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Three new species, Xanthomonas 
hawaiiensis sp. nov., 
Stenotrophomonas aracearum sp. 
nov., and Stenotrophomonas 
oahuensis sp. nov., isolated from 
the Araceae family
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Mohammad Arif *
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Xanthomonas and Stenotrophomonas are closely related genera in the family 
Lysobacteraceae. In our previous study of aroid-associated bacterial strains, 
most strains isolated from anthurium and other aroids were reclassified as X. 
phaseoli and other Xanthomonas species. However, two strains isolated from 
Spathiphyllum and Colocasia were phylogenetically distant from other strains 
in the Xanthomonas clade and two strains isolated from Anthurium clustered 
within the Stenotrophomonas clade. Phylogenetic trees based on 16S rRNA 
and nine housekeeping genes placed the former strains with the type strain 
of X. sacchari from sugarcane and the latter strains with the type strain of S. 
bentonitica from bentonite. In pairwise comparisons with type strains, the 
overall genomic relatedness indices required delineation of new species; digital 
DNA–DNA hybridization and average nucleotide identity values were lower 
than 70 and 95%, respectively. Hence, three new species are proposed: S. 
aracearum sp. nov. and S. oahuensis sp. nov. for two strains from anthurium 
and X. hawaiiensis sp. nov. for the strains from spathiphyllum and colocasia, 
respectively. The genome size of X. hawaiiensis sp. nov. is ~4.88  Mbp and higher 
than S. aracearum sp. nov. (4.33  Mbp) and S. oahuensis sp. nov. (4.68  Mbp). Gene 
content analysis revealed 425 and 576 core genes present in 40 xanthomonads 
and 25 stenotrophomonads, respectively. The average number of unique genes 
in Stenotrophomonas spp. was higher than in Xanthomonas spp., implying 
higher genetic diversity in Stenotrophomonas.
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1 Introduction

Genera Xanthomonas (Dowson, 1939) and Stenotrophomonas (Palleroni and Bradbury, 
1993) are the groups of gram-negative and aerobic bacteria belonging to the family 
Lysobacteraceae (syn. Xanthomonadaceae) of Lysobacterales (syn. Xanthomonadales) order 
of Gammaproteobacteria class in the phylum Proteobacteria (Kumar et al., 2019; Parte et al., 
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2020; Bansal et al., 2021a,b; Bansal et al., 2023). Stenotrophomonas and 
Xanthomonas are phylogenetically closely related genera along with 
Xylella and Pseudoxanthomonas in Lysobacteraceae (Bansal et  al., 
2021b; Bansal et  al., 2023). Before the current generic name, 
Xanthomonas was described as Bacterium in 1921 and later reclassified 
into the genus Phytomonas in 1923 (Doidge, 1921; Bergey et al., 1923; 
Dowson, 1939). The taxonomy of the first reported xanthomonad 
from pepper and tomato was changed several times, as described 
below. The pathogen was originally classified as B. vesicatorium and 
then X. vesicatoria; subsequently, it was given the trinomial pathovar 
vesicatoria first under X. campestris (Young et  al., 1978) and later 
under X. axonopodis (Vauterin et al., 1995) and finally reclassified as 
a separate species, X. euvesicatoria (Jones et al., 2004; Constantin et al., 
2016). Interestingly, before designating the genus Stenotrophomonas, 
the first stenotrophomonad isolated from pleural fluid of a hospitalized 
patient had been referred to as X. maltophilia; initially identified 
within the Bacterium genus, it was subsequently reclassified under 
Pseudomonas for a decade (Hugh and Ryschenkow, 1961; Swings et al., 
1983; Palleroni and Bradbury, 1993). In 1993, due to distinct 
phylogenetic lineage from the other phytopathogens in Xanthomonas, 
X. maltophilia was replaced by S. maltophilia (Palleroni and Bradbury, 
1993). At the time of writing this manuscript, there are 36 and 17 
validly published species of Xanthomonas and Stenotrophomonas, 
respectively, as well as some other invalid species shown in quotation 
marks (““) throughout the rest of this article in the List of Prokaryotic 
names with Standing in Nomenclature (LPSN, last accessed on 
December 2022) (Parte et al., 2020).

Most Xanthomonas species are pathogenic to more than 400 
different monocot and dicot plants, including economically important 
crops and ornamentals. Additionally, some Xanthomonas strains are 
non-pathogenic and associated with plants (Bradbury, 1984; Leyns 
et al., 1984; Vauterin et al., 2000; Ryan et al., 2011; Vandroemme et al., 
2013; Parte et al., 2020; Timilsina et al., 2020; Mafakheri et al., 2022). 
On monocotyledonous hosts, X. oryzae pv. oryzae and X. oryzae pv. 
oryzicola are listed on the USDA Select Agent list, causing severe 
diseases of rice (Oryza sativa). In addition, X. albilineans causes leaf 
scorch of sugarcane (Saccharum officinarum), and X. vasicola is a 
causal agent of banana wilt (Ryan et al., 2011). Whereas X. maliensis, 
“X. sontii,” and “X. indica” were reported associated with the rice 
phytobiome (Triplett et al., 2015; Bansal et al., 2021a; Rana et al., 
2022), X. sacchari was associated with sugarcane, causing rice sheath 
rot disease (Ivayani et al., 2023). Constantin et al. (2016) reclassified 
bacterial strains isolated from Anthurium, Dieffenbachia, and other 
ornamental Araceae plants into the species and/or pathovars, 
X. phaseoli including two pathovars dieffenbachiae and syngonii, 
X. citri pv. aracearum and X. euvesicatoria. The Araceae strains of 
X. phaseoli pv. dieffenbachiae, X. phaseoli pv. syngonii, and X. citri pv. 
aracearum were pathogenic on their original hosts, but X. euvesicatoria 
strains isolated from Philodendron caused weak symptoms and lacked 
host specificity on tested Aracea hosts (Constantin et al., 2017).

As for Stenotrophomonas spp., they are ubiquitous environmental 
bacteria isolated from various sources. The type species, S. maltophilia, 
is an opportunistic pathogen on humans infecting through clinical 
materials and equipment, and “S. sepilia” was isolated from a 
nosocomial patient’s blood specimen (Hugh and Ryschenkow, 1961; 
Al-Anazi and Al-Jasser, 2014; Gautam et al., 2021). In addition to the 
clinical species, Stenotrophomonas species are also from various 
sources, such as S. humi and S. terrae from soil, S. daejeonensis and 

S. geniculata from water, S. pavanii, S. rhizophila, and 
“S. cyclobalanopsidis” associated with plants, “S. pennii” and “S. muris” 
from animals, S. lactitubi and S. indicatrix from surfaces in contact 
with food, and S. acidaminiphila and S. chelatiphaga from sludges 
(Assih et al., 2002; Wolf, 2002; Heylen et al., 2007; Kaparullina et al., 
2009; Lee et al., 2011; Ramos et al., 2011a; Weber et al., 2018; Bian 
et  al., 2020; Gilroy et  al., 2021; Afrizal et  al., 2022). Notably, 
S. maltophilia was also encountered frequently in aquatic and plant-
associated environments, and S. rhizophila strains isolated from the 
rhizosphere and geocaulosphere were separated from S. maltophilia 
based on 16S rDNA analysis and DNA–DNA hybridization data (Berg 
et  al., 1996; Denton and Kerr, 1998; Minkwitz and Berg, 2001; 
Wolf, 2002).

