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Microeukaryotes play crucial roles in the microbial loop of freshwater 
ecosystems, functioning both as primary producers and bacterivorous 
consumers. However, understanding the assembly of microeukaryotic 
communities and their functional composition in freshwater lake ecosystems 
across diverse environmental gradients remains limited. Here, we  utilized 
amplicon sequencing of 18S rRNA gene and multivariate statistical analyses to 
examine the spatiotemporal and biogeographical patterns of microeukaryotes 
in water columns (at depths of 0.5, 5, and 10  m) within a subtropical lake in 
eastern China, covering a 40  km distance during spring and autumn of 2022. 
Our results revealed that complex and diverse microeukaryotic communities 
were dominated by Chlorophyta (mainly Chlorophyceae), Fungi, Alveolata, 
Stramenopiles, and Cryptophyta lineages. Species richness was higher in autumn 
than in spring, forming significant hump-shaped relationships with chlorophyll a 
concentration (Chl-a, an indicator of phytoplankton biomass). Microeukaryotic 
communities exhibited significant seasonality and distance-decay patterns. 
By contrast, the effect of vertical depth was negligible. Stochastic processes 
mainly influenced the assembly of microeukaryotic communities, explaining 
63, 67, and 55% of community variation for spring, autumn, and both seasons 
combined, respectively. Trait-based functional analysis revealed the prevalence 
of heterotrophic and phototrophic microeukaryotic plankton with a trade-
off along N:P ratio, Chl-a, and dissolved oxygen (DO) gradients. Similarly, the 
mixotrophic proportions were significantly and positively correlated with Chl-a 
and DO concentrations. Overall, our findings may provide useful insights into 
the assembly patterns of microeukaryotes in lake ecosystem and how their 
functions respond to environmental changes.
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Introduction

Microeukaryotic plankton, encompassing a broad range of 
unicellular eukaryotes like algae, protozoa, and fungi, are vital 
components within microbial food webs (Azam and Malfatti, 2007). 
More importantly, the microplankton community contributes 
significantly to primary productivity and nutrient recycling in 
freshwater environments (Liu et  al., 2013; Gad et  al., 2020). The 
functions and community dynamics of planktonic microeukaryotes 
exert a profound influence on water quality (Yu et al., 2014; Gad et al., 
2022). Adverse events like algal blooms and toxin production, induced 
by community variation, adversely affect sources of drinking water 
(Zhang et  al., 2018; Treuer et  al., 2021). Therefore, planktonic 
microeukaryote communities are commonly employed as biomonitors 
for assessing aquatic ecosystem health and water quality (Foissner and 
Berger, 1996). Over the past decades, much effort has been made to 
unveil how the freshwater microeukaryotic communities are 
distributed and assembled (Chen et  al., 2019; Isabwe et  al., 2019; 
Abdullah Al et  al., 2022). The biogeography of microeukaryotic 
planktons can be shaped by abiotic factors (e.g., nutrients, temperature, 
light, pH, depth, spatial factors) and biotic factors (including 
top-down predation, competition, mutualism, and trade-offs) (Gong 
et al., 2015; Wang et al., 2015; Chen et al., 2019; Wang et al., 2020). 
Nevertheless, discerning the relative significance of these factors in 
determining community structure and understanding the variability 
of those driving factors across spatial, vertical, and seasonal scales, 
remains fundamental issues in freshwater ecology. Furthermore, 
understanding how freshwater microeukaryotic community dynamics 
evolve is critical for ecosystem functionality prediction and 
management in the context of global change.

Pigmented microeukaryotes are key constituents of the 
phytoplankton realm in aquatic ecosystems (Xu et  al., 2018). The 
concentration of chlorophyll a (Chl-a), a reliable surrogate for 
photosynthetic potential and primary productivity, often demonstrates 
a hump-shaped relationship with the diversity of phytoplankton in 
aquatic environments (Vallina et al., 2014). The productivity-diversity 
relationships depend on scale of investigations (Chase and Leibold, 
2002), the type of water body (Borics et al., 2014), and are susceptible 
to the influence of environmental change (Righetti et  al., 2019). 
Studies have documented that phytoplankton release a substantial 
proportion of photosynthate, ranging from 0 to 80% of that fixed via 
photosynthesis, as dissolved organic matter (DOM) into the 
surrounding waters (Hulatt and Thomas, 2010). The DOM is directly 
incorporated into the microbial loop via heterotrophic bacterial 
consumption, subsequently enhancing the abundance of bacterivorous 
(i.e., heterotrophic/mixotrophic) microeukaryotes. In a recent 
investigation, an uncommon U-shaped pattern was discovered 
between microeukaryotes and Chl-a in eutrophic coastal oceans 
(Wang et al., 2020). Nevertheless, within freshwater ecosystems, there 
is a lack of comprehensive exploration into the variations in 
microeukaryotic community structure linked to productivity and the 
primary environmental factors responsible for driving these changes.

Identifying and quantifying the ecological processes that regulate 
the assembly of microbial communities in aquatic ecosystems stands 
as a central focus in microbial ecology (Logares et al., 2013; Nemergut 
et al., 2013). Addressing this critical issue is essential for advancing 
our comprehension of diversity, functioning, and successional 
dynamics of microorganisms (Liu et al., 2019). Classical niche-based 

theory proposes that deterministic processes, involving both biotic 
interactions and abiotic factors, jointly influence community structure 
(Chesson, 2000; Fargione et al., 2003). However, in neutral theory of 
biodiversity, species are viewed as functionally equivalent, with their 
abundances primarily determined by stochastic processes such as 
birth, death, speciation, extinction, and dispersal (Hubbell, 2001; 
Chave, 2004). Deterministic processes mainly governed the assembly 
of microeukaryotic communities in estuarine, coastal, and marine 
ecosystems (Wu et  al., 2018; Zhu et  al., 2021; Wu et  al., 2023). 
However, in freshwater environments such as rivers and lakes, as well 
as surface ocean, microeukaryotic structure exhibited a pronounced 
influence of stochastic processes (Chen et al., 2019; Logares et al., 
2020; Ren et al., 2022; Han et al., 2023). Frequently, microeukaryotic 
communities seem to be  regulated by a combination of both 
deterministic and stochastic processes (Gad et al., 2020; Hou et al., 
2020; Mo et al., 2021). Nonetheless, a comprehensive understanding 
of microeukaryotic geographical patterns and assembly mechanisms 
in freshwater ecosystems across spatial, temporal, vertical water 
column, and environmental gradients is still lacking.

