
Frontiers in Microbiology 01 frontiersin.org

Combination of nucleic acid 
amplification and CRISPR/Cas 
technology in pathogen 
detection
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Major health events caused by pathogenic microorganisms are increasing, 
seriously jeopardizing human lives. Currently PCR and ITA are widely used for 
rapid testing in food, medicine, industry and agriculture. However, due to the 
non-specificity of the amplification process, researchers have proposed the 
combination of nucleic acid amplification technology with the novel technology 
CRISPR for detection, which improves the specificity and credibility of results. 
This paper summarizes the research progress of nucleic acid amplification 
technology in conjunction with CRISPR/Cas technology for the detection of 
pathogens, which provides a reference and theoretical basis for the subsequent 
application of nucleic acid amplification technology in the field of pathogen 
detection.
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1 Introduction

A pathogen is defined as an infectious micro-organism or agent, of which viruses and 
bacteria are the most encountered clinically (Casadevall and Pirofski, 2002). These pathogens 
are highly evolvable, pathogenic and rapidly spreading, posing a serious threat to human 
health. Microbial control programmes are increasingly used throughout society to reduce the 
risk of consumer infection. The bacterial culture method is widely recognised as the “gold 
standard” for pathogen detection due to its robustness in common laboratory experiments. 
However, it has disadvantages such as time-consuming, laborious, and inefficient detection, 
which have significantly hindered its widespread use in the clinic. An alternative method is 
immunological detection, which is based on the recognition and binding of antigens by 
specific antibodies (Kohl and Ascoli, 2017). Although it is advantageous in terms of speed, 
simplicity and specificity in the detection of pathogenic microorganisms, it requires a long 
period of time for antibody preparation and has a rather low detection sensitivity. Nucleic acid 
detection technologies, unlike the above-mentioned methods, can simultaneously meet the 
requirements of accuracy, rapidity and sensitivity for pathogen detection, thus showing 
superiority in ensuring human safety.

Nucleic acid amplification tests (NAATs) are the most widely used nucleic acid detection 
technology and have become indispensable tools throughout the life sciences since polymerase 
chain reaction (PCR) became widely used in biomedicine and other fields in 1980 (Seemayer, 
1990). This paper mainly introduces the application of nucleic acid amplification technology 
combined with the Clustered Regularly Interspaced Short Prepeats (CRISPR)-Cas system in 
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the field of pathogen detection, which provides a reference for the 
subsequent application of nucleic acid amplification technology in the 
field of rapid detection.

2 Detection of pathogens based on 
PCR-CRISPR

PCR is the most widely used technical tool for pathogen detection 
based on nucleic acid amplification. Simulating the process of DNA 
replication in the central dogma, the PCR process works in vitro by 
replicating the daughter strand of DNA that is complementary to the 
parent strand of template DNA after a cycle of denaturation-
annealing-extension (Ramesh et al., 1992; Markoulatos et al., 2002). 
Specific primers are designed to detect different targets, and the target 
DNA amplification products accumulate exponentially within 25–30 
PCR cycles. Due in part to its “amplification” nature, PCR has become 
a multifunctional tool with improved specificity and sensitivity 
compared to immunological assays, and can be used to detect a variety 
of pathogenic bacteria (Malorny et al., 2003; Hadi et al., 2023). To 
improve the detection performance of PCR, multiplex PCR (mPCR) 
and quantitative real-time PCR (qPCR) have also been established 
with the advancement of molecular biology and PCR technology. 
Alnakip et  al. (2023) characterized Staphylococcus aureus and 
Escherichia coli in 150 cheese samples by multiplex PCR to evaluate 
their ability to produce virulence factors. Anejo-Okopi et al. (2016) 
designed specific primers to detect Salmonella virulence gene invA 
from selected poultry farms using PCR with 91% success rate. 
Amplification of virulence genes of suspected Salmonella in poultry 
using PCR is effective and can be used as an alternative tool for rapid 
detection of Salmonella. However, because the display of the detection 
results of the above methods is typically based on nucleic acid 
electrophoresis in either ultraviolet or fluorescence mode, these 
PCR-only detection methods have drawbacks such as long detection 
time and inconvenience of on-site testing. How to read the PCR 
results quickly and easily has become a practical problem that needs 
to be solved.

As part of the acquired immune system in prokaryotes, the 
CRISPR/Cas system defends the host organism against the invasion 
of exogenous genetic elements by destroying foreign plasmid or phage 
DNA, and this process is centered on CRISPR sequences and Cas 

proteins (Koonin and Wolf, 2015; Hryhorowicz et al., 2017; Paul and 
Montoya, 2020). Specifically, the CRISPR sequence is first transcribed 
and processed into a short crRNA that directs the recognition of the 
target DNA. The Cas proteins, known as nucleic acid endonucleases, 
then bind the crRNA to form an RNA-protein complex. After further 
binding to the target DNA under the guidance of the crRNA, the Cas 
proteins then cut the target DNA, creating a gap in the gene. Gene 
repair by homologous recombination or non-homologous end joining 
enables gene editing (Figure 1; Savić and Schwank, 2016; Paul and 
Montoya, 2020; Liu et al., 2022).