Among monocot plants, the Araceae family includes the most 
economically important ornamental plants in Hawaii, especially the 
genus Anthurium. During the 1980s to 1990s, the anthurium industry 
was seriously damaged due to X. phaseoli pv. dieffenbachiae outbreaks 
(formerly called X. axonopodis pv. dieffenbachiae) (Alvarez et al., 2006; 
Constantin et al., 2016). Hundreds of bacterial strains were isolated 
from various plant genera in Araceae worldwide, including the strains 
collected during the outbreaks in Hawaii, and stored in the Pacific 
Bacterial Collection at the University of Hawaii at Manoa.1 In our 
previous five-gene multilocus sequence analysis (MLSA) of 
Lysobacteraceae strains isolated from the Araceae family, a strain from 
Spathiphyllum and another strain from Colocasia clustered within the 
Xanthomonas clade but formed a distinct monophyletic lineage, while 
two strains from Anthurium grouped with the Stenotrophomonas clade 
instead of the Xanthomonas clade (Chuang, 2023). Moreover, these 
two stenotrophomonads were distinct from the former two 
xanthomonads based on the utilizations of N-acetyl-D-galactosamine 
(GalNAc) and D-serine, and the inability to oxidize D-galactose, 
glycerol, pectin, and sucrose based on Biolog GEN III microplate 
assays (Chuang, 2023).

Hence, we sequenced the whole genomes of the former strains 
isolated from Araceae, which are potential novel species, comparing 
them with the genomes of Xanthomonas spp. and Stenotrophomonas 
spp. type strains. Based on the nine-gene MLSA, overall genomic 
relatedness index (OGRI) values, and pan-core genomic analyses, 
strains A6251T from Spathiphyllum and A2111 from Colocasia are 
described as new species X. hawaiiensis sp. nov., strain A5588T from 
Anthurium is described as S. aracearum sp. nov., and strain A5586T 
from Anthurium is described as S. oahuensis sp. nov.

2 Materials and methods

2.1 Bacterial DNA isolation and genome 
sequencing

Bacteria were streaked out from the culture stock and grew on 2, 
3, 5-triphenyltetrazolium chloride (TZC) agar medium (dextrose 5 
gL−1, peptone 10 gL−1, 0.001% sterilized TZC, and agar 18 gL−1) at 
28°C for 2 days. Bacterial genomic DNA was isolated from pure 
culture using QIAGEN Genomic-tip  100/G, following the 

1  https://pacificbacterialcollection.com/
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manufacturer’s instruction (QIAGEN, Valencia, CA, USA). The 
Seqwell plexWell LP384 Library Preparation Kit and Native Barcoding 
Kit 24 V14 (SQK-NBD112.24) were used for barcode-indexed whole 
genome sequencing with Illumina NovaSeq system (Illumina San 
Diego, CA, USA) and Oxford Nanopore MinIoN Mk1C device 
(Oxford Nanopore Technologies, ONT, Oxford, UK), respectively. 
ONT long reads were base called and demultiplexed using basecaller 
and barcoder of GUPPY v6.3.2 on MANA, a high-performance 
computing cluster at the University of Hawaii at Manoa.

2.2 Hybrid genome assembly and genome 
annotation

The hybrid assembler, Unicycler v0.4.8 plugged in the web-server 
of BV-BRC 3.26.4,2 was employed by uploading paired-end 
(2 × 150 bp) Illumina short-read, high-accuracy basecalled ONT long 
reads for de novo genome assemblies (Wattam et al., 2017; Wick et al., 
2017; Klair et al., 2022; Olson et al., 2023). In brief, Unicycler carried 
out SPAdes (v3.13.0) to assemble the Illumina short reads, and then, 
miniasm, minimap2 (v2.17), and Racon (v1.4.13) were run for long-
read plus contig assembly, long-read bridging, and contig polishing, 
respectively. Alternatively, the genome of the strain (A2111) with a 
lower coverage of short reads was assembled by performing Flye v2.9.1 
and genome assembly pipeline in the web server of BV-BRC 3.26.4 
(see text footnote 2). Moreover, the genomic completeness and 
contamination were assessed by implementing the CheckM algorithm 
(Parks et al., 2015). The genome annotations were performed using 
Prokaryotic Genome Annotation Pipeline (PGAP v4.10) on NCBI 
(Tatusova et  al., 2016) and Rapid Annotation using Subsystem 
Technology (RAST v2.0) web server (Aziz et al., 2008) as well.

2.3 Phylogenetic analyses

The partial 16S rRNA gene sequences of new species strains were 
amplified using primer set P16S-F1 (5’-AGACTCCTACGGG 
AGGCAGCA-3′) and P16S-R1 (5’-TTGACGTCATCCCC ACCTT 
CC-3′) by end-point PCR (Larrea-Sarmiento et al., 2019). Each 25 μL 
of PCR reaction mix contained 5 μL of 5X Q5 buffer, 5 μL of GC 
enhance, 2.5 μL of 5 μM primer F and R, 0.5 μL of 2.5 mM dNTPs, 
0.5 μL of Q5 polymerase, 1 μL of gDNA, and 6.5 μL of nuclease-free 
water. The PCR reaction was run as follows: 10 s at 98°C; 35 cycles of 
10 s denaturing at 98°C, 30 s of annealing at 58°C, and 30 s extending 
at 72°C; and 2 min at 72°C for final extension in a T100 Thermal 
Cycler (BIO-RAD Lab. Inc., Hercules, CA, USA). The sizes of PCR 
products were checked by running agarose gel electrophoresis, 
purified using Exo (exonuclease I)-SAP (shrimp alkaline phosphatase) 
method (GE Healthcare, Little Chalfont, UK) following the 
manufacturer’s instruction, and sent for Sanger sequencing service at 
the GENEWIZ company (South Plainfield, NJ, USA). The sequences 
were double checked with the assembled genomes.

For the phylogenetic analysis of 16S rRNA gene, the full-length 
sequences of 65 Stenotrophomonas and Xanthomonas species type strains 

2  https://www.bv-brc.org/

were retrieved from their whole genome sequences and downloaded from 
GenBank on NCBI (Supplementary Table 1). The multiple alignment was 
performed using Geneious Prime 2021.2.2.3 The module of finding the 
best DNA/Protein model for the multiple alignment data was conducted, 
and the maximum likelihood (ML) phylogenetic tree was built using 
MEGA X (Kumar et al., 2018). The consistency of the phylogenetic tree 
was assessed by computing 1,000 bootstrapping analyses.

Additionally, the precise MLSA was performed to reveal the 
phylogenetic relations between the novel species and other 
Stenotrophomonas and Xanthomonas species. Nine housekeeping 
genes (atpD, dnaA, dnaK, gltA, gyrB, nuoD, ppsA, rpoH, and uvrB) 
used from the previous studies (Ramos et al., 2011b; Vasileuskaya-
Schulz et al., 2011; Chuang, 2023) were retrieved from downloaded 
genomes. The sequences of the nine housekeeping genes were aligned 
with free end gaps algorithm separately. After trimming the both 
sequence ends of each gene, nine gene sequences were concatenated 
in alphabetic order using Geneious Prime for further analyzing. The 
ML phylogenetic tree was formed using MEGA X following the 
process as detailed above. The phylogenetic trees with bootstrapping 
analyses were created using web-based tool Interactive Tree Of Life 
(iTOL v6)4 (Letunic and Bork, 2021).