The Qianxia Lake (E119.9 N28.1), located in Qingtian County, 
Zhejiang Province, China, is a fjord-type lake with a long and narrow 
watershed covering approximately 3,330 km2. It spans 105 km in 
length and averages 31.7 km in width (Yao et al., 2022). The lake is a 
crucial source of drinking water for numerous towns and sustains 
agriculture, power generation, and tourism, with minimal industrial 
pollution. Thus, the Qianxia Lake watershed offers an ideal setting to 
explore the relative importance of environmental and spatial factors 
on community composition. This knowledge is crucial for integrating 
planktonic microeukaryotic components into ecosystem and 
biogeographical models to improve predictive accuracy. Furthermore, 
given the dispersal capacity of microplankton communities in lotic 
habitats, it renders them well-suited for investigating the impact of 
dispersal on community variation and the influence of seasonal 
changes on dispersal.

In this investigation, we  conducted a comparative analysis of 
microeukaryotic plankton communities in the Qianxia lake, 
employing amplicon sequencing of 18S rRNA genes. Our data 
included 60 water samples collected across two seasons and various 
water depths along the Qianxia Lake (Supplementary Figure S1), with 
the following objectives: (1) Unraveling the spatiotemporal 
distribution of microeukaryotic communities and deciphering the 
underlying mechanism governing their assembly; (2) Investigating 
how the microeukaryotic diversity and community structure respond 
to productivity gradients; and (3) Assessing the impact of 
environmental factors on variation in functional composition of 
microeukaryotic communities.

Materials and methods

Sampling and determination of 
environmental parameters

Sampling of water was carried out at 8 sites in spring and 12 sites 
in autumn across the Qianxia Lake (119°65′–120°04′ E, 27°99′–28°13′ 
N) in April and September 2022 (Supplementary Figure S1). A total 
of 60 water samples were collected at depths of 0.5, 5, and 10 m in the 
epilimnion zone of water column. Due to the lake’s depth ranging 
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from 10.5 to 79.4 m, deep samples were collected away from the 
lakebed to prevent disturbance to sediment (Supplementary Table S1). 
The water collection utilized 5 L Niskin bottles, pre-filtered through a 
200 μm mesh to eliminate larger plankton and debris. Subsequently, 
water (~500 mL) with microeukaryotes (size <200 μm) was vacuum-
filtered onto a 0.22 μm filter (Supor 200, PALL, Michigan, 
United States). All membranes were placed into 2 mL cryotubes and 
preserved in liquid nitrogen for DNA extraction.

The in situ lake water’s physicochemical parameters (temperature, 
pH, and dissolved oxygen) were determined through a water quality 
analyzer (HQ40d, Hach company, United  States). The Chl-a 
concentration was measured employing an electronic sensor (TriBox 
mini, Germany). Determination of nitrate (NO3-N), nitrite (NO2-N), 
ammonium (NH4

+-N), total nitrogen (TN), and soluble reactive 
phosphate (PO4

3−) in all sub-samples via an auto-analyzer (Seal, 
Germany). Total phosphorus (TP), CODMn, and total organic carbon 
(TOC) were determined through spectrophotometry following 
standard methods. A total of 12 environmental parameters were 
determined in this study (Supplementary Table S1).

DNA preparation and high-throughput 
sequencing

We extracted DNA using the PowerSoil® DNA Isolation Kit 
(MoBio, Carlsbad, CA), following the manufacturer’s protocol. The 
assessment of DNA concentration and quality was performed with an 
NC2000 spectrophotometer (Thermo Scientific, United States). PCR 
amplification targeted the V4 region of microeukaryotic 18S rRNA 
gene, employing the specific primers 565F (5′-CCAGCASCYGCGG 
TAATTCC-3′) and 948R (5′-ACTTTCGTTCTTGATYRA-3′) (Stoeck 
et al., 2010). PCR reactions followed this procedure: 98°C for 2 min, 
followed by 25 cycles of 98°C for 15 s, 55°C for 30 s, and 72°C for 30 s; 
and a final extension at 72°C for 5 min. Paired-end (2 × 250 bp) 
sequencing was conducted using the Illumina NovaSeq platform 
(Illumina, United States) at Personalbio company (Shanghai, China).

Bioinformatics

The raw sequence data were initially demultiplexed, and primers 
were trimmed with Cutadapt v1.18 (Martin, 2011), followed by 
processing through the DADA2 pipeline (Callahan et al., 2016) in R 
v4.0.0 (R Core Team, 2018). The parameter settings followed our 
prior study (Zou S. et al., 2021). Briefly, sequencing reads were quality 
filtering with the “filterAndTrim” function. The dereplication process 
generated unique sequences, implemented with “derepFastq” 
function; Error models were trained with the “learnErrors” function. 
ASVs were inferred using the core function “dada.” Paired reads were 
merged using the “mergePairs” function, and bimeras were 
eliminated with the “removeBimeraDenovo” function. Taxonomic 
classification was performed using the DECIPHER package’s “IdTaxa” 
function against the PR2 v2.0 database (Wright, 2016). ASVs that 
were unassigned or appeared as singletons, as well as reads from 
Metazoa, Ulvophyceae, Streptophyta, and Rhodophyta, were 
excluded from subsequent analysis.