In a study conducted by Wang et al. (2023) they developed a 
method that can detect the presence of terminators in transgenic 
plants using a combination of PCR and CRISPR/Cas12a techniques. 
The method can be used to identify the target gene levels in about  
50 minutes. In addition, accurate detection of all 11 samples 
confirmed the applicability. Yang et al. (2022) integrated the CRISPR/
Cas system to amplify the amplification refractory mutation system 
qPCR (ARMS-qPCR) to detect single nucleotide polymorphism 
(SNP) in Salmonella enterica. The results of the experiment revealed 
that the detection rate was 0.5%, which is lower than the limit of 
detection that gel electrophoresis can provide. This method can be 
utilized to analyze the various genes that are involved in the resistance 
to drugs (Figure 2A). Cas13a, a remarkable Cas protein, exhibits 
non-canonical RNAase activity that can be  activated by crRNA-
mediated target RNA recognition. This feature allows the 
combinatorial use of Cas13a activity and isothermal amplification. 
Due to the programmability of the crRNA sequence and the spin-off 
effect of the Cas13a protein. Zhou et al. (2020) developed a CRISPR/
Cas13a-based Bacterial Detection (CCB) assay to directly detect 
Staphylococcus aureus (S. aureus) after PCR amplification with high 
sensitivity and selectivity. The results showed that the CCB assay was 
able to successfully detect target genomic DNA (gDNA) down to 100 
Am  with LOD of 1 cfu/mL, and the dynamic detection range of 
S. aureus was 100 ~ 107 cfu/mL (Figure 2B).

PCR, as the gold standard of molecular detection, is reproducible, 
sensitive and widely applicable, but requires electrophoresis, color 
development and other steps, which are instrument-dependent, 
complicated and not convenient for on-site detection. Despite the 
widespread application of PCR, amplifying complex or long DNA 
segments is challenging. The discovery of the CRISPR/Cas technology 
provides a feasible alternative to on-site detection of PCR technology. 

GRAPHICAL ABSTRACT

https://doi.org/10.3389/fmicb.2024.1355234
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Zeng et al. 10.3389/fmicb.2024.1355234

Frontiers in Microbiology 03 frontiersin.org

Meanwhile, the application of CRISPR/Cas system also provides new 
ideas and methods for the optimization and improvement of PCR 
technology. In order to overcome the shortcomings of PCR, 

researchers have explored new molecular detection techniques by 
combining PCR technology with CRISPR/Cas technology, and 
through further improvement and optimization, the technology has 

FIGURE 1

Illustration of CRISPR-Cas sensing mechanisms and their diagnostic application.

FIGURE 2

(A) Schematic illustration of the Carms assay for distinguishing Salmonella enterica species with single-nucleotide resolution and the investigation of the 
resistance of drug-resistant S. enterica to salt stress (Yang et al., 2022); (B) proposed CCB-Detection for Staphylococcus aureus sensing (Zhou et al., 2020).
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been widely used in many fields and has had a great impact (Rakshit 
et al., 2022; Zhang et al., 2022; Cao et al., 2023; Meng et al., 2023; Tian 
et al., 2023).

3 Pathogen detection based on 
isothermal nucleic acid 
amplification-CRISPR

Despite the flourishing development of PCR techniques and its 
widespread use in combination with the CRSPR/Cas technique for 
molecular detection, the need for a thermal cycling step during PCR 
experiments has significantly hindered its use for on-site real-time 
detection. Isothermal nucleic acid amplification, a constant-
temperature nucleic acid amplification technique, has circumvented 
the need for the demanding thermal cycling step in a canonical PCR 
experiment, and therefore can usually complete the amplification 
process in a shorter time while maintaining high efficiency, sensitivity, 
and accuracy. Representative isothermal amplification technologies 
mainly include Loop-Mediated Isothermal Amplification (LAMP) 
(Notomi et al., 2000), Recombinase Polymerase Amplification (RPA) 
(Piepenburg et al., 2006), Strand Displacement Amplification (SDA) 
(Walker et  al., 1992), Helicase Dependent Amplification (HDA) 
(Vincent et al., 2004), Rolling Circle Amplification (RCA) (Nilsson 
et al., 1994), Hybridization Chain Reaction (HCR) (Dirks and Pierce, 
2004), etc. It is noteworthy that a canonical isothermal amplification 
process typically requires an indicator readout (e.g., fluorescent 
probes) to detect and report the amplification products, while the 
specificity of the detection process can often be  affected by the 
sequence of the target itself and the specificity of the amplification 
process. Given the inherent limitations of isothermal amplification, 
the CRSPR/Cas detection system can serve as both a highly specific 
method for nucleic acid sequence identification and an idle readout of 
the amplification process, and the combined use of isothermal 
amplification and CRSPR/Cas techniques can significantly improve 
the accuracy of test results.

3.1 LAMP-CRIPSR

LAMP technology is a new thermostatic nucleic acid amplification 
technology suitable for genetic diagnosis reported by Notomi et al. 
(2000), which has been widely used in the rapid detection of a variety 
of pathogens. This technique relies on (1) the catalysis of Bst DNA 
polymerase with strand-substitution ability, and (2) the design of a 
pair of external primers (i.e., F3 and B3) and a pair of internal primers 
(i.e., FIP and BIP). The primers can bind to the target sequence under 
the condition of 60–65°C, and the product is the structure of stem-
loop DNA, which can realize 109–1010 times amplification within 
15–60 min (Nagamine et al., 2001; Parida et al., 2008; Notomi et al., 
2015; Becherer et al., 2020; Park, 2022). The amplification products 
can then be  detected by gel electrophoresis or turbidimetry. 
Pyrophosphate byproducts are produced during the reaction due to 
the large amount of DNA being synthesized, and the compound binds 
to divalent metal ions to form insoluble compounds, which can 
be used to further observe the amplification reaction. This technology 
is not only able to use DNA as a template but also to detect target RNA 
by reverse transcription-LAMP (RT-LAMP) reaction. By using an 

AMV reverse transcriptase, it is also possible to complete the reaction 
in one step in a short period of time and under constant temperature 
conditions (Tomita et al., 2008).

