

instrument for monitoring treatment response to PTB or EPTB

in children and adolescents (Dos Santos et al., 2020). Although

there have been advances in the diagnosis of EPTB, studies on

immune-related serum biomarkers are still limited (Perumal et al.,

2020; Liang et al., 2021). Thus, EPTB diagnostic biomarkers and

their correlation with immune cell infiltration were investigated in

this study.

Previous studies using the GSE83456 dataset have focused

on building diagnostic models for PTB (Zhu and Liu, 2023) or

active TB (Li et al., 2023). Its researches in EPTB are mainly

about bone tuberculosis’s diagnosis biomarkers (Liang et al., 2021)

and molecular mechanism (Liang et al., 2022). In this study, 110

DEGs were screened using EPTB serum samples from GSE83456.

Combined with WGCNA, the scope was further narrowed to

96 DEGs. GO analysis revealed that the 96 DEGs were mainly

enriched in biological processes such as defense response and

response to biotic stimulus. KEGG analysis suggests that EPTB-

related pathways are mainly NOD-like receptor signaling pathway

and various virus-related pathways closely related to immunity.

Chronic viral infections increase the severity of Mtb co-infection

(Xu et al., 2021). At present, studies on themechanism of TB caused

byMtb infection have focused on immune escape (Zhai et al., 2019),

cellular pyroptosis (Qu et al., 2020) and epigenetics (Batista et al.,

2020). In this study, the enrichment analysis results suggest that the

human immunity to EPTB may be more similar to viral infections

than to common bacterial infections, but experimental validation is

still needed.

LASSO regression and SVM-REF further identified five key

DEGs (GBP5, HIST1H4C, CARD17, LOC730167 and HOOK1).

The GSE144127 dataset was used for validation, including gene

expression and diagnostic efficiency. The results revealed that

GBP5 (AUC = 0.833) and CARD17 (AUC = 0.763) still had high

diagnostic efficiency and may be critical biomarkers for EPTB.

Guanylate binding protein 5 (GBP5) belongs to the IFN-γ inducible

GTPase family and functions in host defense and inflammatory

responses (Fujiwara et al., 2016). The GBP5 gene promotes

NLRP3 inflammatory vesicles that exhibit a pronounced pathogen-

host defense response (Shenoy et al., 2012). The GBP5 gene

also regulates AIM2 inflammatory vesicle expression, triggering

caspase-1-dependent pyrolysis and releasing the IL-1β and IL-18

(Meunier et al., 2015). Differential expression of GBP5 between

TB and LTBI has been demonstrated by blood transcriptomics

(Berry et al., 2010) and PCR (Laux da Costa et al., 2015). However,

the association between GBP5 and EPTB is less well studied

and needs further validation. Caspase recruitment domain 17

(CARD17) is closely associated with regulating protein hydrolase

pro-1P maturation and release in inflammation (Lamkanfi et al.,

2004). The latest study found that CARD17 was up-regulated in

active tuberculosis by bioinformatic analysis, with a ROC curve

showing 85% sensitivity, 90% specificity, and an AUC value of 0.96

(Natarajan et al., 2022). Recently, a blood RNA sequencing study

on drug-resistant tuberculosis found that CARD17was upregulated

in multi-drug/rifampin resistant TB (Madamarandawala et al.,

2023). Experimental studies on CARD17 are scarce, and there

are no reports on the expression and mechanism of action of

CARD17 in EPTB. We validated GBP5 and CARD17 expression

in clinical samples by qPCR. The qPCR result showed that the

expression of GBP5 and CARD17 was significantly up-regulated

in EPTB patients compared to controls. This is consistent with the

expression data in the GEO dataset. It is suggested that GBP5 and

CARD17 could serve as potential biomarkers for EPTB and deserve

further exploration.

The immune response to Mtb infection in different parts of

the organism is diverse and complex (Consonni et al., 2022).