Prior to computing alpha diversity metrics, all sample were 
rarefied to the lowest sequencing depth of 18,300 reads 

(Supplementary Table S3), which minimize sequencing depth bias and 
enable comparable diversity assessments. To analyze beta diversity 
analysis, we normalized the ASV table using edgeR package (Robinson 
et al., 2010), following the recommendation of McMurdie and Holmes 
(2014). Bray-Curtis dissimilarities distances were computed and then 
visualized in NMDS plot using the “metaMDS” function of the vegan 
package (Oksanen et al., 2013).

The relative contribution of environmental 
and spatial factors in structuring 
microeukaryotic communities

We assessed the spatial distribution of microeukaryotic 
communities by assessing the community turnover rate (z value) over 
spatial distances, as proposed by Ranjard et al. (2013): log10(χd) = (−2z) 
* log10(d) + b. The pairwise Sørensen similarity (χd) was computed 
using the “dsvdis” function from the labdsv package (Roberts, 2019). 
The distance (d) between sampling sites (in meters) was determined 
using the function “distm” of geosphere package (Hijmans et al., 2017). 
The “b” represents the intercept of the linear model.

We further employed variation partitioning analysis (VPA) to 
assess the contribution of environmental and spatial factors in 
microeukaryotic assembly (Borcard et al., 1992). All environmental 
factors (except pH) underwent square root transformation for 
normality and homoscedasticity. For spatial factors, we  initially 
converted the longitude and latitude to the Cartesian coordinates 
using the function “geoXY” in the SoDA package (Chambers, 2008). 
Subsequently, an Euclidean distance matrix was generated from these 
Cartesian coordinates using the “dist” function. The “PCNM” function 
(permutations = 1,000, vegan package) was then applied to this matrix 
(Borcard and Legendre, 2002).

Redundancy analysis (RDA) was chosen to explore the relationship 
between microeukaryotic communities and environmental/spatial 
factors based on the longest gradient length of detrended 
correspondence analysis (DCA). Preceding RDA, the following steps 
were executed: (1) Hellinger transformation of microeukaryotic data; 
(2) Variance inflation factor (VIF) was calculated using the “vif.cca” 
function (vegan package) and variables with VIF > 10 were discarded 
to address the multicollinearity effects; and (3) Identification of 
significant (p < 0.05) explanatory factors through forward selection 
using the “ordiR2step” function (Blanchet et al., 2008). The relative 
effects of environmental and spatial factors on community variation 
were determined with VPA using the “varpart” function of package 
vegan in R, and the significance of each fraction was determined using 
the permutation test with the “anova.cca” function.

Functional analysis based on taxonomic 
specifically traits approaches

To elucidate the functional composition of microeukaryotes and 
their responses to the environmental gradients, we utilized a trait-based 
approach, as previously described (Genitsaris et al., 2015; Adl et al., 2019; 
Ramond et al., 2019; Wang et al., 2020; Pan et al., 2022). In brief, the 
taxonomic assignments of microeukaryotic members, as annotated by 
the PR2 database, were converted into ecological traits, while retaining 
their read proportions within a given community. In this study, the 
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trophic traits were simplified and categorized into phototrophy, 
heterotrophy, and mixotrophy (see Supplementary Table S4). The ASV 
richness and abundance for these three functional groups were 
determined by summing the taxonomic groups within each 
corresponding functional category.

Estimation of importance of environmental 
variables using random forest model

We utilized random forest analysis to evaluate the impact of 
environmental factors on the functional composition of 
microeukaryotes, employing the rfPermute package with 999 
permutations (Archer, 2019). The analysis of percentage increases in 
mean squared error (MSE%) of predictors determined the importance 
of the variables. Variables with higher MSE% values were implied as 
more influential. Model significance and cross-validated R2 were 
assessed using the A3 package in R (Fortmann-Roe, 2015).

Fitting the neutral community model for 
microeukaryotes

We evaluated the influence of stochastic processes on the 
microeukaryotic community assembly using the neutral community 
model (NCM), as described by Sloan et al. (2006). The NCM employs 
R2 for the fit to the neutral model and Nm values as the product of 
metacommunity size (N) and immigration rate (m). Additionally, 
we  compared the richness and abundance of microeukaryotes in 
neutral and non-neutral (above and below) partitions to evaluate the 
deviations from the NCM predictions. All computations and 
visualizations were performed using R.

Statistical analyses

Two-tailed student’s t-tests and one-way ANOVA with least 
significant difference (LSD) post-hoc were utilized to assess the 
variations in physicochemical variables, alpha diversity metrics, 
relative proportions of major taxonomic taxa between seasons, among 
depths, and across Chl-a levels. Permutational multivariate analysis of 
variance (PERMANOVA, 999 permutations) was employed to 
examine differences in community structure among groups based on 
Bray-Curtis distances (Anderson, 2001). All geographic measurements 
were calculated and visualized with ArcGIS v.10.8 (Redlands, 
California, United States). The relationships between environmental 
or spatial factors and taxonomic/functional diversity were assessed 
through Pearson or Spearman’s rank correlations analysis using SPSS 
v.13.0 (IBM, United States).