2.4 Genome similarity

To define new species, the pairwise comparisons of overall 
genomic relatedness indices (OGRIs) among the genomes of new 
species strains and other type strains of Stenotrophomonas and 
Xanthomonas species retrieved from NCBI database were calculated. 
The pairwise ANI and AP (alignment percentage) values were 
calculated using CLC Genomics Workbench 22.0.2 (CLC 
Bio-QIAGEN, Arahus, Denmark). Due to the inclusion of some 
incomplete genomes, OrthoANI (Average Nucleotide Identity by 
Orthology), which only considered the orthologous fragment pairs, 
was additionally calculated by performing Orthologous Average 
Nucleotide Identity tool (OAT) (Lee et  al., 2016). Moreover, the 
pairwise dDDH values and the differences in G + C content (mol%) 
were inferred by estimating precise distance from whole genome 
sequences using the Genome-Genome Distance Calculator (GGDC) 
v3.0 on Type Strain Genome Server (TYGS) web server5 (Meier-
Kolthoff et al., 2013, 2022).

2.5 Pan-genome analysis

Whole genome sequences of the new species and closely 
phylogenetically related species in each genus were used for 
pan-genome and core-genome analyses. Prokka v1.14.6 (Seemann, 
2014) was used to re-annotate representative genomes, and the output 
gff files were used as input files for the Roary v3.13.0 pipeline (Page 
et al., 2015). For Roary, core and accessory genes were assessed with 
80% minimum BLASTp identity, and multi-FASTA alignment of the 
core genome was generated using highly accurate PRANK, which is a 

3  http://www.geneious.com

4  https://itol.embl.de

5  https://tygs.dsmz.de/
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probabilistic multiple alignment program (Löytynoja, 2014; Page 
et al., 2015). The number of core and unique genes among species of 
each genus was assessed from the Roary output and was used for the 
flower plots by computing R script in RStudio (R Core Team, 2022). 
A core gene phylogenetic tree was established using an ML tree 
inference tool Randomized Axelerated Maximum Likelihood – Next 
Generation (RAxML -NG) v0.8.0 (Kozlov et al., 2019), which combine 
the strengths of RAxML (Stamatakis, 2014) and Exascale Maximum 
Likelihood (ExaML) (Kozlov et  al., 2015). The DNA substitution 
model, General Time Reversible (GTR) + GAMMA (G), was 
performed and ran separately with core genomes of type species of 
Xanthomonas spp. and Stenotrophomonas spp., with 1,000 bootstrap 
replicates. The core genome phylogenetic tree was displayed using a 
web-based tool Interactive Tree Of Life (iTOL v6, see text footnote 4) 
(Letunic and Bork, 2021). The Roary matrix with the presence and 
absence of core and accessory genes was combined with the core 
genome ML tree, and the results were visualized by conducting roary_
plots.py (Page et al., 2015).

2.6 Antibiotic sensitivity assay

Antibiotic sensitivity assays were performed using disc diffusion 
methods described by Klair et al. (2022). Single colonies were picked 
from the pure culture plates of four new species strings and incubated 
in 10 mL of Luria-Bertani (LB) broth at 28°C with shaking at 200 rpm 
for 16 h. Light absorbance at 600 nm (OD600) of bacterial inoculum 
was adjusted to the value ~1.0, and 100 μL of inoculum was spread 
evenly on nutrient agar (NA, CRITERION™, Hardy Diagnostics). 
Seven antibiotics with different concentrations of bacitracin (50 mg/
mL), chloramphenicol (50 mg/mL), gentamicin (50 mg/mL), 
kanamycin (50 mg/mL), penicillin (50 mg/mL), tetracycline (40 mg/
mL), and polymyxin B sulfate (50 mg/mL) were tested. One Petri dish 
was divided into four zones, and three discs impregnated with each 
antibiotic solution and one disc soaked with sterile distilled water as 
control were placed in the center of each zone. Inhibition zones were 
observed and measured after incubating the plates at 28°C for 24 h.

3 Results

3.1 Genome assembly and annotation

The high-quality genomes of the strains A6251T, A5588T, and 
A5586T were assembled using Unicycler v0.4.8, whereas strain A2111 
had a better de novo assembly using another hybrid genome assembler, 
Flye v2.9.1 (Table 1). The genome sizes of new species strains from 
anthurium, A5588T and A5586T, are 4.33 Mbp and 4.68 Mbp with 
66.44 mol% and 65.3 mol% of GC content, respectively. In comparison, 
the GC content was higher in the other two strains, i.e., A6251T (4.88 
Mbp) from spathiphyllum and A2111 (4.87 Mbp) from colocasia, with 
68.93 mol% and 68.88 mol% GC content, respectively (Table 1). Based 
on the annotation of NCBI-PGAPservice, the average CDS number of 
the four strains was 4,016. The strain A5588T has the lowest CDS 
number, whereas the strain A5586T has the highest number (Table 1). 
The CheckM completeness estimates were 99.9% in A6251T and 
A2111 and 100% in A5588T and A5586T (Table 1). Although the CDS 
numbers estimated by RAST web server were slightly different from 

PGAP annotation, the strain A5588T had the lowest CDS number 
which correlated with its genome size (data not shown). By contrast, 
the coverage of subsystem features presented in A5588T was the 
highest and in A5586T was the lowest (Figure  1A). Four strains 
comprised 23 out of the total 27 subsystem feature categories including 
virulence, stress response, membrane transport, DNA, and protein 
metabolism (Figure 1B). Notably, only strains A6251T and A2111 
contained proteins in the iron acquisition and metabolism subsystem 
but not strains A5588T and A5586T (Figure 1B). Stenotrophomonas 
maltophilia was reported to use two putative iron acquisition systems 
for the mediation of siderophores and heme as iron starvation 
(Kalidasan et al., 2018), implying that strains A5588T and A5586T from 
anthurium were different from the opportunistic human pathogen.

3.2 Phylogenetic analyses

The partial sequences of 16S rRNA gene were amplified using 
primer set P16S-F1 and P16S-R1 and deposited in the NCBI GenBank 
database under accession numbers OP962219 (A6251T), OP962220 
(A2111), OP964727 (A5586T), and OP964728 (A5588T). The 16S 
rRNA gene sequences were retrieved from the whole genomes of new 
species strains, and 38 type strains of Xanthomonas species and 23 
type strains of Stenotrophomonas species published in the NCBI 
database (Supplementary Table 1). The sequences of the nearly entire 
16S rRNA gene ranging from 1,415 bp (S. bentonitica LMG 29893T) to 
1,421 bp (S. chelatiphaga DSM 21508T) were analyzed for phylogenetic 
relationships. The 16S rRNA gene sequences of A6251T and A2111 
were identical with X. sacchari CFBP 4641T and only one base was 
different from “X. sontii” PPL1T. A5588T and A5586T were closely 
related to each other and S. bentonitica LMG 29893T and showed 
higher similarity values of 16S rRNA ranging from 99.6 to 99.8%. In 
the maximum likelihood (ML) phylogenetic tree, 16S rRNA gene 
sequences depicted better resolution within Stenotrophomonas species 
than Xanthomonas species because of very poor species 
discrimination, which was higher than the 98.7% cutoff of 16S 
similarity (Figure 2).