Bao et al. (2020) reported a contamination-free LAMP assisted by 
CRISPR/Cas9 cleavage, which is superior to CRISPR/Cas9 in terms of 
reliability and durability. The core of the methodology is to design 
forward or reverse internal primers in target-independent regions so 
that the LAMP product contains an in-situ neighboring motif (PAM) 
site for CRISPR/Cas9 to recognize and cleave. A LAMP-CRISPR/
Cas12a-based lateral flow biosensor was developed and used by Lee 
and Oh (2023) to detect Salmonella with a LOD of 1.22 × 100 CFU/
mL. Wang et al. (2021) combined RT-LAMP with Cas12a to detect 
SARS-CoV-2, and a single-molecule sample could be  detected in 
45 min, which was consistent with the results of RT-PCR, and this 
method has the characteristics of short detection time, high sensitivity, 
and visualization of results. The paper equipment based on RT-LAMP 
and Cas12a by Cao et al. (2022) developed an RT-LAMP with Cas12a 
based paper device for SARS-CoV-2 detection in wastewater, where 
enriched wastewater samples were lysed and introduced into a paper 
device for detection of specific gene fragments, and the results could 
be read at 480 nm or in a paper device. Li et al. (2022) investigated the 
establishment of Immunocapture Magnetic Bead (ICB) enhanced 
LAMP-based CRISPR/Cas12a method (ICB-LAMP-CRISPR/Cas12a) 
for the rapid visualization and detection of Campylobacter jejuni. It 
was captured by the ICB, heated to release the bacterial genomic DNA 
and used in the LAMP reaction, and the LAMP product was cleaved 
by CRISPR/Cas12a for detection. Campylobacter jejuni can be detected 
down to 8 CFU/mL. Furthermore, in addition to ICB capture, the 
method is performed in a closed pipeline to avoid aerosol 
contamination. The RT-LAMP-CRISPR-Cas13a method developed by 
Ortiz-Cartagena et al. (2022) does not require RNA extraction and can 
be used to detect SARS-CoV-2 viruses in nasopharyngeal samples 
with 100% specificity and 83% sensitivity (Figure 3).

3.2 RPA-CRISPR

RPA is a new nucleic acid thermostatic amplification technique 
developed by Piepenburg et al. in 2006 using protein recombination 
and repair machineries involved in cell DNA synthesis (Piepenburg 
et al., 2006). Since its establishment more than 10 years ago, RPA has 
been widely used in bacteria, fungi, parasites, viruses, drug resistance 
genes and other fields. Under ATP and PEG conditions, recombinase 
binds to primers to form a complex, and the DNA template of the 
complex searches for homologous sequences to start a strand-
substitution reaction to form new DNA (Jaroenram and Owens, 2014; 
Daher et al., 2016; Jia et al., 2020; Tan et al., 2022). Compared with 
traditional PCR technology, this technology detection range is 37°C-
42°C, the required sample concentration is low, can amplify as low as 
1–10 DNA copies in 10 min, amplification of a variety of different 
targets, including RNA, miRNA, ssDNA, and dsDNA, RPA reactions 
can be  detected by real-time fluorescence, gel electrophoresis, 
chemiluminescence and other methods (Munawar, 2022).

Xiong et  al. (2021) established a three-line lateral flow assay 
mediated by RT-RPA in combination with CRISPR/Cas9 for SARS-
CoV-2 diagnosis. The analysis of 64 clinical samples showed that the 
negative predictive concordance was 100% and the positive 
predictive concordance was 97.14%. Liu et al. (2021) developed a 
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food safety detection technology (RPA-Cas12a-FS) combining RPA 
and CRISPR-Cas12a for rapid detection of foodborne pathogens. 
Zhang et al. (2022) established CRISPR/Cas12a combined with RPA 
to detect Aspergillus besseyi with a LOD of 1 copy/μL, which was 
combined with a lateral flow strip assay to visualize the results. Yu 
et al. (2023) coarsely extracted DNA from vaginal or cervical swabs 
of pregnant women by heat lysis, then selected the highly conserved 
region of the cfb gene encoding the Christie-Atkins-Munch-Petersen 
(CAMP) factor as a target for detection, and enriched the target 
sequences by amplification using RPA, and finally utilised the 
CRISPR/Cas12a system for target-specific identification and signal 
release(Figure  4A). Our team Tian et  al. (2021) combined the 
RPA-Cas12a technique with lateral flow immunoassay, thus realizing 
the rapid detection of L. monocytogenes. In addition, they developed 
a method combining digital droplet microfluidic chip technology to 
realize the simultaneous detection of four pathogenic bacteria with 
high sensitivity and specificity, which can reach 10 CFU/mL. The 
future development of this technology has great potential and may 
be applied to the rapid detection of foodborne pathogens, which is 
of great significance to ensure food safety. A multiplexed microfluidic 
platform developed by Zhou et al. (2023) combines RPA and CRISPR 
technology with the assistance of a heated membrane to enable rapid 
and cost-effective detection of multiple HPV subtypes while 
providing convenient temperature control for RPA and CRISPR 

analysis. The technology can detect HPV16 and HPV18 in less than 
30 minutes with high specificity and sensitivity (Figure 4B).