Results

Seasonal and vertical variations in abiotic 
variables

The physicochemical variables determined are presented in 
Supplementary Table S1. Of the 12 environmental parameters, more 

than half demonstrated a distinct seasonality. The water temperature 
ranged from 19.1 to 27.3°C in spring and from 26.4 to 29.9°C in 
autumn (p < 0.001). Significant differences were observed in Chl-a 
concentration, which was higher in spring (mean ± SE, 
5.901 ± 0.502 μg/L) than in autumn (1.895 ± 0.203 μg/L; p < 0.001). 
Similarly, levels of DO (9.598 ± 0.138 vs. 8.069 ± 0.078 mg/L), NO2-N 
(0.004 ± 0 vs. 0.003 ± 0 mg/L; p < 0.001), pH (9.435 ± 0.133 vs. 
8.694 ± 0.079; p < 0.001), and TOC (70.208 ± 2.576 vs. 
58.833 ± 0.746 mg/L; p < 0.001) showed spring-autumn distinctions. 
However, concentrations of TP (0.421 ± 0.011 vs. 1.350 ± 0.027 mg/L; 
p < 0.001) and PO4-P (0.124 ± 0.009 vs. 0.153 ± 0.010 mg/L; p < 0.001) 
were relatively lower in spring due to increased nutrient uptake by 
high abundance of phytoplankton. In terms of depths, 
environmental factors were relatively stable, although the 
concentrations of DO, pH, and temperature significantly decreased 
with depth, while TN tended to increase with depth 
(Supplementary Table S2).

Differences in alpha diversity and 
community composition of planktonic 
microeukaryotes across seasons and 
depths

A total of 6,383 ASVs were generated from 6,520,323 high-quality 
sequences for 60 samples, among which 2,758 and 4,059 ASVs were 
detected in spring and autumn, respectively (Supplementary Table S3). 
Of the rarefied dataset, the alpha-diversity metrics of microeukaryotes 
exhibited considerable variability among samples, with ASV richness 
ranging from 107.3 to 850.9 and Shannon indices between 3.4 to 7.9 
(Supplementary Table S3). In contrasting the two seasons, autumn had 
higher species richness (338.1) compared to spring (269.4), while 
Shannon indices lower in autumn than in spring. Among the three 
depths, the alpha-diversity estimators usually increased with the 
depths (Figures 1A,C). The species richness and Shannon both formed 
significant hump-shaped relationships with concentrations of Chl-a 
(R2 ≥ 0.115, p ≤ 0.033), and the species richness appears to peak at the 
concentrations of Chl-a of 4.0 μgL−1 (Figures 1B,D).

The ASV number were mainly affiliated with phylum Chlorophyta 
(on average 27%), followed by Dinoflagellata (14%), Chytridiomycota 
(11%), Ciliophora (9%), Ochrophyta (9%), Cercozoa (4%), 
Cryptophyta (4%). Seasonal variations were noted, with higher 
occurrences of ASVs in the spring compared to the autumn for 
Ciliophora (11% vs. 7%), Ochrophyta (11% vs. 7%), and Cercozoa (5% 
vs. 3%), but the opposite for Dinoflagellata (8% vs. 20%) (Figure 2A).

The reads of microeukaryotes exhibited dominance by 
Chlorophyta, accounting for a relative abundance of 37.5%, followed 
by Fungi at 36.3%, mainly composed of Chytridiomycota and 
Basidiomycota. Other notable phyla included Alveolata (14.2%), 
Stramenopiles (5.6%), and Cryptophyta (2.9%). Within Alveolata, 
Ciliophora comprised 6.6% and Dinoflagellata constituted 6.4%. 
Stramenopiles were predominantly represented by Ochrophyta (2.9%) 
and Bacillariophyta (2.3%). Reads proportions of other taxa (e.g., 
Haptista, Cercozoa, Amoebozoa, and Opisthokonta) averaged less 
than 1% (Figure 2B).

Additionally, the ASV richness in Dinoflagellata, Basidiomycota, 
Oomycota, and Perkinsozoa exhibited significant hump-shaped 
relationships with Chl-a, except for Chytridiomycota and 
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Bacillariophyta, which formed negative relationships with Chl-a 
(0.083 ≤ R2 ≤ 0.357, p ≤ 0.044; Supplementary Figure S2).

Changes in taxonomic composition 
between seasons, among depths, and 
along productivity gradients

The NMDS plot and PERMANOVA analysis indicated a distinct 
separation in microeukaryotic community compositions between 
spring and autumn (R2 = 0.302, p = 0.001). However, samples from 
different depths did not exhibit clear differentiation (R2 = 0.025, 
p = 0.79; Table 1; Figure 3A). The log-transformed Sørensen similarity 
exhibited significant distance-decay patterns in microeukaryotic 
community for both seasons (adj. R2 ≥ 0.203; p < 0.01, Figure 3B). The 
turnover rate (z value) was slightly higher in autumn than in spring 
(0.03 vs. 0.02, Figure  3C). Similarly, microeukaryotic community 
similarities between any two sampling sites significantly decreased 
with pairwise differences in Chl-a concentrations (adj. R2 ≥ 0.299; 
p < 0.001 Figure  3D), highlighting the crucial role of Chl-a in 
structuring microeukaryotic assembly. Additionally, similarity of 
planktonic microeukaryotes, spanning taxonomic ranks from species 
to phylum, also demonstrated pronounced distance-decay patterns 
(p < 0.001; Supplementary Figure S3).

Comparing the proportions of major microeukaryotic taxa in reads 
between seasons revealed that Chlorophyta (41.8 vs. 30.8%), Haptista 
(1.03 vs. 0.27%), and Choanoflagellida (0.40 vs. 0.05%) were significantly 
more prevalent in autumn than in spring. In contrast, Basidiomycota 
(0.28 vs. 9.34%), Dinoflagellata (3.35 vs. 11.1%), Apicomplexa (0.10 vs. 

0.63%), and Mesomycetozoa (0.08 vs. 0.27%) exhibited an opposite 
trend (Figures 4A–G; Supplementary Table S5). Regarding the depth, 
the variations were mainly attributed to Ascomycota, Cercozoa, and 
Cryptophyta (Figures 4H–J; Supplementary Table S5).