For more detailed phylogenetic analysis, nine housekeeping genes 
(atpD, dnaA, dnaK, gltA, gyrB, nuoD, ppsA, rpoH, and uvrB) were 
selected and retrieved from whole genomes of formerly mentioned 
type strains of Xanthomonas and Stenotrophomonas species. Total 
length of concatenated sequence with nine genes in alphabetic order 
was approximately 14.3 Kb, which contained the maximum ~2,443 bp 
of gyrB gene and the minimum ~879 bp of uvrB gene sequences. The 
similarity of the concatenated gene sequences of two strains A6251T 
and A2111 was 99.3%; strain A5588T and strain A5586T showed 89.8% 
similarity. Based on nine housekeeping genes, the ML tree indicated 
that two major phylogenetic clades, Clade I and Clade II, were present 
within the Xanthomonas clade with high bootstrapping value support 
(Figure  3). Similar Clade I  and II phylogenetic groupings were 
reported in the previous studies (Koebnik et al., 2021; Mafakheri et al., 
2022; Rana et al., 2022). The strains A6251T and A2111 formed a 
monoclade clustering with X. sacchari, X. indica, X. sontii, and 
X. albilineans in Clade I, which also include X. surreyensis, X. bonasiae, 
X. traslucens, X. hyacinthi, X. theicola, and X. youngii (Figure  3). 
Stenotrophomonas bentonitica consistently clustered with strains 
A5588T and A5586T with strong bootstrapping value. 
Stenotrophomonas rhizophila and S. nematodicola formed a clade 
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closely related to the A5588T-A5586T-S. bentonitica clade (Figure 3); 
however, no grouping was formed in the 16S rRNA phylogenetic tree 
(Figure 2).

3.3 Overall genomic relatedness indices

To examine the accurate taxonomic classification, the overall 
genomic relatedness indices (OGRIs) including the values of ANI and 
dDDH of A6251T from spathiphyllum and A2111 from colocasia were 
analyzed with other type strains of Xanthomonas species. Meanwhile, 
A5588T and A5586T strains were compared with other type strains in 
Stenotrophomonas. The general cutoff values of ANI and dDDH for 
species delineation are lower than 95–96 and 70%, respectively (Goris 
et al., 2007; Richter and Rosselló-Móra, 2009; Meier-Kolthoff et al., 
2013). Strains A6251T and A2111 shared 98.4% ANI and 85.2% dDDH 
with each other, which indicated that two strains belong to the same 
species. Based on the pairwise comparisons of the other Xanthomonas 
spp. reference genomes with either A6251T or A2111, the ANI and 
dDDH values were 83.4–94.9% and 22.3–59.3%, respectively, which 
strongly signified that A6251T and A2111 are distinguished from the 
others and should be considered a novel lineage (Table 2). Despite that 
X. sacchari CFBP  4641T shared slightly higher OrthoANI values 
(95.04, 95.1) with A6251T and A2111, other OGRIs supported the 
assignment as a new species (Table 2). The estimations of ANI and 
dDDH of anthurium strains, A5588T and A5586T, were 86.4 and 
28.2%, respectively. Both strains shared ANI and dDDH values lower 
than 90% (83.4–86.8%) and 30% (20.7–29.9%) with other type strains 
of Stenotrophomonas spp., respectively, except for that A5588T and 
S. bentonitica LMG 29893T shared 94.7% of ANI and 56.4% of dDDH 
sequence identities (Table 3). In addition to ANI and dDDH values, 
other OGRIs including AP, OrthoANI, and G + C differences 
supported that A5588T and A5586T are two novel species (Table 3). To 
combine the phylogenetic analyses and evidence of OGRIs, three 
novel species were proposed, i.e., X. hawaiiensis sp. nov. strains A6251T 
and A2111; S. aracearum sp. nov. strain A5588T; and, S. oahuensis sp. 
nov. strain A5586T.

3.4 Pan- and core-genomic analyses

Among 40 reference genomes of Xanthomonas spp. including 
X. hawaiiensis sp. nov. strains A6251T and A2111, 425 core orthologous 
genes (99% ≤ strains ≤100%) and 28,285 cloud genes (0% ≤ strains 
<15%) were found (Figure 4A). The lowest two numbers of unique 
genes present in A6251T and A2111 were 87 and 103, respectively, and 
follow X. sacchari CFBP 4641T which had 171 unique genes, as shown 
in the Figure  4B. The number of exclusive hypothetical protein 
encoded genes was comparatively lower in strains A6251T and A2111, 
whereas 50 common hypothetical proteins existed in all type strains 
of Xanthomonas spp. (Figure 4C). Based on the phylogenetic tree 
constituted with 425 core genes, the closest relative of X. hawaiiensis 
sp. nov. was X. sacchari CFBP 4641T, which successively clustered with 
“X. sontii” PPL1T and “X. indica” CFBP 9039T in Xanthomonas clade 
I  species (Figure  5). The groupings were concordant with the 
previously described MLSA tree (Figure 3). The 34,713 gene clusters 
estimated in the Roary matrix revealed that the genomes of 
xanthomonads were highly diversified (Figure 5).T
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On the other hand, the pan genome size of 20 Stenotrophomonas 
spp. type strains, including S. aracearum sp. nov. (A5588T) and 
S. oahuensis sp. nov. (A5586T), was 31,069 with 576 core genes 
(Figures  6A, 7). The genome of the strain A5588T contained 396 
unique genes, 317 of which were hypothetical protein encoding genes; 
whereas, a high number of hypothetical protein encoding genes (1,242 
genes) were harbored in the genome of the strain A5586T, possessing 
total 1,526 unique genes (Figures 6B–C). As presented in the 9-gene 
ML tree (Figure 3), A5588T and S. bentonitica DSM 103927T were 
closely clustered together and grouped with A5586T, which was a sister 
group of the clade formed with S. rhizophila DSM 14405T and 
“S. nematodicola” CPCC 101271T (Figure 7). The average number of 
unique genes with unknown functions was higher in 25 
Stenotrophomonas spp. than 40 Xanthomonas spp. (806 > 538), 
implying higher genetic diversity within stenotrophomonads, which 
warrants further investigations on Stenotrophomonas species.

3.5 Antibiotic sensitivity assays

The inhibition zones with seven tested antibiotics, namely, bacitracin 
(50 mg/mL), chloramphenicol (50 mg/mL), gentamicin (50 mg/mL), 
kanamycin (50 mg/mL), penicillin (50 mg/mL), tetracycline (40 mg/
mL), and polymyxin B sulfate (50 mg/mL), indicated various degrees of 
sensitivity of four new species strains. Strains A6251T, A2111, and 
A5586T were sensitive to all tested antibiotics, whereas strain A5588T was 
sensitive to all tested antibiotics except penicillin 
(Supplementary Table 2). Strains A6251T and A2111, belonging to the 
same new species, displayed similar results, except for the tolerance to 
polymyxin B sulfate. Notably, A5586T displayed a very small inhibition 
zone (0.1 cm in radius) surrounding the discs of bacitracin on the NA 
plate after incubating at 28°C for 24 h (Supplementary Table 2).