3.3 SDA-CRISPR

SDA, or thermostatic amplification of DNA enzymes, is an in 
vitro DNA amplification technique based on the principle of DNA 
cleavage by restriction endonucleases at specific cleavage sites, as 
well as the extension of DNA polymerases at the cleavage sites,  
and the displacement of downstream DNA fragments in the 
thermostatic amplification technique (Walker et al., 1992). It also 
has good compatibility with various signal probes. These attributes 
render SDA an innovative signal amplification methodology with 
substantial potential for numerous types of biosensors, 
encompassing colorimetry, fluorescence, and chemiluminescence 
(Wang et al., 2022).

Combining real-time fluorescence detection with SDA provides 
ultrasensitive detection of ochratoxin A with a LOD of 0.01 ng/mL 
(Guo et al., 2022). Zhou et al. (2018) published a novel method named 
CRISPR-Cas9-triggered nucleic acid endonuclease-mediated signal-
amplified DNA assay (hereinafter referred to as CRISDA), which 
employs the CRISPR-Cas9 system to amplify and detect double-
stranded DNA (dsDNA) efficiently and sensitively. The proposed 

FIGURE 3

Workflow of the novel developed and optimized protocol for infectious disease diagnosis based on CRISPR-Cas13a technology (Ortiz-Cartagena et al., 
2022).
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method employs the high sensitivity and accuracy of CRISPR for 
target DNA recognition, which is integrated with the powerful peptide 
nucleic acid (PNA) invasion-mediated endpoint detection to achieve 
sub-atomic level sensitivity and single-base specificity in even the 
most complex sample backgrounds (Figure 5). The researchers Wang 
et al. (2022) developed a colorimetric sensor platform that combines 
SDA with CRISPR/Cas12a for the detection of serum prostate-specific 
antigen (PSA). The platform is able to differentiate between blood 
samples were collected from prostate cancer patients, other types of 
cancer patients, and healthy individuals. PSA allows SDA to produce 
amplicons that are recognised by the CRISPR-Cas12a system and will 
mediate the cleavage of the trans ssDNA of the adjacent ligated DNA, 
thereby activating the gold nanoparticles (AuNPs), which signal the 
probe and provide a colourimetric readout with a LOD of 0.03 ng/mL, 
which reduces the background signal and improves the specificity of 
the assay. Gong et al. (2021) reported an SDA-assisted CRISPR-Cas12a 
method for the colorimetric analysis of viral nucleic acids. The 
Hepatitis B Virus DNA was used as a triggering target, activating the 
trans-cleavage activity of CRISPR-Cas12a and producing ssDNA. This 
ssDNA was then hybridized with template DNA and non-specifically 
cleaved on GOx-modified magnetic beads. The released GOx 
catalyzed the discoloration of the substrate solution and resulted in 
visualization of the results. Chi et  al. (2022) combined SDA with 
Cas14 for the detection of circulating miRNAs, a biomarker of 
cholangiocarcinoma. miRNA was directly amplified by SDA without 
the need for reverse transcription, which reduced the risk of 
non-specific amplification, differentiated between miRNAs with 
similar sequences, and improved the sensitivity of the assay by 
detecting miRNAs as low as 680 fM within 1 h. Cas14a was efficiently 

activated by the single-stranded SDA amplicon with a 2.86-fold 
increase in sensitivity compared to the use of Cas12a (Figure 5).

3.4 HDA-CRISPR

HDA technology simulates in vivo DNA replication by using 
deconjugating enzymes to unravel the DNA double-stranded 
structure, primers to bind to the single-stranded target sequence, 
synthesize the new double-stranded DNA under the action of DNA 
polymerase, and repeat the amplification steps. The system requires 
only two primers (Vincent et al., 2004; Jeong et al., 2009; Barreda-
García et al., 2018).

Thermophilic deconvolution enzyme-dependent amplification 
(tHDA) in combination with CRISPR/Cas12a specifically detects the 
virulence factor stx2 of E. coli O157:H7, eliminating false-positive 
results generated by primer dimers due to the binding of crRNA and 
Cas12a to the target, and detecting E. coli O157:H7 in salad mixtures 
as low as 103 CFU/g (Kim et al., 2023; Figure 6).

3.5 RCA-CRISPR

RCA is a nucleic acid assay established to mimic the natural 
process of microbial circular DNA roll-over replication, acting on 
the circular DNA molecule (Nilsson et al., 1994), and small cyclic 
oligonucleotides act as templates for DNA or RNA polymerases to 
generate long and repetitive product strands (He et al., 2019). The 
two ends of the loop template are annealed with the ligating 

FIGURE 4

(A) Schematic diagram of the CRISPR-GBS assay (Yu et al., 2023); (B) detection of HPV in patient samples on CRISPR (Zhou et al., 2023).
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template and connected to make the template into a loop, after 
which the primers and the loop template are annealed and extended 
by DNA polymerase, and ultimately a long DNA single strand 
containing multiple repetitions of the template sequence can 

be obtained, with an amplification efficiency of up to 109-fold (Deng 
and Gao, 2015).

Qiu et al. (2018) investigated a novel RCA-CRISPR-split-HRP 
(horseradish peroxidase) method constructed from synthetic 

FIGURE 5

Schematic reaction mechanism of CRISDA (Zhou et al., 2018).