To explore the impact of the productivity gradients on 
microeukaryotic community structure, we statistically compared the 
relative proportions of major taxa at three Chl-a levels (0–2 μg L−1 for 
low level; 2–5 μg L−1 for intermediate level; and 5–11 μg L−1 for high 
level; Figure 5; Supplementary Table S5). Proportions of Cryptophyta, 
Dinoflagellata, Basidiomycota, and Apicomplexa increased with levels 
of Chl-a. Under intermediate levels, six taxonomic groups (Haptista, 
Ochrophyta, Ciliophora, Ascomycota, Choanoflagellida, and 
Tubulinea) had the highest relative abundance. However, 
Chytridiomycota and Bacillariophyta were more abundant in low 
concentrations of Chl-a (Figure 5).

Variations in functional structure of 
microeukaryotic communities

The ASV richness of phototrophs varied greatly across all samples 
(51–322) and was comparable to that of heterotrophs (41–386). 
Phototrophs and heterotrophs were both nearly three times more 
abundant than mixotrophs (Figure 6A). Seasonally, phototrophs and 
heterotrophs showed similar patterns, with significantly higher 
abundances in autumn than in spring (p ≤ 0.04). Conversely, 
mixotrophs richness was slightly higher in spring, although this 
difference did not reach statistical significance (p = 0.648; Figure 6B). 
Regarding depth-related comparisons, a notable difference in richness 

FIGURE 1

Seasonal and vertical variations in species richness (A) and Shannon diversity (C) of microeukaryotic plankton, and both fitted significant hump-shaped 
relationships with concentrations of chlorophyll a (B,D).
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FIGURE 2

Differences in diversity and composition of planktonic microeukaryotes community. (A) Pie plots depict ASV numbers for major taxa during spring and 
autumn, respectively. (B) Bar plot illustrates relative proportions of major taxa across the samples.

TABLE 1 ADONIS analysis to assessed microeukaryotic communities variations using Bray-Curtis and Sørensen distances across seasons, and among 
depths and levels of chlorophyll-a.

Grouping by
Bray-Curtis Sørensen

R2 p R2 p

Season 0.302 0.001 0.191 0.001

Depth (Global test) 0.025 0.79 0.028 0.834

0.5 m vs. 5 m 0.018 0.962 0.018 0.959

0.5 m vs. 10 m 0.023 0.563 0.023 0.533

5 m vs. 10 m 0.023 0.598 0.023 0.594

Chl-a (Global test) 0.296 0.001 0.206 0.001

0–2 vs. 2–5 0.182 0.001 0.133 0.001

0–2 vs. 5–11 0.381 0.001 0.249 0.001

2–5 vs. 5–11 0.176 0.001 0.119 0.001

Significant differences in pair-wise comparison were bold.
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was evident solely for heterotrophs between bottom layer and middle 
layer (55.5 vs. 49.4; p < 0.05; Figure 6B). The correlations between the 
richness of three functional groups and Chl-a concentrations were 
weak and lacked statistically support, except for mixotrophs 
(R2 = 0.218, p < 0.001; Figure 6C).

Seasonal variations significantly influenced the relative 
abundances of the three functional groups of microeukaryotes 
(Figure  7A). Heterotrophs and phototrophs dominated the 
microeukaryotic communities among all samples, accounting for an 
average percentage of 46.9 and 42.8%, respectively, while mixotrophs 
consistently had a low contribution (10.2%). Higher abundances of 
mixotrophs and heterotrophs were detected in spring, while 
phototrophs became more abundant in autumn (p = 0.001). However, 
vertical comparisons did not reveal any significant differences in reads 
proportions of functional groups (p > 0.436; Figure 7B).

Random forest analysis was utilized to assess the significance of 
environmental factors in shaping functional composition. The results 
revealed the highest contribution to heterotrophs (36.6%), followed by 
mixotrophs (30.5%), and phototrophs (23.9%). These variations were 
predominantly driven by a combination of environmental factors, 
including Chl-a, N:P ratio, DO, TP, TOC, temperature, and NO2-N 

(p < 0.05, Figure 8A). Relationships between the relative abundances of 
functional groups and key environmental factors exhibited distinct 
trends: the proportion of phototrophs showed a significant and positive 
correlation with N:P ratio (R2 = 0.097, p = 0.016), whereas heterotrophs 
exhibited a significant and negative correlation with N:P ratio 
(R2 = 0.157, p = 0.002). Nevertheless, the correlation between mixotrophs 
and N:P ratio was weak and non-significant (R2 = 0.031, p = 0.184; 
Figure 8B). Across the gradients of Chl-a, phototrophs, heterotrophs, 
and mixotrophs exhibited hump-shaped, U-shaped, and positive linear 
patterns, respectively. Similarly, these relationships were in parallel with 
dissolved oxygen gradients but with lower correlation coefficients, and 
only significant for phototrophs and mixotrophs (Figures 8C,D).

Relative contribution of environmental 
drivers to variations in microeukaryotic 
communities and underlying assembly 
mechanisms

RDA demonstrated variations in the percentage of explained 
variance for microeukaryotic communities by the first two axes across 

FIGURE 3

nMDS using Bray–Curtis dissimilarity illustrates the seasonal variations in planktonic microeukaryotic communities (A). Scatter plots depict distance-
decay patterns between Sørensen similarity of communities and pair-wise geographic distance in spring, autumn, and both seasons (B,C). Sørensen 
similarities of communities also show a negative correlation with the gradients of productivity (D).
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seasons, amounting to 39.5, 41.96, and 41.18% for spring, autumn, 
and both seasons, respectively (Figures 9A,B; Supplementary Figure S4). 
Environmental (Chl-a and NO2-N) and spatial variables (PCNM1, 
PCNM2, and PCNM5) exerted notable impacts on microeukaryotic 
community composition in both seasons by forward selection. In 

autumn, pH, PCNM3, PCNM4, and PCNM7 also showed significant 
correlations with communities. Variation partitioning analysis (VPA, 
Figures 9C,D) indicated that purely spatial variation played a larger 
role in community composition during spring (14.9%), autumn 
(21.6%), and both seasons (34.3%) compared to purely environmental 

FIGURE 4

The relative proportions of microeukaryotic taxa with significant differences between spring and autumn (A–G) or among vertical depths of water 
column (H–J). Significance was assessed through Student’s t-test or one-way ANOVA test (p  <  0.05). The error bars denote standard errors.