4 Descriptions of new species

4.1 Xanthomonas hawaiiensis sp. nov. (ha.
waii.en′sis. N.L. fem. adj. hawaiiensis, of or 
belonging to Hawaii, a state of the 
United States, referring to the geographical 
origin of the new species)

Colonies of the type strain A6251T are yellow (Honey, Hex code 
#FFC30B), circular shape, mucoid consistency, smooth surface, 
convex relief with entire margins, and 0.3–0.6 (avg. 0.45) mm in 
diameter on yeast dextrose calcium carbonate (YDC) medium plate 
after incubating at 28°C for 2 days. Cells are gram-negative and able 
to utilize dextrin, D-maltose, D-trehalose, D-cellobiose, gentiobiose, 
sucrose, D-turanose, α-D-lactose, D-melibiose, Β-methyl-D-
glucoside, D-salicin, N-acetyl-D-glucosamine, α-D-glucose, 
D-mannose, D-fructose, D-galactose, L-fucose, 1% NaCl, 1% sodium 
lactate, glycerol, gelatin, L-glutamic acid, lincomycin, pectin, quinic 
acid, vancomycin, tetrazolium violet, tetrazolium blue, citric acid, 
bromo-succinic acid, lithium chloride, Tween 40, and acetic Acid. In 
contrast, cells are unable to oxidize stachyose, D-raffinose, N-acetyl-
β-D-mannosamine, N-acetyl-D-galactosamine, N-acetyl-neuraminic 
acid, 8% NaCl, inosine, fusidic acid, D-sorbitol, D-mannitol, 
D-arabitol, myo-inositol, D-aspartic acid, minocycline, L-arginine, 
L-histidine, L-pyroglutamic acid, guanidine HCl, D-gluconic acid, 
mucic acid, D-saccharic acid, p-hydroxy-phenylacetic acid, D-lactic 
acid methyl ester, α-keto-glutaric acid, D-malic acid, γ-aminobutryric 
acid, α-hydroxybutyric acid, α-ketobutyric acid, formic acid, sodium 
butyrate, and sodium bromate. Some utilization of carbon resources 
and chemical components showed borderline results or inconsistency 
between two strains after growing cell suspension in GEN III 
Microplate (Biolog Inc., Hayward, CA, USA) at 28°C for 24 h.

FIGURE 1

Subsystem annotation summary of new species strains, A6251T, A2111, A5588T, and A5586T by conducting RAST web server. (A) The percentages of 
protein-coding genes present (orange portions) or absent (blue portions) in the RAST subsystem. (B) The pie chart and the number of subsystem 
features in total 27 categories found in four genomes of aroid strains.
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X. hawaiiensis sp. nov. is sensitive to seven tested antibiotics, including 
bacitracin (50 mg/mL), chloramphenicol (50 mg/mL), gentamicin 
(50 mg/mL), kanamycin (50 mg/mL), penicillin (50 mg/mL), tetracycline 
(40 mg/mL), and polymyxin B sulfate (50 mg/mL). The genome size of 
type strain A6251T is 4.88 Mbp with 68.93 mol% of DNA G + C content.

The type strain A6251T = D-93T = ICMP 25022T = LMG 33200T 
was isolated from Spathiphyllum (Araceae family) in 1985 in Hawaii, 
USA. Another strain A2111 = D-194 = ICMP 25023 = LMG 33199 was 
isolated from Colocasia (Araceae family) in 1986 in Hawaii, USA.

4.2 Stenotrophomonas aracearum sp. nov. 
(a.ra.ce.a’rum. N.L. gen. fem. pl. n. 
aracearum, representative of plants 
belonging to the Araceae family)

Colonies of S. aracearum strain A5588T are dark yellow (Mustard, 
Hex code #E8B828), irregular shape, butyrous consistency, smooth 
surface, raised relief with entire margins, and 0.4–0.5 mm (average 
0.45) in diameter on YDC medium plates after incubation at 28°C for 
2 days. Cells are gram-negative and able to utilize D-maltose, 

D-cellobiose, gentiobiose, N-acetyl-D-glucosamine, N-acetyl-D-
galactosamine, α-D-glucose, D-mannose, 1% sodium lactate, 
D-serine, troleandomycin, rifamycin SV, gelatin, lincomycin, 
guanidine HCl, vancomycin, tetrazolium violet, tetrazolium Blue, 
α-ketoglutaric acid, L-malic acid, bromo-succinic acid, acetic acid, 
and aztreonam. Cells grow under pH 6 and 1% NaCl but neither at pH 
5 nor 8% NaCl. In the contrary, cells are unable to oxidize sucrose, 
D-turanose, stachyose, D-raffinose, α-D-lactose, D-melibiose, 
Β-methyl-D-glucoside, N-acetyl-β-D-mannosamine, N-acetyl-
neuraminic acid, D-galactose, 3-methyl-glucose, inosine, fusidic acid, 
D-sorbitol, D-mannitol, D-arabitol, myo-inositol, glycerol, D-glucose-
6-PO4, D-aspartic acid, D-serine, minocycline, L-arginine, L-aspartic 
acid, L- glutamic acid, L-histidine, L-pyroglutamic acid, L-serine, 
pectin, D-galacturonic acid, D-gluconic acid, mucic acid, quinic acid, 
D-saccharic acid, p-hydroxy-phenylacetic acid, D-lactic acid methyl 
ester, L-lactic acid, citric acid, D-malic acid, nalidixic acid, potassium 
tellurite, γ-aminobutryric acid, α-hydroxybutyric acid, α-ketobutyric 
acid, β-hydroxy-D, L-butyric acid, acetoacetic acid, formic acid, 
sodium butyrate, and sodium bromate. Some utilization of carbon 
sources and chemical components, such as dextrin and glucuronamide 

FIGURE 2

Maximum Likelihood phylogenetic tree based on almost full-length 16S rRNA gene sequences among three new species strains and type strains of 
Xanthomonas and Stenotrophomonas species. The tree scale bar indicates the number of nucleotide substitutions per sequence position. The range 
of gray triangles represents the degree of bootstrapping values.
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showed faded positive results after growing A5588T cell suspension in 
GEN III Microplate (Biolog Inc., Hayward, CA, USA) at 28°C for 24 h.

S. aracearum sp. nov. was sensitive to six tested antibiotics, namely, 
bacitracin (50 mg/mL), chloramphenicol (50 mg/mL), gentamicin 
(50 mg/mL), kanamycin (50 mg/mL), tetracycline (40 mg/mL), and 
polymyxin B sulfate (50 mg/mL) but resistant to penicillin (50 mg/mL) 
on NA plates. The genome size of type strain A5588T is 4.33 Mbp with 
66.44 mol% of DNA G + C content.

The type strain A5588T = D-61-1LT = ICMP 25025T = LMG 33202T 
was isolated from Anthurium (Araceae family) in 1985 in Hawaii, USA.

4.3 Stenotrophomonas oahuensis sp. nov. 
(o.a.hu.en’sis. N.L. fem. adj. oahuensis, of or 
belonging to the island of Oahu in Hawaii, 
referring to the geographical origin of the 
new species)

Colonies of the S. oahuensis strain A5586T are dark yellow 
(Butterscotch, Hex code #FABD02), circular shape, butyrous 

consistency, smooth surface, flat relief with undulate margins, and 
0.4–0.7 mm (average 0.55) in diameter on YDC medium plates after 
incubation at 28°C for 2 days. Cells are gram-negative and able to 
utilize dextrin, D-maltose, D-trehalose, D-cellobiose, gentiobiose, 
Β-methyl-D-glucoside, D-salicin, N-acetyl-D-glucosamine, 
α-D-glucose, D-mannose, 1% sodium lactate, gelatin, glycyl-L-
proline, lincomycin, guanidine HCl, vancomycin, tetrazolium violet, 
tetrazolium blue, citric acid, α-ketoglutaric acid, L-malic acid, bromo-
succinic acid, lithium chloride, propionic acid, acetic acid, and 
aztreonam. Cells grow under the conditions of pH 6, 1% NaCl, or 4% 
NaCl but cells survive neither pH 5 nor 8% NaCl solution. In contrast, 
cells are unable to oxidize sucrose, stachyose, D-raffinose, N-acetyl-β-
D-mannosamine, N-acetyl-neuraminic acid, D-galactose, 3-methyl-
glucose, inosine, D-fucose, L-fucose, L-rhamnose, inosine, fusidic 
acid, D-sorbitol, D-mannitol, D-arabitol, myo-inositol, glycerol, 
D-glucose-6-PO4, D-aspartic acid, D-serine, rifamycin SV, 
minocycline, L-arginine, L-aspartic acid, L- glutamic acid, L-histidine, 
L-pyroglutamic acid, L-serine, pectin, D-galacturonic acid, D-gluconic 
acid, D-glucuronic acid, mucic acid, quinic acid, D-saccharic acid, 

FIGURE 3

Maximum Likelihood phylogenetic tree based on concatenated sequence set of nine housekeeping genes, atpD, dnaA, dnaK, gltA, gyrB, nuoD, ppsA, 
rpoH, and uvrB of Xanthomonas and Stenotrophomonas species type strains. The scale bar represents the nucleotide substitutions per site. The range 
of purple triangles indicates the degree of bootstrapping support.
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TABLE 2  Overall genomic relatedness indices (OGRIs) comparison of new species, Xanthomonas hawaiienesis sp. nov., strains with other type strains of 
Xanthomonas species.