FIGURE 6

Schematic diagram of the detection of E. coli O157:H7 based on HDA-CRISPR (Kim et al., 2023).
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biological components. This technology enables the cost-effective and 
convenient detection of miRNAs with sensitivity as low as fM and 
single-base specificity. The substrate color changed from light yellow 
to blue after isothermal amplification by RCA for in vitro inactivation 
of Cas9 binding and splitting HRP activity assessment, indicating the 
presence of specific miRNAs. The whole process does not take more 
than 4 h, is easy to operate and does not require large equipment 
(Figure 7). Chen et al. (2023) combined branched-chain rolling ring 
amplification (BRCA) and CRISPR-Cas12a (BRCA-Cas) to establish 
a detection platform for colorectal cancer-related circulating 
non-coding RNA, which realized the detection of different circulating 
RNA in serum. Abnous et al. (2021) combined CRISPR-Cas12a, RCA 
and AuNPs to introduce an aptamer sensor for highly sensitive 
detection of aflatoxin and the color of the sample changed from yellow 
to colorless. The addition of T4 DNA ligase and phi29 DNA 
polymerase in the presence of the target results in the inactivation of 
the CRISPR-Cas12a gene editing system and the formation of larger 
single-stranded DNA structures on the surface of AuNPs. Qing et al. 
(2021) introduced an immobilization-free electrochemical biosensing 
platform into the CRISPR/Cas system, which can be used to accurately 
detect nucleic acids and small molecules associated with diseases, 
where RCA converts and amplifies the target recognition sequences 
and is used to activate CRISPR/Cas12a activity. Universal blocker 
probe (BP) can be cleaved by activated Cas12a, which is not the case 
for unactivated Cas12a. This electrochemical biosensor combines an 
RCA-CRISPR/Cas12a platform with a rGO/GCE electrode to  
detect dsDNA, yielding a cost-effective and versatile tool for 
clinical diagnostics.

3.6 HCR – CRISPR

Dirks and Pierce (2004) introduced the HCR, a type of isothermal 
and enzyme-free nucleic acid amplification technology, in 2004. HCR 
is gaining popularity in biotech, forensics, and infectious disease 
detection. A single-stranded DNA initiator triggers an alternating 
hybridisation event between two hairpins forming a double helix 
polymer (Figure 8A; Bi et al., 2017; Zhang et al., 2020; Li et al., 2022). 

HCR with its unique properties of isothermal, enzyme-free, and high 
amplification efficiency is widely used in biosensing and biomedical 
sectors due to its excellent analytical abilities and wide application 
potential (Zhou et al., 2021).

CRISPR/Cas systems have ignited increasing attention in accurate 
and sensitive nucleic acids detection. Ke et al. (2022) proposed a new 
CRISPR/Cas12a-based chemiluminescence enhancement biosensor 
for nucleic acid detection. With a remarkable sensitivity, it is capable 
of detecting synthetic DNA targets at a detection limit of 3 pM, and 
can also single-copy detect plasmids. This study demonstrated the 
high accuracy of HPV testing, achieving a sensitivity of 88.89% and 
specificity of 100% in practical application, respectively, showing its 
superior accuracy. Xing et al. (2020) based on the dual amplification 
of HCR and CRISPR-Cas12a, we developed the apta-HCR-CRISPR 
assay for the direct, highly sensitive detection of tumor-derived 
extracellular vesicle (TEV) protein. HCR amplified TEV protein-
targeted aptamer with long-repeated sequences and multiple barcodes, 
enhancing detection sensitivity and specificity. CRISPR-Cas12a boosts 
fluorescence signals for highly sensitive quantification of TEV proteins 
in clinical samples. Qiao et al. (2023) established an amplification free 
detection method for Salmonella by magnetic separation of dual-
function HCR scaffold polyvalent aptamers with CRISPR/Cas12a 
activity coupling. In the detection system, the dual-function HCR 
scaffold polyvalent aptamers with high binding affinity and specificity 
were first prepared by assembling several Salmonella-specific aptamers 
on the long HCR products. In addition to the enhanced affinity, 
HCR-Multiapt also contains many repetitive CRISPR-targeting DNA 
units in its HCR scaffold, which may trigger the trans-cutting activity 
of Cas12a. In the presence of the target bacteria, HCR-scaffold 
polyvalents can efficiently attach to the bacterial surface and amplify 
the bacterial signal into a CRISPR/Cas12a based fluorescent readout. 
The detection system can perform ultra-sensitive detection of 
Salmonella in the linear range of 100 ~ 107 cfu/mL with a detection 
limit of 2 cfu/mL. This method, which possesses high sensitivity, can 
be effectively utilized for clinical diagnosis (Figure 8B). With the use 
of CRISPR-Cas13a and enzyme-free nucleic acid amplification. Yang 
et  al. (2021) reported the development and validation of a HCR 
coupled CRISPR-Cas13a-based assay (Cas-HCR) for detection of 

FIGURE 7

Schematic representation for the blueprint and detection workflow of the RCH method for detecting miRNAs (Qiu et al., 2018).
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SARS-CoV-2. The detection performance of Cas-HCR assay was 
demonstrated on a home-made optical-fiber evanescent wave 
fluorescence biosensor capable of collecting the fluorescence excited 
within an exponentially decaying evanescent field around the 
optical fiber.

