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Background: Recent studies have revealed changes in microbiota constitution 
and metabolites associated with tumor progression, however, no causal relation 
between microbiota or metabolites and diffuse large B-cell lymphoma (DLBCL) 
has yet been reported.

Methods: We download a microbiota dataset from the MiBioGen study, a 
metabolites dataset from the Canadian Longitudinal Study on Aging (CLSA) 
study, and a DLBCL dataset from Integrative Epidemiology Unit Open genome-
wide association study (GWAS) project. Mendelian randomization (MR) analysis 
was conducted using the R packages, TwoSampleMR and MR-PRESSO. Five 
MR methods were used: MR-Egger, inverse variance weighting (IVW), weighted 
median, simple mode, and weighted mode. Reverse MR analyses were also 
conducted to explore the causal effects of DLBCL on the microbiome, 
metabolites, and metabolite ratios. Pleiotropy was evaluated by MR Egger 
regression and MR-PRESSO global analyses, heterogeneity was assessed by 
Cochran’s Q-test, and stability analyzed using the leave-one-out method.

Results: 119 microorganisms, 1,091 plasma metabolite, and 309 metabolite 
ratios were analyzed. According to IVW analysis, five microorganisms were 
associated with risk of DLBCL. The genera Terrisporobacter (OR: 3.431, 
p  =  0.049) andgenera Oscillibacter (OR: 2.406, p  =  0.029) were associated with 
higher risk of DLBCL. Further, 27 plasma metabolites were identified as having 
a significant causal relationships with DLBCL, among which citrate levels had 
the most significant protective causal effect against DLBCL (p  =  0.006), while 
glycosyl-N-tricosanoyl-sphingadienine levels was related to higher risk of 
DLBCL (p  =  0.003). In addition, we identified 19 metabolite ratios with significant 
causal relationships to DLBCL, of which taurine/glutamate ratio had the most 
significant protective causal effect (p  =  0.005), while the phosphoethanolamine/
choline ratio was related to higher risk of DLBCL (p  =  0.009). Reverse MR 
analysis did not reveal any significant causal influence of DLBCL on the above 
microbiota, metabolites, and metabolite ratios (p  >  0.05). Sensitivity analyses 
revealed no significant heterogeneity or pleiotropy (p  >  0.05).

Conclusion: We present the first elucidation of the causal influence of microbiota 
and metabolites on DLBCL using MR methods, providing novel insights for 
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potential targeting of specific microbiota or metabolites to prevent, assist in 
diagnosis, and treat DLBCL.

KEYWORDS

gut microbiota, plasma metabolites, metabolite ratios, DLBCL, Mendelian 
randomization

1 Introduction

Diffuse large B-cell lymphoma (DLBCL) is the most common 
subtype of invasive B-cell non-Hodgkin’s lymphoma (NHL), 
comprising approximately 40% of all malignant lymphomas (Alaggio 
et al., 2022). In terms of characteristics and clinical prognosis, DLBCL 
is a highly heterogeneous malignant tumor. In recent years, although 
patient treatment response rates have improved, more than 40% of 
patients with DLBCL continue to develop refractory disease with poor 
survival prognosis (Vodicka et al., 2022). Therefore, more study is 
needed to discover novel biomarkers for evaluating risk classification 
and guiding the optimization of personalized treatment for patients 
with DLBCL.

Notably, the number of genes derived from gut microbiota 
genomes is approximately 150 times greater than the number of genes 
in the human genome. Specific interactions occur between 
microorganisms and their metabolites and host cells (Yoo et  al., 
2020), which influence tumor occurrence and progression by 
inducing gene mutations, effecting the immune system, and altering 
metabolite levels, leading to inflammatory responses, and interfering 
with cell apoptosis and proliferation (Lu et  al., 2022). Yuan et  al. 
(2021) reported differential changes in gut microbiota between 25 
patients with untreated DLBCL and healthy individuals using 16S 
rRNA gene sequencing. Further, Yoon et al. (2023) found that 189 
patients with DLBCL exhibited microbiota dysbiosis, and that 
Enterobacteriaceae numbers were related to treatment efficacy and 
febrile neutropenia. Furthermore, Lin et  al. (2023) detected 
correlations of the numbers of different microbes with disease 
characteristics and host immune cells in 35 patients with 
DLBCL. Previous studies have primarily relied on observing cross-
sectional data or animal models; hence, although some associations 
between gut microbiota or metabolites and DLBCL have been 
proposed, it is difficult to effectively eliminate the influences of 
factors, such as age, region, habits, and lifestyle, limiting the 
determination of causal inference between various factors and 
DLBCL (Rinninella et al., 2019).