AP (%) ANI (%) OrthoANI (%) dDDH (%) G  +  C 
difference (%)

Species name A6251T A2111 A6251T A2111 A6251T A2111 A6251T A2111 A6251T A2111

Xanthomonas hawaiiensis sp. 

nov. A6251T 100 95.2 100 98.4 100 98.39 100 85.2 0.0 0.05

Xanthomonas hawaiiensis sp. 

nov. A2111 95.2 100 98.4 100 98.39 100 85.2 100 0.05 0.0

Xanthomonas albilineans 

CFBP 2523T 48.6 48.4 85.4 85.4 84.62 84.52 28.4 28.5 5.87 5.82

Xanthomonas arboricola 

CFBP 2528T 22.8 22.9 84.1 84.2 79.82 79.83 23.4 23.4 3.47 3.42

Xanthomonas axonopodis DSM 

3585T 19.5 19.6 83.7 83.8 79.02 78.95 23.0 23.0 4.45 4.4

Xanthomonas bonasiae 

CFBP 8703T 60.8 61.1 87.8 87.8 87.45 87.46 32.6 32.7 0.13 0.08

Xanthomonas bromi LMG 947T 19.4 19.8 83.8 83.7 79.01 78.90 22.9 23.0 4.87 4.82

Xanthomonas campestris ATCC 

33913T 21.1 21.1 84.0 84.0 79.33 79.23 23.1 23.1 3.86 3.81

“Xanthomonas cannabis” 

NCPPB 2877T 22.2 22.6 84.0 83.9 79.59 79.51 23.4 23.4 3.15 3.1

Xanthomonas cassavae 

CFBP 4642T 21.1 21.2 84.1 84.1 79.63 79.53 23.4 23.4 3.7 3.65

Xanthomonas cissicola CCUG 

18839T 19.9 20.0 83.9 83.8 79.14 79.06 22.9 22.9 4.54 4.49

Xanthomonas citri LMG 9322T 19.9 20.1 83.9 83.9 78.95 78.97 22.8 22.9 4.28 4.24

Xanthomonas codiaei LMG 

8678T 23.1 22.8 84.2 84.2 79.87 79.79 23.6 23.6 2.89 2.85

Xanthomonas cucurbitae 

CFBP 2542T 21.9 22.1 84.1 84.2 79.51 79.62 23.1 23.2 3.49 3.44

Xanthomonas dyei CFBP 7245T 19.0 19.2 83.8 83.8 79.17 79.08 22.9 23.0 4.65 4.6

Xanthomonas euroxanthea 

CPBF 424T 23.4 23.7 84.2 84.2 79.90 79.88 23.5 23.5 3.04 2.99

Xanthomonas euvesicatoria 

LMG 27970T 20.6 20.7 83.9 84.0 79.12 79.14 23.6 23.6 4.25 4.2

Xanthomonas floridensis LMG 

29665T 21.3 21.4 84.1 84.1 79.51 79.49 23.4 23.4 3.56 3.51

Xanthomonas fragariae ATCC 

33239T 15.7 15.9 83.4 83.4 78.68 78.6 22.3 22.5 6.71 6.66

Xanthomonas hortorum WHRI 

7744T 19.0 19.2 83.8 83.8 79.01 78.93 22.9 22.9 5.31 5.26

Xanthomonas hyacinthi 

CFBP 1156T 55.8 56.3 87.9 87.8 87.82 87.65 33.7 33.7 0.9 0.85

Xanthomonas hydrangeae LMG 

31884T 19.6 19.7 84.0 83.9 79.11 79.16 23.1

23.1 5.33 5.28

“Xanthomonas indica” PPL560T 84.2 84.1 93.3 93.3 93.48 93.38 50.7 50.8 0.54 0.59

Xanthomonas maliensis LMG 

27592T

22.5 22.4 84.3 84.4 79.55 79.50 23.0 23.1 2.75 2.7

“Xanthomonas massiliensis 

“SN8T

21.4 21.6 84.2 84.2 80.39 80.46 23.4 23.4 1.6 1.64

(Continued)
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p-hydroxy-phenylacetic acid, D-lactic acid methyl ester, L-lactic acid, 
D-malic acid, nalidixic acid, potassium tellurite, γ-amino-butryric 
acid, α-hydroxy-butyric acid, β-hydroxy-D, L-butyric acid, α-keto-
butyric acid, acetoacetic acid, formic acid, and sodium bromate. Some 
utilization of carbon resources and chemical components, such as 
D-turanose and sodium butyrate, showed faded positive results after 
growing A5586T cell suspension in GEN III Microplate (Biolog Inc., 
Hayward, CA, USA) at 28°C for 24 h.

S. oahuensis sp. nov. was sensitive to seven tested antibiotics, 
namely, bacitracin (50 mg/mL), chloramphenicol (50 mg/mL), 
gentamicin (50 mg/mL), kanamycin (50 mg/mL), penicillin (50 mg/
mL), tetracycline (40 mg/mL), and polymyxin B sulfate (50 mg/mL). 
The genome size of type strain A5586T is 4.68 Mbp, which includes a 
chromosome (4.62 Mbp) and a plasmid (60.78 Kbp). The DNA G + C 
content of the type strain is 65.3 mol%.

The type strain A5586T = D-31T = ICMP 25024T = LMG 33201T 
was isolated from Anthurium (Araceae family) in 1981 in Hawaii, USA.

5 Discussion

The genera Xanthomonas and Stenotrophomonas are 
phylogenetically and evolutionarily linked and are also found 
frequently together in several niches, including environmental 
reservoirs (plants and soil) and biofilters used for waste gas treatment 
of animal-rendering plants (Lipski and Altendorf, 1997; Finkmann 
et al., 2000; Ryan et al., 2009). Although more studies are focused on 
phyto- and human-pathogenic species, the versatility of Xanthomonas 
and Stenotrophomonas spp. has the potential to be applied to many 
different fields and needs to be explored further.