3.7 Other isothermal amplification 
techniques – CRISPR

In addition to the above widely used isothermal amplification 
technologies, there are many isothermal technologies that are being 
deeply explored and improved. Enzymatic Recombinase Amplification 
(ERA) is a domestic independent research and development 
amplification technology, the reaction relies on recombinase derived 
from low-temperature bacteriophages, can replace amino acids at 
specific sites, has good amplification speed and specificity, combines 
ERA with Cas12a to achieve highly sensitive detection of porcine 
circovirus (Zhang et al., 2021). Real-time fluorescence nucleic acid 
isothermal amplification detection (SAT) is a combination of nucleic 
acid isothermal amplification and real-time fluorescence detection, 
which can design specific primers for the target nucleic acid of 
pathogens, and can rapidly amplify and detect Mycoplasma 
pneumoniae with high sensitivity and specificity (Barreda-García 
et al., 2018; Li et al., 2019). NASBA technology amplifies target RNA 
under thermostatic conditions by using single-stranded RNA as a 

template to mimic the replication mechanism of retroviruses in vivo 
by reverse transcriptase, RNase H and T7 RNA polymerase, and 
forward and reverse primers (Compton, 1991), and T7RNA 
polymerase recognizes the DNA promoter sequence and transcribes 
it into single-stranded RNA for the next cycle (Hønsvall and 
Robertson, 2017; Ju et al., 2021). Wang et al. (2021) used NASBA 
technology to diagnose clinical samples from 25 patients with 
cryptococcal disease with LOD of 10 CFU/mL. Pardee et al. (2016) 
designed a paper-based sensor for rapid detection of Zika virus and 
binding to CRISPR/Cas9 to identify virus strains, a platform that can 
directly detect 2.8 fM Zika virus RNA from infected rhesus monkey 
serum. This system displays the results through color changes, and can 
be judged by the naked eye, reducing the cost of use and improving 
the range of use. The novel exonuclease assisted isothermal nucleic 
acid amplification (Exo-NAT) technology developed by Ye et  al. 
(2018) was analyzed by using full-length Bst DNA polymerase 
combined with melting curve, which had ultra-high specificity and 
good detection limits in both singleplex and multiplex detection, and 
showed Rotavirus A and Rotavirus A in 42 clinical samples. Astrovirus 
and adenovirus have been validated with up to 100% specificity and 
sensitivity. The Hairpins Mediated Amplification (HMA) technique 
developed by Hongbo et al. (2022) combines LFD to detect specific 
amplification products and reduce the signal of non-specific 
oligonucleotide hybridization, thereby making it more specific. HMA 
was validated by detecting IS6110 fragments of Mtb, combined with 
LFD to visualize the results. Isothermal Exponential Amplification 

FIGURE 8

(A) Fundamental working principle of HCR (Zhang et al., 2020); (B) detection of HPV in patient samples on CRISPR (Qiao et al., 2023).

https://doi.org/10.3389/fmicb.2024.1355234
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Zeng et al. 10.3389/fmicb.2024.1355234

Frontiers in Microbiology 10 frontiersin.org

Reaction (EXPAR) technology relies on the synergy of nickease and 
DNA polymerase with strand displacement function to achieve 
exponential amplification of targets in buffer systems containing 
dNTP, primers (in most cases, targets to be  measured), and 
amplification templates (Mok et al., 2016; Reid et al., 2018). Huang 
et al. (2018) created a groundbreaking CRISPR/Cas9-based isothermal 
exponential amplification reaction strategy for rapid and site-specific 
nucleic acid detection. CRISPR/Cas9 with exponential amplification 
generates multiple DNA replicas that are detected by real-time 
fluorescence monitoring. The method is characterized by specificity 
and rapid amplification kinetics.

Among these, isothermal NAATs have garnered interest due to 
their operation at a constant temperature (thus requiring minimal 
laboratory setup) and cost-effectiveness (Dueñas et  al., 2022), the 
combination of isothermal NAATs and CRISPR/Cas technology has 
been successfully applied in the rapid detection of various pathogens, 
which has the advantages of low detection cost, high precision, fast 
quantification, and on-site rapid detection, and has a high potential 
for popularization and application. Compared to PCR, isothermal 
NAATs have reduced temperature requirements and assay costs, and 
different isothermal NAATs combined with CRISPR/Cas systems have 
different results. The programmable features of CRISPR-Cas12a, 
accurate target identification and indiscriminate cutting characteristics 
offer great promise for building fluorescence and colorimetric sensing 
platforms, especially since the CRISPR-Cas12a system has good 
compatibility with SDA and other warm signal amplification 
technologies (Wang et al., 2022). Isothermal amplification, as a novel 
technology, has many advantages but also faces many challenges, such 
as false positive signals generated by LAMP non-specific amplification 
and the complexity of primer design are still widely used technical 
challenges (Zhang et  al., 2021). Compared to other isothermal 
techniques, RPA is limited by the concentration of DNA, too high a 
concentration will inhibit the reaction, the amplification process is 
easily contaminated and the purification process of RPA products is 
difficult. NASBA amplification has many steps, the reaction system is 
more complex, not easy to develop, the reaction system needs to 
be  added to the enzyme reaction solution, and the cost is high 
(Debayan et al., 2023). The HDA technique requires 2 to 3 reaction 
temperatures, and the unlooped lock-in probe and template DNA or 
RNA that is not bound to the lock-in probe during the RCA process 
can also generate signals, which may reduce the sensitivity of the assay, 
and continuous improvement is still needed. Correctly and efficiently 
amplifying target sequences at appropriate temperatures and being 
able to accurately detect sequences and distinguish signals without 
interference is one of the major problems facing isothermal 
amplification technology today. Despite the simplicity, low cost, and 
high accuracy of advanced CRISPR-Cas-based biosensors, the 
synergistic use of CRISPR-Cas-based dual signal amplification systems 
for rapid diagnosis of pathogens is still rare (Tables 1, 2).