Metabolites are small molecule or compounds generated or 
transformed by enzymes during metabolic processes. The metabolism 
of cells driven to proliferate or die undergoes corresponding changes. 
There are reports that metabolic disorders in B-cell lymphoma may 
promote uncontrolled tumor cell proliferation, leading to the use of 
metabolic phenotypes as biomarkers for early cancer detection and/
or treatment response (Vander and DeBerardinis, 2017). Alfaifi et al. 
(2023) summarized the diagnostic and prognostic significance of 
metabolic biomarkers in DLBCL using mass spectrometry and nuclear 
magnetic resonance techniques; however, few studies to date have 
reported the use of specific metabolic markers for DLBCL 
risk assessment.

Mendelian randomization (MR) integrates summary data from 
genome-wide association studies (GWAS) to determine causal 
influences of factors on outcomes, using genetic variation as 
instrumental variable, unaffected by confounding factors. MR analysis 
has been used to explore causal correlations between gut microbiota 
and various diseases, including autoimmune (Xu et al., 2021) and 
metabolic diseases (Sanna et al., 2019), as well as gastrointestinal 
tumors (Xie et al., 2023). In this study, we  used MR analysis to 
investigate the potential causal effects of gut microbiota, plasma 
metabolites, and metabolite ratios on DLBCL, to provide data on 
potential early non-invasive diagnostic biomarkers and therapeutic 
targets for patients with DLBCL.

2 Methods

2.1 Dataset

The gut microbiota GWAS dataset was from the MiBioGen study, 
which explored genotype and 16S microbiome data from fecal samples 
from 18,340 participants (24 population cohorts) and conducted 
microbiota quantitative trait loci analysis to investigate the relationships 
between autosomal human genetic variation and the gut microbiome. 
And this study recorded 211 gut microbiota and 122,110 connected 
single nucleotide polymorphisms (SNPs) datasets, with a minimum 
classification level of genera. A total of 131 genera were determined 
with average abundance >1%, including 12 unknown genera 
(Kurilshikov et al., 2021). Thus, our study included 119 gut microbiota 
genera for analysis. The metamaterials and metamaterial rates GWAS 
dataset was from the Canadian Longitudinal Study on Aging (CLSA), 
which recorded 1091 metamaterials and 309 metamaterial rates from 
8299 individuals (Raina et al., 2019). The DLBCL GWAS summary 
dataset was from the Integrative Epidemiology Unit Open GWAS 
project.1 The “finn-b-C3-DLBCL” dataset, which included 218,792 
participants (209 cases and 218,583 controls) was selected.

2.2 Selection of instrumental variables

First, SNPs strongly correlated with gut microbiota, plasma 
metabolites, and metabolite ratios were identified as instrumental 
variables (IVs) (p < 1e-05). To guarantee stable correlations between 
IVs and exposure factors, weak IVs were filtered out, based on an F 
value [F = [R2/(R2–1)] [(N – K – 1)/K]] > 10. Second, to avoid the 

1 https://gwas.mrcieu.ac.uk/, Updated to November 2023.
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impact of linkage disequilibrium between genetic variations on the 
results and maintain the independence of selected IVs, thresholds of 
SNP linkage disequilibrium (r2) ≤ 0.001 and genetic spacing ≥10,000 kb 
were set. Third, to avoid IVs related to the results, those associated with 
DLBCL were removed (p < 0.05). In addition, palindromic SNPs were 
removed, to ensure that the influence of SNPs on exposure factors 
corresponded to the influence of a specific allele of SNP on outcomes.

2.3 MR analysis

Five MR methods [MR-Egger, inverse variance weighting (IVW), 
weighted median, simple mode, and weighted mode] were applied for 
analysis of the relationships of gut microbiota, plasma metabolites, and 
metabolite ratios with DLBCL. The IVW method uses meta-analysis 
integrated with Wald estimates for SNPs to evaluate the influence of 
exposure factors on an outcome. If there is no significant pleiotropy, the 
results of IVW will be  unbiased (Burgess et  al., 2016). MR Egger 
regression considers the potential heterogeneity of IVs and provides 
corrected estimates of causal effects, as well as an intercept term, to 
detect and correct bias (Bowden et al., 2015). The weighted median 
method provides a robust estimate of causal relationships, even when 
there are up to 50% invalid IVs (Hartwig et al., 2017). The weighted 
model method provides a comprehensive evaluation of the impact of 
different genotypes on outcomes by calculating the weighted average of 
each genotype, and better controls the influence of genotype frequency 
differences on the results, providing a robust and accurate analysis. If the 
results of analyses using these five MR methods were inconsistent, those 
obtained using the IVW method was used as the main evaluation result.