The well-known industrial biopolymer, which is also a food 
additive, is xanthan gum produced by X. campestris and other 
Xanthomonas species (Margaritis and Zajic, 1978; Kennedy and 
Bradshaw, 1984; Gumus et al., 2010). Production of other bioactive 
secondary metabolites from xanthomonads include the siderophore 
xanthoferrin, which acts as a bioproduction agent under low iron 

TABLE 2  (Continued)

AP (%) ANI (%) OrthoANI (%) dDDH (%) G  +  C 
difference (%)

Species name A6251T A2111 A6251T A2111 A6251T A2111 A6251T A2111 A6251T A2111

Xanthomonas melonis LMG 

8670T

22.5 22.6 84.1 84.1 79.67 79.62 23.3 23.4 2.82 2.77

Xanthomonas nasturtii WHRI 

8853T

21.0 20.8 84.1 83.7 79.36 79.26 23.2 23.1 4.46 4.41

Xanthomonas oryzae 

ICMP 3125T

17.4 17.5 83.7 83.7 78.94 78.88 22.9 22.8 5.24 5.19

Xanthomonas phaseoli ATCC 

49119T

20.0 20.2 84.0 84.0 79.16 79.23 23.1 23.0 4.11 4.06

Xanthomonas pisi DSM 18956T 18.3 18.3 84.0 84.0 79.18 79.18 23.0 23.1 4.21 4.16

Xanthomonas populi LMG 

5743T

17.9 18.1 83.6 83.6 78.79 78.61 22.6 22.5 5.62 5.57

Xanthomonas prunicola 

CFBP 8353T

19.1 19.2 84.0 83.9 78.86 78.91 22.9 22.9 4.96 4.91

Xanthomonas sacchari 

CFBP 4641T

86.5 86.2 94.9 94.9 95.04 95.10 59.3 59.3 0.13 0.18

“Xanthomonas sontii “PPL1T 80.2 81.1 93.8 93.8 94.11 94.16 53.9 53.9 0.06 0.1

“Xanthomonas surreyensis 

“Sa3BUA13T

63.9 63.9 87.9 87.9 87.45 87.44 32.6 32.7 0.12 0.07

Xanthomonas theicola 

CFBP 4691T

50.7 50.9 87.6 87.6 87.04 86.91 32.3 32.4 0.76 0.71

Xanthomonas translucens DSM 

18974T

56.7 56.8 87.4 87.4 87.16 87.04 32.3 32.3 1.21 1.16

Xanthomonas vasicola NCPPB 

2417T

17.9 18.1 83.6 83.7 78.56 78.5 22.8 22.8 5.61 5.56

Xanthomonas vesicatoria LMG 

911T

18.8 18.7 83.9 83.9 78.88 78.77 22.8 22.6 4.87 4.82

Xanthomonas youngii 

CFBP 8902T

49.1 49.3 87.1 87.1 86.13 86.13 30.8 30.8 0.87 0.92

The species name between two ditto marks (“) indicates the invalidly published species. Alignment Percentage (AP) and Average Nucleotide Identity (ANI) values were calculated using CLC 
Genomics Workbench 22.0.2; Average Nucleotide Identity by Orthology (OrthoANI) values were estimated using Orthologous Average Nucleotide Identity tool (OAT); digital DNA–DNA 
Hybridization (dDDH) and the differences of G + C content (mol%) were inferred on Type Strain Genome Server (TYGS) web server.
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TABLE 3  Overall genomic relatedness indices (OGRIs) comparison of new species, Stenotrophomonas oahuensis sp. nov. and S. aracearum sp. nov. 
within other species in the genus.

AP (%) ANI (%) OrthoANI (%) dDDH (%) G  +  C difference 
(%)

Species name A5586T A5588T A5586T A5588T A5586T A5588T A5586T A5588T A5586T A5588T

Stenotrophomonas 

oahuensis sp. nov. A5586T
100 53.9 100 86.4 100 84.41 100 28.2 0.0 1.15

Stenotrophomonas 

aracearum sp. nov. A5588T
53.9 100 86.4 100 84.41 100 28.2 100 1.15 0.0

Stenotrophomonas 

acidaminiphila DSM 

13117T

22.0 26.0 84.1 84.3 79.62 80.67 23.1 23.6 3.61 2.46

Stenotrophomonas 

bentonitica DSM 103927T
52.9 80.7 86.6 94.7 84.44 94.35 28.4 56.4 1.17 0.02

Stenotrophomonas 

chelatiphaga DSM 21508T
31.1 35.0 84.5 84.7 80.60 81.29 23.8 24.2 1.54 0.40

“Stenotrophomonas 

cyclobalanopsidis” LMG 

31208T

23.5 27.6 84.8 85.0 81.47 82.17 24.5 25.2 1.84 0.69

Stenotrophomonas 

daejeonensis JCM 16244T
31.0 34.8 84.0 84.3 80.02 80.97 23.5 24.1 3.27 2.12

Stenotrophomonas 

geniculata JCM 13324T
10.9 12.1 84.8 85.2 81.05 81.78 24.5 24.9 0.89 0.26

Stenotrophomonas 

ginsengisoli DSM 24757T
18.1 20.2 83.6 83.4 76.30 77.01 20.7 20.9 0.59 0.56

Stenotrophomonas humi 

DSM 18929T
32.7 35.5 83.7 84.0 78.35 79.09 22.6 22.7 1.25 2.4

Stenotrophomonas 

indicatrix DSM 28278T
10.6 11.7 84.7 85.0 80.84 81.55 24.3 24.9 1.12 0.03

Stenotrophomonas 

koreensis DSM 17805T
31.0 33.7 83.6 83.6 76.47 76.76 20.7 20.7 0.81 0.34

Stenotrophomonas lactitubi 

DSM 104152T
30.5 34.2 84.8 85.0 80.92 81.58 24.3 24.6 0.58 0.57

Stenotrophomonas 

maltophilia ATCC 13637T
21.7 25.1 84.9 85.2 81.11 81.72 24.7 25.0 0.88 0.27

“Stenotrophomonas muris 

DSM 28631T
33.2 37.0 84.9 85.1 81.24 81.8 24.6 25.0 1.39 0.24

“Stenotrophomonas 

nematodicola” CPCC 

101271T

20.6 23.7 85.6 86.5 83.42 84.96 26.8 28.6 2.03 0.89

Stenotrophomonas 

nitritireducens DSM 

12575T

46.4 53.7 84.1 84.5 79.74 80.75 23.4 24.1 3.05 1.90

“Stenotrophomonas 

panacihumi” JCM 16536T
18.0 20.4 83.9 84.1 78.44 79.17 22.2 22.5 3.55 2.40

Stenotrophomonas pavanii 

LMG 25348T
27.3 30.4 84.9 85.1 81.24 81.74 24.4 24.9 1.94 0.79

“Stenotrophomonas pennii” 

Sa5BUN4T
35.1 39.1 84.5 84.6 80.35 80.88 23.5 23.8 1.15 0.00

Stenotrophomonas 

pictorum JCM 9942T
31.9 35.5 83.9 84.3 79.24 79.87 22.5 22.9 0.72 0.43

(Continued)
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TABLE 3  (Continued)

AP (%) ANI (%) OrthoANI (%) dDDH (%) G  +  C difference 
(%)

Species name A5586T A5588T A5586T A5588T A5586T A5588T A5586T A5588T A5586T A5588T

Stenotrophomonas 

rhizophila DSM 14405T
44.7 51.4 85.9 86.8 84.06 85.61 27.7

29.9 2.00 0.86

“Stenotrophomonas sepilia” 

SM16975T

19.5 23.1 84.8 85.1 81.02 81.48 24.4 24.8 1.15 0.00

Stenotrophomonas terrae 

DSM 18941T

31.0 34.6 83.8 83.9 78.59 79.03 22.3 22.7 1.41 2.56

Stenotrophomonas 

tumulicola JCM 30961T

31.9 34.9 84.4 84.9 79.97 80.87 23.5 23.9 0.31 0.84

The species name between two ditto marks (“) indicates the invalidly published species. Alignment Percentage (AP) and Average Nucleotide Identity (ANI) values were calculated using CLC 
Genomics Workbench 22.0.2; Average Nucleotide Identity by Orthology (OrthoANI) values were estimated using Orthologous Average Nucleotide Identity tool (OAT); digital DNA–DNA 
Hybridization (dDDH) and the differences of G + C content (mol%) were inferred on Type Strain Genome Server (TYGS) web server.