4 Sample pretreatment and portable 
detection devices

Nucleic acids, being essential components of all living organisms, 
provide a wealth of information regarding biological and pathological 
aspects of life (Zhang et al., 2022). The impact of sample pretreatment 
on nucleic acid amplification technology is very important, and it can 

directly affect the efficiency and accuracy of the amplification reaction. 
DNA or RNA extraction from the sample is the first step in nucleic 
acid amplification, and the quality and purity of the extraction is 
critical to the amplification reaction. Low-quality DNA or RNA may 
result in inefficient amplification, spurious products, or failure. 
Therefore, selecting the appropriate extraction method and kit and 
following best practices for the extraction steps can ensure a high 
quality nucleic acid sample (He et al., 2017; Mullegama et al., 2019). 
Some inhibitory substances may be present in the sample (Lantz et al., 
1996), such as hemoglobin, anticoagulants, and polyketides in blood. 
These inhibitory substances can affect the efficiency and accuracy of 
the amplification reaction. Therefore, it is necessary to use appropriate 
methods to remove these inhibitory substances during sample 
pretreatment, such as using special extraction kits, purification 
columns, or other removal methods. The impact of portable devices 
on nucleic acid amplification technology has been significant, allowing 
for the amplification of nucleic acids outside of the laboratory, 
providing easier, faster and more flexible applications (Wang et al., 
2020; Chen et al., 2023).

5 Discussion

Pathogens can cause serious diseases in humans and animals, and 
detection technology based on nucleic acid amplification plays an 
important role in pathogen detection. PCR is still the most mature 
technology in detection, and isothermal nucleic acid amplification 
technology is becoming more mature in microbial detection, which 
can compensate for PCR’s dependence on application scenarios and 
instrumentation, and has the characteristics of rapid, sensitive and 
convenient detection, and is especially suitable for rapid on-site 
detection in remote areas (Gill and Ghaemi, 2008). It is the main 
direction of future development in the field of pathogen nucleic acid 
detection (Deng and Gao, 2015; Jiang et al., 2023). However, compared 
with traditional PCR, primer design in isothermal nucleic acid 
amplification is complicated and difficult, lacks appropriate design 
software, requires screening and optimization of reasonable primers 
(Mayboroda et al., 2018), and is more prone to false-positive results 
due to aerosol contamination or non-specific amplification, and there 
is still a certain gap between detection sensitivity and qPCR. Methods 
that enable rapid and on-site detection of pathogenic bacteria are a 
prerequisite for public health assurance, medical diagnosis, ensuring 
food safety and security, and research. Many current bacterial detection 
technologies are inconvenient and time-consuming, making them 
unsuitable for on-site detection. New technologies based on the 
CRISPR/Cas system have the potential to fill the existing detection gap 
(Chakraborty et al., 2022). CRISPR-based sensors for the detection of 
pathogens, proteins, miRNAs, etc., have a wide range of applications 
(Wang et al., 2022; Zhang et al., 2023). There are risks associated with 
CRISPR technology: it may lead to off-target effects (Cheng et al., 
2020), i.e., the editing process may accidentally alter DNA sequences 
in non-target regions of the genome, which may lead to unintended 
consequences, such as genetic mutations or cytotoxicity. The immune 
effect triggered by the Cas protein itself is also one of the shortcomings 
(Sun et al., 2015). Unselected ssDNA cleavage activity of cas12a impairs 
targeted host cells (Paul and Montoya, 2020). Although there are still 
some problems with CRISPR/Cas9 gene editing technology, 
researchers have been committed to finding solutions, and through a 
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series of measures such as modification of Cas protein, use of Cas 
direct homologous enzyme, and chemical assistance, CRISPR/Cas9 
gene editing technology has improved its ability to accurately repair 
broken DNA, reduced its off-target rate, and weakened the target site 
restriction caused by PAM. target site restriction, controlling the 
occurrence of mosaicism to a certain extent. Furthermore, we are 
aware of the limitations of our CRISPR-Cas13a based assay and 
recognize the enhancements that would be required prior to its 
potential utilization in resource-limited settings as a clinical POC test. 
While researchers are looking for ways to make up for the 
shortcomings, they are also expanding the application areas of this 
technology (Knott and Doudna, 2018). The combination of isothermal 
nucleic acid amplification and CRISPR/Cas system can realize the 
secondary amplification of the detection signal and effectively improve 
the detection sensitivity, which has been applied in some applications 
in rapid detection, but it is mainly for a single pathogen, and needs to 
be combined with the multiplex nucleic acid amplification technology 
to improve the detection throughput and realize the multi-targeted 
joint detection. CRISPR/Cas technology has a very promising future 

in nucleic acid amplification technology. It can provide higher 
specificity, target selection ability, multiple amplification ability, while 
combining with gene editing and modification to realize real-time 
monitoring and detection, etc. With the continuous development and 
improvement of the technology, CRISPR/Cas technology is expected 
to bring more innovations and applications in nucleic acid 
amplification technology.

In conclusion, the rapid emergence of CRISPR-Cas technology 
for genome manipulation has been revolutionary for the life 
sciences. Despite the broad spectrum of applications of this 
technology, CRISPR molecular tools available at present face a 
range of limitations and challenges: e.g., reliance on DNA repair 
mechanisms, safety and ethical issues all need to be addressed with 
attention. In the future research, nucleic acid amplification 
technology still needs to be  integrated, high-throughput, 
multiplexed and convenient as the research objectives, from the 
various technical difficulties, optimize the pre-treatment method, 
primer design method, product detection method and so on, in 
order to improve the efficiency of the detection; nucleic acid 

TABLE 1 Comparison of the characteristics of different isothermal amplification techniques.