2.4 Sensitivity analysis

MR Egger and MR-Pleiotropy Residual Sum and Outlier 
(MR-PRESSO) tests were applied to examine pleiotropy and outliers, 
respectively; p > 0.05 indicated no significant pleiotropy. MR-PRESSO 
has higher accuracy than MR Egger analysis (Verbanck et al., 2018). 
Conchran’s Q-test was applied to assess the heterogeneity among IVs. 
The consistency of outliers and the overall results was analyzed using 
the leave-one-out method.

2.5 Reverse Mendelian randomization 
analysis

Reverse MR analysis was also conducted, using DLBCL as an 
exposure factor, and using gut microbiota, metabolites or metabolite 
ratios that were causally significantly related to DLBCL in MR analysis 
as outcomes, to explore whether DLBCL had a causal influence on 
microbiota and metabolites. Reverse MR analysis also used five 
methods (MR-Egger, IVW, weighted median, simple mode, and 
weighted mode), with pleiotropy and heterogeneity assessed using the 
MR Egger intercept test and the Cochran’s Q-test.

2.6 Statistical analysis

Statistical analyses were conducted in R software (version 4.1.2.). 
MR analysis was conducted using the R packages, TwoSampleMR 

(version 0.5.10) and MR-PRESSO (version 1.0). Visualize data using 
forest, scatter, funnel, and leave-one-out plots.

3 Results

3.1 Instrumental variables

We separately screened the IVs of 119 gut microbiota genera. 
According to the filtering criterion, p < 1e-05, IVs showing linkage 
disequilibrium in the microbiota (kb = 10,000 and r2 = 0.001) were 
removed. Further, IVs weakly correlated with exposure factors 
(F < 10) and possible confounding factors related to outcomes were 
also removed. Finally, 1,531 SNPs were included for analysis 
(Supplementary Excel S1). We  also separately screened IVs for 
1,091 plasma metabolite, and 309 metabolite ratios. According to 
the filtering criteria described above, 27,534 SNPs of plasma 
metabolite and 7,309 SNPs of metabolic ratios were included 
(Supplementary Excel S2).

3.2 MR analysis of gut microbiota

According to MR analysis using the IVW method, we detected 
causal relationships between 5 gut microbiota genera and DLBCL 
(Figure 1). Among them, the most significant was that the genus, 
Oscillibacter, was related to higher risk of DLBCL [odds ratio (OR): 
2.406, 95 confidence interval (95%CI): 1.093–5.296, p = 0.029]. 
Further, application of the weighted median method yielded the 
same result (p = 0.002). Another gut microbiota genus, 
Terrisporobacter, was also related to higher risk of DLBCL (OR: 
3.431, 95%CI: 1.005–11.708, p = 0.049). Conversely, the genera, 
Methanobrevibacter, Eubacterium coprostanoligenes group, and 
Slackia had causal protective effects against DLBCL (OR: 0.418, 
95%CI: 0.215–0.814, p = 0.010; OR: 0.239, 95%CI: 0.080–0.714, 
p = 0.010; OR: 0.444, 95%CI: 0.198–0.995, p = 0.048). Meanwhile, 
according to the results of analysis using the weighted median 
method, the genera Methanobrevibacter and Eubacterium 
coprostanoligenes group were associated with low risk of DLBCL, 
similar to the results obtained using the IVW method (Table 1).

In this study, no significant pleiotropy or outliers were detected 
using the MR Egger intercept test, MR-PRESSO test 
(Supplementary Table S1, p > 0.05), or scatter plot (Figure 2). Further, 
no significant heterogeneity was detected among the selected SNPs 
using the Cochran’s Q-test (Supplementary Table S1, p > 0.05) or 
funnel plot analysis (Supplementary Figure S1). In addition, the 
stability of MR results was analyzed by leave-one-out analysis 
(Supplementary Figure S2).

3.3 MR analysis of plasma metabolites

According to MR analysis by the IVW method, associations 
between 27 plasma metabolites and the risk of DLBCL were 
identified (Figure  3). The top five most significant metabolites 
associated with high risk of DLBCL were levels of glycosyl-N-
tricosanoyl-sphingadienine (p = 0.003), 5-dodecenoate (p = 0.004), 
4-hydroxyglutamate (p = 0.004), 3-ureidopropionate (p = 0.005), and 
3-methyl-2-oxobutyrate (p = 0.015). Further, the top three 
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TABLE 1 Mendelian randomization analysis of associations between gut microbiota and diffuse large B-cell lymphoma.