FIGURE 5

Comparisons in relative proportions of reads assigned to each taxa among levels of chlorophyll-a by one-way ANOVA. Distinct lowercase letters 
signify significant variations (p  <  0.05).
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factors (0.9% in spring, 2.5% in autumn, 9.3% in both seasons). 
Additionally, more than half of the proportion of community variation 
for each and both seasons was unexplained (51.3–64.2%, Figures 9C,D; 
Supplementary Figure S4).

To assess the influence of stochastic processes on the assembly of 
microeukaryotic communities during spring and autumn, 
we  employed the neutral community model (NCM). Results 
demonstrated that the NCM explained a substantial fraction (62.8, 

66.7, and 55.1%) of variation in community composition for spring, 
autumn, and both seasons combined, respectively (Figure 10). This 
underscores the critical role of stochastic processes in influencing the 
assembly of microeukaryotic communities. The Nm value for 
microeukaryotic taxa was lower in spring (Nm = 102) than in autumn 
(Nm = 337), indicating that higher species dispersal in autumn (m: 
1.84% vs. 0.56%), due to sequence depth that was rarefied for both 
seasons (N = 18,300). Furthermore, the proportions of microeukaryotic 

FIGURE 6

Differences in community richness among samples for phototrophic, mixotrophic, and heterotrophic groups (A). Comparisons between two seasons 
and among vertical depths (B). The mixotrophs formed a significant humped relationship with chlorophyll-a concentrations, contrasting with the 
heterotrophs and phototrophs (C). T-test and ANOVA were employed to assess differences in richness between seasons and among depths. Photo, 
phototrophs; Mixo, mixotrophs; Hetero, heterotrophs.
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ASVs revealed that the neutral fraction contributed significantly more 
to species richness (88.7–94.6%) than the above and below fractions 
in both seasons, but not to ASVs’ abundance (17–54.9%; Figure 10D). 
The findings, along with VPA results, suggest that stochastic processes 
primarily influenced community structure.

Discussion

Strong seasonality of planktonic 
microeukaryotic communities with 
negligible depth influence

The nMDS plot distinctly revealed the separation of samples 
between spring and autumn, indicating significant seasonality in 
planktonic microeukaryotic composition (p < 0.05) (Table 1; Figure 3). 
The seasonal differentiation can be  attributed to variations in 
physicochemical factors, biotic interplays, and hydrologic 
environment (Sommer et al., 2012). Firstly, we observed significant 
differences in specific environmental factors (temperature, DO, pH) 
and nutrients (NO2-N, PO4-P, TP, and TOC) between the two seasons 
(Supplementary Table S2). Water temperature, a key seasonal factor, 

may directly regulate microeukaryotic community composition (Liu 
et  al., 2013). Prior investigations indicated that elevated water 
temperatures could enhance the proliferation of microeukaryotic 
species (Liu et  al., 2020), partially explaining the higher species 
richness in the autumn compared to spring (Figure  1A). Nitrite 
(NO2-N) emerged as the sole nutrient significantly co-varied with 
microeukaryotic community structure during both seasons, as 
revealed by RDA ordination (Figures 9A,B). Nitrite is a vital form of 
inorganic nitrogen readily assimilated by phytoplankton. Certain 
phytoplankton populations have been reported to consider nitrite as 
a more important nitrogen source than nitrate (Yves, 1998). Hence, 
nitrite concentration could mediate the phytoplankton community 
variation, thereby indirectly influencing the entire microeukaryotic 
community composition within the lake system. Secondly, the 
seasonal dynamics of microbial plankton community represent a 
repeatedly recurring process primarily influenced by environmental 
fluctuations and internal interactions, such as competition and 
predation (Sommer et al., 2012). Thirdly, the strong seasonality could 
also be  explained by the high turnover of microeukaryotic 
communities (Zhang et al., 2017), with stochastic processes (ecological 
drift and dispersal) playing a significant role in structuring their 
communities (Logares et al., 2018).

FIGURE 7

Variations in functional composition of microeukaryotic communities among samples (A) and comparisons between seasons and among vertical 
depths (B). Photo, phototrophs; Mixo, mixotrophs; Hetero, heterotrophs.
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The spring-autumn variations in microeukaryotic community 
composition were mainly characterized by a higher abundance of 
Dinoflagellata, Basidiomycota, Mesomycetozoa, and Apicomplexa in 
spring, while Chlorophyta, Haptista, and Choanoflagellida were more 
abundant in autumn (Figure 4; Supplementary Table S5). It is worth 
noting that the protists, such as ciliates, dinoflagellates, and fungi, 
possess much higher SSU rDNA copies than other protists, which 
could potentially result in an overestimation of their prevalence in 
environmental surveys (Godhe et  al., 2008; Gong et  al., 2013). 
Variations in single-celled rDNA copy number have been tightly 
linked with cell size, thus it is more appropriate to interpret the rDNA 
reads in relation to relative proportion of eukaryotic biomass (Fu and 
Gong, 2017; Zou S. et al., 2021). Therefore, planktonic dinoflagellates 
and fungi (Basidiomycota and Mesomycetozoa) might bloom in 
spring, resulting in higher biomass during this season.