Number Technology 
name

Primer 
number

Temperature 
(°C)

Time 
(min)

Enzyme 
species

Template 
type

Efficiency Detection 
method

1 LAMP 4–6 60–65 20–60 DNA polymerase DNA/RNA 109–1010
Gel electrophoresis, 

turbidimetry

2 RPA 2 37–42 15–60
Recombinase, DNA 

polymerase
DNA/RNA /

Fluorescence, gel 

electrophoresis, 

chemiluminescence

3 NASBA 2 40–55 60–120

Reverse 

transcriptase, 

RNaseH

RNA 109–1012 Chemiluminescence

4 HDA 2 65 75–90
Helicase, DNA 

polymerase
DNA 107 Fluorescence

5 RCA 1 37 90–180
DNA polymerase, 

ligase
DNA/RNA 109 Gel electrophoresis

6 ERA 4 37–42 15–30
Recombinase, 

DNApolymerase
DNA 1012

Gel electrophoresis, 

fluorescence

7 SAT 2 42 15–30

Reverse 

transcriptase, 

T7RNA

RNA 109 Fluorescence

8 IMSA 6 60–65 60–90 DNA polymerase DNA/RNA /

Gel electrophoresis, 

color determination, 

turbidity, 

fluorescence

9 Exo-Nat 8 60–68 90 DNA polymerase DNA/RNA / /

10 SDA 4 65 30–60
DNA polymerase, 

NEase
DNA 108

Colorimetry, 

fluorescence, 

chemiluminescence

11 HMA 2 63 60–180 DNA polymerase DNA/RNA / /

12 EXPAR / 55 30
NEase, DNA 

polymerase
DNA/RNA / /

13 HCR 4 / 30 / DNA/RNA /

Colorimetry, 

fluorescence, 

chemiluminescence
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amplification technology has an important application prospect in 
the field of nucleic acid analysis. With the continuous development 
and innovation of the technology, it is believed that nucleic acid 

amplification technology will play a greater role in biomedical 
research, disease diagnosis and environmental monitoring, and 
bring more new breakthroughs and progress in the field of life 

TABLE 2 Comparison of CRISPR/Cas detection methods based on nucleic acid amplification.

Amplification 
technology

Type Detect target LOD References

PCR Cas9 Tumor / Meng et al. (2023)

Invasive ductal carcinoma / Rakshit et al. (2022)

Cas12 Salmonella 5% Yang et al. (2022)

GM crops <60 copies Wang et al. (2023)

Cas13 S. aureus 1 CFU/mL Zhou et al. (2020)

Carbapenem-resistant Klebsiella pneumoniae 1 copy/μL Cao et al. (2023)

Hepatitis B virus (HBV), Hepatitis D virus (HDV) 1 copy/μL Zhang et al. (2022) and Tian et al. (2023)

LAMP Cas9 Salmonella, five Neisseria meningitidis serotypes, Zika virus / Bao et al. (2020)

Cas12 Salmonella 1.22 × 100 CFU/mL Lee and Oh (2023)

SARS-CoV-2 / Wang et al. (2021) and Cao et al. (2022)

Campylobacter jejuni 8 CFU/mL Li et al. (2022)

Cas13 SARS-CoV-2 / Ortiz-Cartagena et al. (2022)

RPA Cas9 SARS-CoV-2 / Xiong et al. (2021) and van der Veer et al. 

(2023)

Single base mutations 0.2 fM Zhou et al. (2022)

Cas12 Foodborne pathogens / Liu et al. (2021)

Aspergillus besseyi / Zhang et al. (2022)

Streptococcus agalactiae 5 copies/μL Yu et al. (2023)

L. monocytogenes 10 CFU/mL Tian et al. (2021)

HPV16 and HPV18 / Zhou et al. (2023)

SDA Cas9 dsDNA / Zhou et al. (2018)

E. coli O157:H7 4.0 × 101 CFU/mL Sun et al. (2020)

Cas12 PSA 0.03 ng/mL Wang et al. (2022)

HBV 41.8 fM Gong et al. (2021)

Cadmium ion 60 pM Ma et al. (2023)

miRNA 6.28 pM Feng et al. (2023), Wang et al. (2022), and 

Zhu et al. (2023)

SARS-CoV-2 2.7 × 102 copies/mL Shi et al. (2023) and Liu et al. (2023)

Cas14 miRNA 680 fM Chi et al. (2022)

HDA Cas12 E. coli O157:H7 103 CFU/g Kim et al. (2023)

RCA Cas9 miRNA fM level Qiu et al. (2018)

Cas12 miRNA, Parvovirus B19 DNA, Adenosine-5′-triphosphate 0.83aM, 0.52aM, 0.46 

pM

Qing et al. (2021)

ncRNAs / Chen et al. (2023)

AFM1 0.05 ng/L Abnous et al. (2021)

HCR Cas12 Circulating tumor DNA 5.43 fM Li et al. (2023)

Salmonella 2 cfu/mL Qiao et al. (2023)

Alpha-fetoprotein 0.170 ng/mL Liu et al. (2022)

HPV / Ke et al. (2022)

TEV 102 particles/μL Xing et al. (2020)

Cas13 SARS-CoV-2 / Yang et al. (2021)

https://doi.org/10.3389/fmicb.2024.1355234
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Zeng et al. 10.3389/fmicb.2024.1355234

Frontiers in Microbiology 13 frontiersin.org

sciences. With the continuous development and innovation of the 
technology, it is believed that nucleic acid amplification technology 
will play a greater role in biomedical research, disease diagnosis and 
environmental monitoring, and bring more new breakthroughs and 
progress in the field of life sciences.
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