Exposure MR method
No. of 
SNP

β SE OR 95% CI p-value

Terrisporobacter Weighted mode 5 1.573 1.051 4.820 0.614 37.837 0.209

Weighted median 5 1.310 0.809 3.705 0.759 18.091 0.106

Inverse variance weighted 5 1.233 0.626 3.431 1.005 11.708 0.049

MR Egger 5 1.086 2.168 2.961 0.042 207.593 0.652

Simple mode 5 1.591 1.119 4.908 0.547 44.028 0.228

Methanobrevibacter Weighted mode 8 −1.011 0.544 0.364 0.125 1.056 0.105

Weighted median 8 −0.988 0.419 0.372 0.164 0.846 0.018

Inverse variance weighted 8 −0.872 0.340 0.418 0.215 0.814 0.010

MR Egger 8 −0.010 1.346 0.990 0.071 13.852 0.995

Simple mode 8 −1.002 0.582 0.367 0.117 1.147 0.128

Eubacterium 

coprostanoligenes 

group

Weighted mode 13 −2.589 1.207 0.075 0.007 0.800 0.053

Weighted median 13 −1.978 0.766 0.138 0.031 0.622 0.010

Inverse variance weighted 13 −1.431 0.559 0.239 0.080 0.714 0.010

MR Egger 13 −3.370 2.191 0.034 <0.001 2.521 0.152

Simple mode 13 −2.611 1.312 0.073 0.006 0.961 0.070

Slackia Weighted mode 9 −0.747 0.939 0.474 0.075 2.982 0.449

Weighted median 9 −0.757 0.583 0.469 0.149 1.471 0.194

Inverse variance weighted 9 −0.811 0.411 0.444 0.198 0.995 0.048

MR Egger 9 −3.210 1.912 0.040 0.001 1.711 0.137

Simple mode 9 −0.736 0.849 0.479 0.091 2.527 0.411

Oscillibacter Weighted mode 16 1.666 0.791 5.293 1.122 24.964 0.052

Weighted median 16 1.505 0.487 4.506 1.734 11.707 0.002

Inverse variance weighted 16 0.878 0.402 2.406 1.093 5.296 0.029

MR Egger 16 0.797 1.450 2.219 0.130 38.002 0.591

Simple mode 16 1.666 0.786 5.293 1.134 24.709 0.051

MR, Mendelian randomization; SNP, single nucleotide polymorphisms; β, Beta; SE, standard error; OR, odds ratio; CI, confidence interval.

metabolites were significantly correlated with causal protective 
effects against DLBCL, including those of citrate (p = 0.006), 
N-formylphenylalanine (p = 0.008), and androstenediol monosulfate 

(p = 0.010). Analysis using the weighted median method indicated 
that DHEAS, glycolithocolate, androstenediol monosulfate, 
4-hydroxyglutamate, and methyl-4-hydroxybenzoate sulfate were 

FIGURE 1

Associations of genetically predicted gut microbiota with diffuse large B-cell lymphoma (DLBCL) risk.
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associated with DLBCL, similar to the results produced using the 
IVW method (Table 2).

No significant pleiotropy or outliers were detected using the MR 
Egger intercept test, MR-PRESSO test (Supplementary Table S2, 
p > 0.05), or scatter plot (Figures  4, 5). Further, there were no 
significant heterogeneity (p > 0.05) among selected SNPs, according to 
the Cochran’s Q-test (Supplementary Table S2, p > 0.05) and funnel 
plots analysis (Supplementary Figures S3, S4). The stability of MR 
results was analyzed using leave-one-out analysis 
(Supplementary Figure S5).

3.4 MR analysis of metabolite ratio

MR analysis using the IVW method indentified 19 metabolite 
ratios as associated with the risk of DLBCL (Figure 6). Among them, 
serine/alpha tocopherol, glutamate/glutamine, uridine/cytidine, 
adenosine 5′-diphosphate/glycerate, glycine/phosphate, cholate/
bilirubin, cholate/adenosine 5′-monophosphate, glutarate (C5-DC)/
caprylate (8:0), taurine/cysteine, tyrosine/pyruvate, 
phosphoethanolamine/choline, and serine/threonine were associated 
with a higher risk of DLBCL (p < 0.05). Notably, 
s-adenosylhomocysteine/5-methyluridine, adenosine 
5′-monophosphate/proline, taurine/glutamate, phosphate/linoleoyl-
arachidonoyl-glycerol (18:2–20:4), succinate/proline, phosphate/
EDTA, and adenosine 5′–diphosphate/mannitol to sorbitol had a 
causal protective effects against DLBCL (p < 0.05). Further, analysis 
using the weighted median method indicated that 

s-adenosylhomocysteine/5-methyluridine, taurine/glutamate, and 
phosphate/EDTA were associated with low risk of DLBCL, consistent 
with the results generated by IVW analysis (Table 3).