Limited variability was noted in planktonic microeukaryotic 
communities across water column depths (Figure 3A; Table 1), despite 
there being significant differences in certain environmental variables 
(e.g., DO and temperature; Supplementary Table S2). This observation 
aligns with a previous study on bacterioplankton communities in a 
reservoir with a depth range of 0.5–20 m (Zlatković et al., 2022) but 
contrasts with research covering a much wider depth range. For 

example, Gong et  al. (2015) documented that structure of 
microeukaryotic community was significantly shaped by depth in 
sediments of coastal shallow water (15–75 m). In addition, David et al. 
(2021) investigated the protistan community in Lake Baikal, Russia, and 
demonstrated a strong significant effect of depth (5–1,400 m) on protist 
community stratification. The limited variation in planktonic microbial 
communities within the epilimnion zone (0–20 m) of water column is 
likely due to wind-induced water mixing, which reduce stratification 
and constrain niche differentiation opportunities for microorganisms. 
Therefore, the homogeneity of microeukaryotic plankton can 
be understood as breakdown of stratification in the upper layer of water 
column, may have the following ecological consequences: (1) 
Upbringing nutrient-rich deeper waters to the surface, increasing the 
nutrient availability for diverse microbial groups and homogenizing 
environmental conditions (e.g., temperature, pH); (2) Promoting 
oxygenation to deeper hypoxic zones, stimulating the planktonic 
metabolic activities; (3) Facilitating the movement of microorganisms, 
increasing gene flow, genetic diversity, and the potential colonization of 
new habitats; and (4) Temporal changes in microbial community 
structure caused by the disruption of stratification, understanding these 
dynamics can help us gain insights into the resilience and adaptability 
of microbial communities.

FIGURE 8

Drivers of planktonic microeukaryotic functional composition variation in Qianxia Lake. Random forest algorithm was used to determine the 
importance of environmental factors in explaining the variations of functional groups (A). The relative proportions of phototrophs, mixotrophs, and 
heterotrophs covaried well with several environmental gradients, including N:P ratio (B), Chl-a (C), and dissolved oxygen (D). Statistical significance is 
indicated as follows: *p  <  0.05, **p  <  0.01, and ***p  <  0.001.
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Species richness-productivity relationship 
in lake microeukaryotic communities 
follows a significant hump-shaped pattern

The species richness and productivity relationships (SRPR) at 
regional and local scales are long-standing and fundamental aspects 
of ecological research. SRPR can exhibit various patterns, such as 
linear, unimodal, U-shaped, or non-significant patterns (Waide et al., 
1999; Mittelbach et al., 2001; Whittaker and Heegaard, 2003; Wang 
et al., 2020). Among these patterns, hump-shaped relationships occur 
most frequently, particularly in aquatic systems (Mittelbach et al., 
2001). Our current study demonstrated a hump-shaped curve between 
microeukaryotic diversity and Chl-a (Figures 1B,D), and this pattern 
was mainly attributed to Dinoflagellata, Basidiomycota, Oomycota, 
and Perkinsozoa, most of which were heterotrophs, with the exception 
of Dinoflagellata (Supplementary Figure S2; Supplementary Table S4). 
Our observations of microeukaryotic species richness maximizing at 
intermediate productivity levels (~4.0 μgL−1) align with earlier 
research in marine (Spatharis et  al., 2008) and lake ecosystems 
(Dodson et  al., 2000; Grover and Chrzanowski, 2004). Several 
hypotheses have been proposed based on existing ecological theories 

to explain the hump-shaped relationship. At the low productivity zone 
(left end of the curve), species richness seems primarily influenced by 
nutrient limitation (Spatharis et al., 2007). As productivity increases, 
the abundance of rare species may surge, leading to increased species 
richness (Abrams, 1995). Nonetheless, within the high productivity 
regime (rightmost of the curve), a reduction in species richness may 
be due to increased competition or severe environmental stressors 
(Dodson et al., 2000; Spatharis et al., 2008). These findings underscore 
the complex ecological dynamics that govern microeukaryotic 
biodiversity patterns in aquatic ecosystems.

Linking functional shifts of microeukaryotic 
planktons to environmental drivers

The diversity and taxonomic composition of communities 
exhibited significant correlations and formed hump-shaped 
relationships with Chl-a and DO (Figures  1B,D, 3D; 
Supplementary Figure S2). However, no similar patterns were 
observed for phototrophs and heterotrophs, except for mixotrophs 
when using trait-based functional analysis (Figure  6C). The 

FIGURE 9

Redundancy analysis (RDA) and variation partitioning analysis (VPA) depict the effects of environmental and spatial (PCNM) factors on microeukaryotic 
communities variations during spring (A,C) and autumn (B,D) in Qianxia Lake. “E” represents relative contribution of environmental factors to 
community variation; “S” indicates relative contribution of spatial factors to community variation; “E&S” represents the shared explained variation; 
“Residuals” denote unexplained community variation. Statistical significance was assessed through permutational ANOVA (*p  <  0.05 and ***p  <  0.001).
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decoupling between taxonomic and functional diversity contrasts with 
the findings of Ramond et  al. (2019), who indicated a strong 
association between the functional diversity of marine protist 
communities and their taxonomic diversity across different size 
fractions. The discrepancy might be ascribed to their transcontinental 
survey (~3,800 km) in contrast to our localized one (40 km). Studies 
on microbial biogeography and large-scale environmental surveys 
have documented higher diversity with larger sampling scales, 
potentially leading to increased functional diversity (Martiny et al., 
2006). Additionally, in comparison to the various traits annotated by 
Ramond et al. (2019), we acknowledge limitations in simplifying to 
three functional traits.