As a consequence, safe and effective treatment requires precise

control of the immune system. Using ssGSEA to assess immune

cell infiltration and correlate it with the hub gene can contribute
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FIGURE 6

Analysis of immune infiltration associated with EPTB and RT-qPCR validation in clinical samples. (A) Violin plot of the 28 immune cells’ distribution.
(B) Heatmap of 28 immune cell correlations. (C) Correlation of five hub genes with immune infiltrating cells in EPTB. (D) Relative expression of GBP5
in EPTB compared to control. (E) Relative expression of CARD17 in EPTB compared to control (*p < 0.05, **p < 0.01, ***p < 0.001).

to diagnosing and treating EPTB. The infiltration of 17 subtypes of

immune cells was significantly different compared to the control

group. Five key genes, CARD17, GBP5, HOOK1, LOC730167 and

HIST1H4C, were significantly associated with 16, 14, 12, 6, and

4 subtypes of immune cells, respectively. Memory B cell, Effector

memory CD4T cell, Central memory CD4T cell and Activated

dendritic cell were associated with more than two key genes (p

< 0.001). HOOK1 is strongly associated with M2 macrophages in

endometriosis (Wang et al., 2023), and GBP5 is associated with

a high infiltration of B-cells, CD4+ T-cells, CD8+ T-cells, and

NK-cells in small cell lung cancer (Tong et al., 2023). These high

correlations suggest an important role for these genes in immune
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regulation and inflammation. Several studies of immune cells in

EPTB have focused on CD4+ T cells. Mtb replication delays the

initiation of CD4T cells (Xu et al., 2021). Differential expression

of Mtb-specific CD4+ T cell activation markers distinguishes

EPTB from latent infection (Silveira-Mattos et al., 2020). CD4+

T cells can spread EPTB early, promote TB development, and

maintain multi-effect functions of CD8+ T and CD3– lymphocytes

(Yao et al., 2014). Increased memory CD4+ T cell response

frequency in previously treated EPTB patients (Barreto-Duarte

et al., 2020). Research on Memory B and dendritic cells is sparse

and awaits our experimental additions. The evidence mentioned

previously, and our current findings suggest that infiltrating

immune cells are critical in EPTB and should be the focus of

future research.

This study has limitations. While LASSO seeks sparse solutions

and handles the observed data well, it is an ℓ1 penalized least

squares regression method. To address the potential issue of

multicollinearity, the Elastic Net (ENET) combines ℓ1 and ℓ2

penalty terms, which could be considered for use in subsequent

studies (Zou and Hastie, 2005). Moreover, to mitigate overfitting

associated with LASSO regression, we have introduced an SVM-

RFE model that employs intersection taking to identify key

genes. To further prevent overfitting, methods such as Smoothed

Truncated Absolute Deviation (SCAD) and Adaptive Lasso

(aLasso) could also be considered (Ejaz Ahmed, 2016; Ahmed

et al., 2023). In addition, the GSE83456 control group is a

healthy control. In contrast, the GSE144127 control group is a

control for other diseases (including pneumonia and lung cancer),

whose reproducibility needs to be further verified. Although we

performed qPCR validation, the sample size was small and further

prospective studies with larger sample sizes are needed to validate

the findings.

5 Conclusions

In summary, we first obtained 96 EPTB characteristic genes

based on WGCNA. Then, five key DEGs (GBP5, HIST1H4C,

CARD17, LOC730167, and HOOK1) were screened by LASSO

regression and SVM-REF. The AUC, area under the ROC curve,

was selected as a performance metric. The results showed that

GBP5 (AUC = 0.833) and CARD17 (AUC = 0.763) had high

diagnostic efficiency. qPCR results confirmed that GBP5 and

CARD17 were higher expressed in EPTB. They could be selected

as diagnostic biomarkers for EPTB. The analysis of immune

cell infiltration revealed that CARD17 and GBP5 are positively

correlated with activated dendritic cells and negatively correlated

with memory B cells, effector memory CD4T cells, and central

memory CD4T cells. The immune cell dysregulation in EPTB is

characterized by the downregulation of central memory CD4T

cells, memory B cells, and effector memory CD4T cells, in

contrast to the upregulation of activated dendritic cells. In

the future, we will focus on exploring the diagnostic value

and molecular mechanism of GBP5 and CARD17 in EPTB

through cellular and animal experiments. We hope to provide

new ideas and theoretical basis for the diagnosis and treatment

of tuberculosis.
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