No horizontal significant pleiotropy or outliers were detected by 
MR Egger intercept test, MR-PRESSO test (Supplementary Table S3, 
p > 0.05), or scatter plot (Figures  7, 8). Further, no heterogeneity 
among the selected SNPs was found by Cochran’s Q-test 
(Supplementary Table S3, p > 0.05) or funnel plot analysis 
(Supplementary Figures S6, S7). In addition, the stability of MR results 
was analyzed using leave-one-out plots (Supplementary Figure S8).

4 Reverse Mendelian randomization 
analysis

Reverse MR analysis identified no significant causal influence of 
DLBCL on the gut microbiota, metabolites, or metabolite ratios 
described above (Supplementary Tables S4–S6, p > 0.05). No 
significant pleiotropy or heterogeneity was detected by MR Egger 
intercept test and Cochran’s Q-test (Supplementary Table S7, p > 0.05).

5 Discussion

Recent, research has identified relationships among gut 
microbiota, plasma metabolites, and the development of lymphoma 
(Uribe-Herranz et al., 2021). To our knowledge, this study represents 
the first MR analysis based on new large-scale GWAS data to identify 

FIGURE 2

Scatter plots of causal estimates for genetically predicted gut microbiota on diffuse large B-cell lymphoma (DLBCL) risk. (A) genus Terrisporobacter; 
(B) genus Methanobrevibacter; (C) genus Eubacterium coprostanoligenes group; (D) genus Slackia; (E) genus Oscillibacter.
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FIGURE 3

Associations of genetically predicted plasma metabolites with diffuse large B-cell lymphoma (DLBCL) risk analyzed using the inverse variance 
weighting (IVW) method.

the causal effects of gut microbiota, plasma metabolites, and 
metabolites ratios on DLBCL. We report causal relationship of 5 gut 
microbiota genera, 27 plasma metabolites, and 19 metabolite ratios 
with DLBCL, providing a reference for potential future interventions 
and treatments to reduce the risk of DLBCL.

Interactions between the gut flora and the host immune-metabolic 
system are complex, and can have local and systemic effects on the 
host (Lozenov et al., 2023; Riazati et al., 2023). Clinical studies or 
experimental animal studies have demonstrated a relationship 
between gut microbial composition and disease, and found that 
dysbiosis appears to be  a precursor to carcinogenesis. Using MR 
analysis, our study is the first to determine that the Terrisporobacter 
and Oscillibacter genera represent high-risk flora for DLBCL 
development, which have potential as specific markers or therapeutic 
targets. Terrisporobacter are anaerobic bacteria, often detected in 

postoperative patients suffering from comorbidities, such as cirrhosis, 
abscess, bone infections, and bloodstream infections (Cheng et al., 
2016), and are positively associated with sepsis risk (Chen et al., 2023). 
In addition, invasive fungal disease (IFD) is an important cause of 
morbidity and mortality in patients with hematologic malignancies. 
Gavriilaki et al. reported that 19 subjects receiving chimeric antigen 
receptor T cells and two subjects undergoing gene therapy did not 
develop IFD, whereas subjects with primary refractory/recurrent 
lymphoma undergoing autologous hematopoietic cell transplantation 
(HCT) developed IFD, which was associated with poor outcomes in 
patients receiving allogeneic HCT (Gavriilaki et al., 2023). Therefore, 
detection of bacteria or fungi in patients with DLBCL and 
co-infections warrants attention, to assist in improved patient 
management. Of interest, there have been reports that intestinal flora 
may be  involved in tumorigenesis and progression through the 

https://doi.org/10.3389/fmicb.2024.1356437
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Qian et al. 10.3389/fmicb.2024.1356437

Frontiers in Microbiology 07 frontiersin.org

TABLE 2 Mendelian randomization analysis of associations between plasma metabolites and diffuse large B-cell lymphoma.