FIGURE 4

Pan-genome analyses of Xanthomonas hawaiienses sp. nov. (A6251T and A2111) with other type strains of Xanthomonas species. (A) Numbers of core, 
soft-core, shell, and cloud genes within 40 genomes of type strains of Xanthomonas species. (B) Floral plot showing the number of core orthologous 
genes in the center and the number of unique genes on each petal. (C) The number of common hypothetical protein encoding genes in the center of 
floral plot and the number of unique hypothetical protein encoding genes of each Xanthomonas strain on each petal.

conditions (Pandey et al., 2017), and the pigment xanthomonadin, 
analogs of which have antioxidant potential (Madden et al., 2019). The 
subsystem features of iron acquisition and metabolism based on RAST 
annotation webserver (Figure 1B) suggest that X. hawaiiensis sp. nov. 
strains, A6251T and A2111, are capable of surviving inside the hosts 
(Expert et al., 1996). The xss gene cluster encodes proteins including 
XssABCDE (Xanthomonas siderophore synthesis) and XsuA 
(Xanthomonas siderophore utilization), which are homologous to 
PvsABCDE (Vibrioferrin biosynthesis) and PsuA (Vibrioferrin 
receptor) (Pandey and Sonti, 2010; Pandey et al., 2017). The xss gene 
loci involved in biosynthesis, uptake, and export of xanthoferrin is 
found in both X. hawaiiensis sp. nov. strains A6251T and A2111. In 
addition, the xanC gene, which encodes an acyl carrier protein and is 
essential for yellow xanthomonadin pigment biosystem (Cao et al., 
2018), is harbored in the genomes of A6251T and A2111.

The increasing number of studies on non-pathogenic 
xanthomonads isolated from rice, banana, citrus, walnut, and so on 

suggests that they have the potential for biocontrol and bioprotection 
against the causal agent of their host plants (Fernandes et al., 2021; 
Bansal et al., 2021a,b; Rana et al., 2022). For example, X. sontii strain 
R1 (formerly misclassified as X. sacchari) isolated from rice seed was 
reported to have an antagonistic ability against Burkholderia glumae, 
which caused rice panicle blight disease (Xie et al., 2003; Ham et al., 
2011; Fang et al., 2015). In addition, Xanthomonas sp. from ryegrass, 
which was phylogenetically closely related to X. translucens, showed 
bioprotection activities against broad tested fungal pathogens (Li et al., 
2020). In the previous studies (Leite et al., 1994; Lee et al., 2020), the 
gene cluster involved in type III secretion system (T3SS) formation was 
amplified to identify the non-pathogenicity and pathogenicity strains 
of X. campestris. While deciphering the genomes of X. hawaiiensis sp. 
nov. strains, the T3SS gene cluster was missing in both genomes of 
A6251T and A2111 (Chuang, 2023). The absence of T3SS was also 
observed in non-pathogenic strains of X. campestris (Lee et al., 2020), 
X. sacchari NCPPB 4393 and R1 strains (Studholme et al., 2011; Fang 
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et al., 2015), and considerably commensal X. arboricola CFBP 6771 
(Cesbron et al., 2015; Merda et al., 2017). Furthermore, based on 16S 
rRNA and nine housekeeping genes, the ML trees (Figures  2, 3) 
revealed that X. hawaiiensis sp. nov. strains A6251T and A2111 were 

placed in Clade I along with X. sacchari and X. traslucens, which have 
potential biocontrol and bioprotective agents, as previously described. 
Hence, the genomic constituents of A6251T and A2111 strains not only 
suggest that X. hawaiiensis sp. nov. strains isolated from Araceae should 

FIGURE 5

Core- and pan-genome analyses of 40 Xanthomonas species including new species strains. (A) Core genome-based ML phylogenetic tree of 
Xanthomonas hawaiienses sp. nov. (A6251T and A2111) with other type strains of Xanthomonas species. Tree scale bar represents the nucleotide 
substitutions per site. The range of purple circles indicates the percentage of bootstrapping confidence. (B) Pan genome-based Roary matrix of the 
presence and absence of genes among 40 coordinated Xanthomonas species. Dark blue blocks represent genes and pale blue blocks are missing 
genes in the genomes.

FIGURE 6

Pan-genome analyses of Stenotrophomonas aracearum sp. nov. (A5588T) and S. oahuensis sp. nov. (A5586T) with other type strains of 
Stenotrophomonas species. (A) Numbers of core, soft-core, shell, and cloud genes within 25 genomes of type strains of Stenotrophomonas species. 
(B) Floral plot showing the number of core orthologous genes in the center and the number of unique genes on each petal. (C) The number of 
common hypothetical protein encoding genes in the center of floral plot and the number of unique hypothetical protein encoding genes of each 
Stenotrophomonas species on each petal.
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FIGURE 7

Core- and pan-genome analyses of 25 Stenotrophomonas species including two new species type strains. (A) Core genome-based ML phylogenetic 
tree of S. aracearum sp. nov. (A5588T) and S. oahuensis sp. nov. (A5586T) along with other type strains of Stenotrophomonas species. Tree scale bar 
represents the substitutions per nucleotide position. The purple circles represent 100% bootstrapping support. (B) Pan genome-based Roary matrix of 
the presence and absence of genes among all coordinated Stenotrophomonas species. Dark blue blocks indicate genes present and pale blue blocks 
indicate genes absent in the genomes.

be commensal but also provide insight into the potential biocontrol 
capabilities of X. hawaiiensis sp. nov.

Recent research has begun to unravel the potential for 
biotechnological applications and biological control of 
stenotrophomonads. In agriculture, for example, Stenotrophomonas 
strains are known for promoting plant growth, protecting plants 
against biotic and abiotic stresses, and serving as biocontrol agents for 
plant diseases (Zhang and Yuen, 1999; Wolf, 2002; Messiha et al., 2007; 
Alavi et al., 2013; Berg and Martinez, 2015). As bioremediators and 
phytoremediators, Stenotrophomonas strains are capable of 
metabolizing and degrading a broad range of organic compounds, 
such as benzene and toluene, and tolerating antibiotics and heavy 
metals, such as mercury and silver (Binks et al., 1995; Alonso et al., 
2000; Lee et al., 2002; Pages et al., 2008). Although S. aracearum sp. 
nov. A5588T strain and S. oahuensis sp. nov. A5586T strain showed no 
subsystem features of iron acquisition and metabolism, the higher 
number of RNA metabolism in A5586T strain and protein metabolism 
in A5588T strain (Figure  1B) might shed light on some unique 
metabolic activities in these new Stenotrophomonas species. 
Interestingly, the high number of unique genes and hypothetical 
protein encoding genes unraveled from detailed genomic contents of 
the novel species, especially in S. oahuensis sp. nov., imply that novel 
or useful enzymatic properties and metabolic capabilities of 
Xanthomonas and Stenotrophomonas spp. from different 
environmental sources are worth exploring for biocontrol and 
bioprotection purposes. Preliminary data from pathogenicity tests on 
anthurium indicated that strains A5588T and A5586T from anthurium 
are non-pathogenic stenotrophomonads due to lack of symptom 
development on their original host. In this study, we proposes three 
new species, namely, X. hawaiiensis sp. nov., S. aracearum sp. nov., and 

S. oahuensis sp. nov., isolated from Araceae and provides high quality 
whole genome sequences for further studies relative to their 
pathogenicity on Araceae host plants and other possible bioactivities.
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