Random forest analysis indicated that the alterations in functional 
composition of freshwater microeukaryotic communities result from 
various environmental factors (i.e., N:P ratio, Chl-a, DO, TP, and TOC; 
Figure 8), which are broadly consistent with findings from several recent 
investigations (Amorim and Moura, 2021; Lu et al., 2023; Xue et al., 
2023). The determined nutrient levels showed relatively high contents 
of PO4-P (on average 0.14 mg/L) but low levels of DIN (dominated by 
NO3-N, 0.56 mg/L) in the regime of Qianxia Lake. Furthermore, the 

mean N:P ratio of 4.6:1 was significantly below the Redfield ratio of 16:1. 
Collectively, these results indicate an N-deficit condition within the 
studied region. The N limitation may be one of the reasons for both 
phototrophic and mixotrophic abundance positively correlated with the 
N:P ratio (Figure  8B). Under N-deficit condition, the elevated 
prevalence of heterotrophs could be  explained by heterotrophic 
microeukaryotes obtaining nutrients by grazing bacteria (Sherr and 
Sherr, 2002). The stronger relationship of relative proportion with Chl-a 
rather than DO in this study suggests that productivity probably plays 
a more crucial role than DO in indicating the abundance of mixotrophs. 
This finding, however, contrasts with our previous investigation of 
pico−/nanoeukaryotes in coastal oceans (Wang et al., 2020).

Significant distance-decay relationship 
suggests pronounced dispersal limitation 
effects

In the current investigation, a notable distance-decay pattern of 
the microeukaryotic community was observed in Qianxia Lake of 

FIGURE 10

Predicted occurrence frequencies of amplicon sequence variants (ASVs) plotted against mean relative abundance, representing microeukaryotic 
communities in spring (A), autumn (B), and both seasons (C), respectively. Variations in proportions of neutral and non-neutral partitions in relation to 
microeukaryotic richness and abundance (D). The Nm value is determined by multiplying the metacommunity size (N) with immigration rate (m). The 
R2 value indicates the fit adequacy to the neutral model.
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Southeast China (Figures 3B,C). The calculated turnover rate (z value) 
for microeukaryotes in our research was 0.014, falling within the range 
(0.0019 ~ 0.26) documented for microbial communities by Woodcock 
et al. (2006). This pronounced turnover in biodiversity is typically 
ascribed to a dynamic balance between extinction and immigration, 
coupled with an increase in habitat diversity over greater spatial 
distances (Kallimanis et al., 2008). Previous microbial biogeographic 
investigations have disclosed a decline within certain populations over 
distance, highlighting the substantial influence of dispersal limitation 
and resulting in conspicuous regional uniqueness (Martiny et  al., 
2006; Isabwe et al., 2018; Bai et al., 2022). This challenges the microbial 
ubiquitous dispersal hypothesis (Finlay and Clarke, 1999). Given the 
potential impact of both deterministic and stochastic factors on 
dispersion, dispersal limitation could theoretically be influenced by 
stochastic, deterministic, or both processes. Nevertheless, it is 
commonly accepted that dispersal limitation is a neutral stochastic 
process (Hubbell, 2001; Zhou and Ning, 2017).

Stochastic processes predominate the 
assembly of microeukaryotic communities

The neutral community model revealed the significant influence 
of stochastic processes on the assembly of microeukaryotic 
communities (Figure 10). Based on the robust assumption of ecological 
equivalence (Hubbell, 2005), this theory allows quantification of 
elusive processes—birth or death, dispersal, speciation, and ecological 
drift. The model has been widely applied to elucidate various ecological 
phenomena due to its simplicity and predictability (Heys et al., 2020; 
Jiao et  al., 2020). The NCM explained a significant portion of 
microeukaryotic community variation across seasons, with over 63% 
of variation for each season and over 55% in total (Figure 10). This 
implies a stronger impact of stochastic processes on microeukaryotic 
communities compared to deterministic processes. The dominance of 
stochastic processes was reinforced by the results of VPA (Figure 9), 
which demonstrated that spatial factors contribute more to shaping 
microeukaryotic communities than environmental factors. These 
findings are consistent with previous research, for instance, Chen et al. 
(2019) revealed that microeukaryotic communities in river ecosystem 
were mainly shaped by stochastic processes, with 88.5 to 89.9% of the 
community variation explained by NCM. Similarly, in a study of Zou 
K. et al. (2021) investigating protist communities assembly in the Pearl 
River Delta with serious anthropogenic disturbance, NCM accounted 
for 51.24% ~ 75.82% of community variation. These findings 
collectively demonstrated that the assembly of freshwater microbial 
eukaryotic plankton was primarily driven by stochastic processes.

Variance partitioning analysis (VPA) is a valuable statistical 
approach extensively employed for evaluating the importance of 
environmental and spatial factors in the variation of microbial 
community ecology (Wu et al., 2020; Jing et al., 2023). Regrettably, our 
VPA models revealed that over 50% of the community variation 
remained unaccounted for (Figure  9). This observation aligns with 
several previous studies on microeukaryotic biogeography (Chen et al., 
2019; Zhu et al., 2021), suggesting a limited impact of environmental 
and spatial factors on the microeukaryotic community. The large 
unexplained proportion could be due to influential factors not detected 
and included in the VPA. Furthermore, the inherent complexity of 
microbial ecological systems with intricate interactions, such as 
synergistic or antagonistic effects, poses challenges that may not 

be easily addressed by VPA (Meidute et al., 2008). It is also noteworthy 
that VPA tends to exaggerate the impact of spatial factors (Gilbert and 
Bennett, 2010). Consequently, enhancing the explanatory capacity of 
VPA may necessitate a broader scope of data acquisition, and the 
exploration of alternative modeling strategies, such as incorporating 
neutral community model, to ameliorate the inherent limitations of VPA.
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