Exposure MR method
No. of 
SNP

β SE OR 95% CI p-value

Methionine sulfoxide levels MR Egger 25 −0.966 0.562 0.381 0.127 1.145 0.099

Weighted median 25 −0.533 0.347 0.587 0.297 1.159 0.125

Inverse variance weighted 25 −0.524 0.260 0.592 0.356 0.986 0.044

Weighted mode 25 −0.981 0.629 0.375 0.109 1.286 0.132

Simple mode 25 −0.146 0.658 0.864 0.238 3.138 0.827

DHEAS levels MR Egger 44 −0.396 0.399 0.673 0.308 1.472 0.327

Weighted median 44 −0.713 0.347 0.490 0.248 0.969 0.040

Inverse variance weighted 44 −0.489 0.221 0.613 0.398 0.946 0.027

Weighted mode 44 −0.781 0.338 0.459 0.2368 0.889 0.026

Simple mode 44 −0.959 0.552 0.383 0.130 1.130 0.089

3-methyl-2-oxobutyrate 

levels

MR Egger 22 0.001 0.718 1.001 0.245 4.085 0.999

Weighted median 22 0.581 0.417 1.789 0.790 4.051 0.163

Inverse variance weighted 22 0.744 0.305 2.105 1.159 3.825 0.015

Weighted mode 22 0.284 0.740 1.329 0.311 5.671 0.705

Simple mode 22 0.203 0.800 1.226 0.256 5.878 0.802

2,3-dihydroxypyridine 

levels

MR Egger 22 1.12 0.983 3.072 0.447 21.102 0.267

Weighted median 22 0.536 0.388 1.709 0.799 3.655 0.167

Inverse variance weighted 22 0.601 0.280 1.82 1.053 3.160 0.032

Weighted mode 22 0.502 0.604 1.652 0.506 5.397 0.415

Simple mode 22 0.519 0.666 1.680 0.455 6.201 0.445

Glycolithocholate levels MR Egger 24 −0.597 0.422 0.552 0.242 1.260 0.172

Weighted median 24 −0.690 0.322 0.502 0.267 0.942 0.032

Inverse variance weighted 24 −0.494 0.227 0.610 0.391 0.952 0.029

Weighted mode 24 −0.855 0.449 0.425 0.176 1.024 0.069

Simple mode 24 −0.870 0.578 0.419 0.135 1.3011 0.146

5-dodecenoate levels MR Egger 15 0.655 0.786 1.924 0.413 8.974 0.420

Weighted median 15 0.467 0.523 1.594 0.572 4.442 0.372

Inverse variance weighted 15 1.036 0.362 2.817 1.386 5.726 0.004

Weighted mode 15 0.478 0.607 1.612 0.491 5.294 0.444

Simple mode 15 1.981 0.888 7.247 1.271 41.332 0.043

Alpha-hydroxyisovalerate 

levels

MR Egger 23 0.519 0.435 1.680 0.716 3.940 0.247

Weighted median 23 0.195 0.307 1.215 0.666 2.217 0.526

Inverse variance weighted 23 0.439 0.216 1.552 1.016 2.371 0.042

Weighted mode 23 0.244 0.328 1.276 0.671 2.427 0.465

Simple mode 23 0.831 0.562 2.295 0.763 6.905 0.153

N-methyl-2-pyridone-5-

carboxamide levels

MR Egger 15 0.352 0.233 1.422 0.901 2.243 0.154

Weighted median 15 0.384 0.566 1.468 0.484 4.450 0.497

Inverse variance weighted 15 0.381 0.176 1.463 1.036 2.067 0.031

Weighted mode 15 0.404 0.229 1.497 0.956 2.344 0.099

Simple mode 15 0.695 0.586 2.003 0.636 6.313 0.255

4-ethylphenylsulfate levels MR Egger 23 −0.531 0.458 0.588 0.240 1.444 0.260

Weighted median 23 −0.383 0.385 0.682 0.320 1.451 0.320

Inverse variance weighted 23 −0.585 0.258 0.557 0.336 0.925 0.024

Weighted mode 23 −0.262 0.467 0.769 0.308 1.920 0.580

Simple mode 23 −0.308 0.643 0.735 0.208 2.591 0.636
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TABLE 2 (Continued)

Exposure MR method
No. of 
SNP

β SE OR 95% CI p-value

5alpha-pregnan-

3beta,20alpha-diol 

monosulfate levels

MR Egger 28 −0.608 0.474 0.544 0.215 1.378 0.211

Weighted median 28 −0.297 0.324 0.743 0.394 1.402 0.360

Inverse variance weighted 28 −0.496 0.218 0.609 0.397 0.933 0.023

Weighted mode 28 −0.398 0.406 0.672 0.303 1.489 0.336

Simple mode 28 −1.052 0.590 0.349 0.110 1.110 0.086

Androstenediol 

monosulfate levels

MR Egger 32 −0.579 0.413 0.560 0.249 1.259 0.171

Weighted median 32 −0.773 0.355 0.461 0.230 0.926 0.030

Inverse variance weighted 32 −0.607 0.235 0.545 0.344 0.863 0.010

Weighted mode 32 −0.766 0.372 0.465 0.224 0.963 0.048

Simple mode 32 −0.815 0.603 0.443 0.136 1.442 0.186

4-hydroxyglutamate levels MR Egger 25 0.028 0.521 1.028 0.371 2.852 0.958

Weighted median 25 0.874 0.346 2.396 1.217 4.717 0.011

Inverse variance weighted 25 0.708 0.249 2.030 1.2461 3.308 0.004

Weighted mode 25 0.925 0.505 2.522 0.936 6.791 0.080

Simple mode 25 0.662 0.603 1.939 0.595 6.318 0.283

N-formylphenylalanine 

levels

MR Egger 31 −1.148 0.545 0.317 0.109 0.922 0.044

Weighted median 31 −0.313 0.341 0.731 0.374 1.428 0.359

Inverse variance weighted 31 −0.606 0.229 0.545 0.348 0.854 0.008

Weighted mode 31 −0.175 0.619 0.839 0.249 2.826 0.779

Simple mode 31 −0.175 0.646 0.839 0.237 2.977 0.788

Methyl-4-hydroxybenzoate 

sulfate levels

MR Egger 21 −1.311 0.580 0.269 0.087 0.839 0.036

Weighted median 21 −0.823 0.379 0.439 0.209 0.923 0.030

Inverse variance weighted 21 −0.601 0.289 0.549 0.311 0.966 0.038

Weighted mode 21 −0.833 0.535 0.435 0.152 1.241 0.135

Simple mode 21 −1.059 0.640 0.347 0.099 1.216 0.114

Arabitol/xylitol levels MR Egger 24 0.453 0.764 1.573 0.352 7.034 0.559

Weighted median 24 0.575 0.421 1.777 0.778 4.059 0.172

Inverse variance weighted 24 0.654 0.308 1.923 1.051 3.519 0.034

Weighted mode 24 0.272 0.710 1.312 0.326 5.281 0.706

Simple mode 24 0.050 0.804 1.051 0.217 5.085 0.951

Behenoyl 

dihydrosphingomyelin 

levels

MR Egger 38 0.427 0.447 1.533 0.638 3.680 0.346

Weighted median 38 0.497 0.302 1.643 0.909 2.969 0.100

Inverse variance weighted 38 0.451 0.196 1.570 1.070 2.305 0.021

Weighted mode 38 0.700 0.498 2.013 0.758 5.346 0.169

Simple mode 38 0.406 0.569 1.500 0.492 4.575 0.480

1-myristoyl-2-

arachidonoyl-GPC levels

MR Egger 24 0.917 0.334 2.502 1.299 4.818 0.012

Weighted median 24 0.409 0.263 1.505 0.898 2.521 0.121

Inverse variance weighted 24 0.467 0.195 1.596 1.088 2.341 0.017

Weighted mode 24 0.460 0.272 1.584 0.929 2.700 0.105

Simple mode 24 0.4210 0.610 1.524 0.461 5.036 0.497

Glycosyl-N-tricosanoyl-

sphingadienine levels

MR Egger 24 0.389 0.514 1.475 0.538 4.044 0.458

Weighted median 24 0.659 0.339 1.933 0.995 3.756 0.052

Inverse variance weighted 24 0.691 0.229 1.996 1.274 3.126 0.003

Weighted mode 24 0.742 0.461 2.100 0.851 5.185 0.121

Simple mode 24 0.755 0.610 2.128 0.644 7.030 0.228

(Continued)

https://doi.org/10.3389/fmicb.2024.1356437
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Qian et al. 10.3389/fmicb.2024.1356437

Frontiers in Microbiology 09 frontiersin.org

TABLE 2 (Continued)

Exposure MR method
No. of 
SNP

β SE OR 95% CI p-value

Ceramide levels MR Egger 30 −0.765 0.506 0.466 0.173 1.255 0.142

Weighted median 30 −0.315 0.318 0.730 0.391 1.361 0.322

Inverse variance weighted 30 −0.487 0.219 0.614 0.400 0.943 0.026

Weighted mode 30 −0.339 0.4449 0.713 0.2988 1.702 0.452

Simple mode 30 −0.446 0.588 0.640 0.202 2.025 0.454

Dihomo-linolenoylcarnitine 

levels

MR Egger 34 −0.128 0.269 0.879 0.520 1.489 0.636

Weighted median 34 −0.336 0.207 0.715 0.477 1.072 0.105

Inverse variance weighted 34 −0.333 0.151 0.717 0.533 0.965 0.028

Weighted mode 34 −0.295 0.226 0.745 0.478 1.161 0.202

Simple mode 34 −0.522 0.395 0.593 0.274 1.286 0.195

8-methoxykynurenate levels MR Egger 24 −0.138 0.655 0.871 0.241 3.146 0.835

Weighted median 24 −0.463 0.327 0.630 0.332 1.195 0.157

Inverse variance weighted 24 −0.553 0.251 0.575 0.352 0.940 0.027

Weighted mode 24 −0.455 0.511 0.634 0.233 1.728 0.383

Simple mode 24 −0.500 0.573 0.606 0.197 1.863 0.391

4-methylhexanoylglutamine 

levels

MR Egger 23 −0.170 0.388 0.844 0.394 1.805 0.666

Weighted median 23 −0.391 0.293 0.676 0.381 1.201 0.182

Inverse variance weighted 23 −0.472 0.202 0.624 0.420 0.926 0.019

Weighted mode 23 −0.442 0.370 0.642 0.311 1.327 0.245

Simple mode 23 −0.645 0.523 0.525 0.188 1.463 0.231

3-ureidopropionate levels MR Egger 23 0.357 0.535 1.429 0.501 4.077 0.511

Weighted median 23 0.604 0.380 1.830 0.869 3.857 0.112

Inverse variance weighted 23 0.767 0.272 2.153 1.264 3.668 0.005

Weighted mode 23 0.435 0.493 1.544 0.588 4.059 0.388

Simple mode 23 1.082 0.629 2.950 0.8596 10.124 0.100

Gamma-glutamylglutamine 

levels

MR Egger 30 −0.489 0.407 0.613 0.276 1.360 0.239

Weighted median 30 −0.361 0.283 0.697 0.400 1.215 0.203

Inverse variance weighted 30 −0.412 0.202 0.662 0.446 0.983 0.041

Weighted mode 30 −0.239 0.351 0.787 0.395 1.567 0.501

Simple mode 30 −0.078 0.464 0.925 0.372 2.299 0.868

Citrate levels MR Egger 23 −0.818 0.702 0.442 0.112 1.747 0.257

Weighted median 23 −0.697 0.384 0.498 0.235 1.058 0.070

Inverse variance weighted 23 −0.788 0.288 0.455 0.259 0.799 0.006

Weighted mode 23 −1.090 0.735 0.336 0.080 1.419 0.152

Simple mode 23 −1.071 0.751 0.343 0.079 1.495 0.168

Cholesterol levels MR Egger 18 −0.750 0.643 0.472 0.134 1.666 0.261

Weighted median 18 −0.466 0.451 0.628 0.259 1.519 0.302

Inverse variance weighted 18 −0.629 0.320 0.533 0.285 0.998 0.049

Weighted mode 18 −0.453 0.625 0.636 0.187 2.165 0.479

Simple mode 18 −0.534 0.708 0.586 0.146 2.349 0.461

Androsterone sulfate levels MR Egger 35 −0.206 0.125 0.813 0.637 1.039 0.108

Weighted median 35 −0.194 0.112 0.824 0.661 1.026 0.084

Inverse variance weighted 35 −0.210 0.103 0.810 0.662 0.992 0.042

Weighted mode 35 −0.185 0.107 0.831 0.674 1.026 0.094

Simple mode 35 −0.336 0.398 0.714 0.327 1.560 0.405

MR, Mendelian randomization; SNP, single nucleotide polymorphisms; β, Beta; SE, standard error; OR, odds ratio; CI, confidence interval.
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production of oncogenic exotoxins, oncogenic metabolites, and 
chronic inflammatory responses. Further, Oscillibacter has been 
reported as closely associated with tumor progression and treatment 
efficacy. Yu et al. (2023) found that a decrease in the Oscillibacter 
population was associated with reduced GFb and STAT3 expression, 
and increased levels of TNFa, IFNg, and CXCR4, and that Oscillibacter 
transplantation in conjunction with anticancer immune responses 
contributed to inhibition of colorectal cancer progression. In addition, 
Liu et  al. (2022) found that increased relative abundance of 
Oscillibacter in feces was correlated with decreased triglyceride levels, 
while Oscillibacter is also reported to be  associated with serum 
metabolite levels related to intestinal flora (Thingholm et al., 2019). 
Wang et al. (2023) reported that changes in lipid levels in patients with 
DLBCL were correlated with prognosis and influenced by rituximab 
efficacy. In addition, preliminary clinical trials demonstrated that the 
gut microbiota can influence tumor immunotherapy efficacy by 

enhancing intra-tumoral infiltration of CD8+ effector T cells or 
promoting T cell growth and cytokine production. Xu et al. confirmed 
that intestinal flora composition differed was significantly between 
patients with DLBCL and healthy controls, as well as between DLBCL 
patients before and after treatment with rituximab, cyclophosphamide, 
doxorubicin, vincristine and prednisone (R-CHOP), and patients in 
complete and incomplete remission after treatment. Further, intestinal 
flora composition is correlated with patient immune status and 
inflammatory factors; in particular, the presence of Lactobacillus 
fermentum during chemotherapy may be  associated with better 
efficacy (Xu et al., 2024). The roles of Terrisporobacter or Oscillibacter 
in DLBCL development, and their metabolic and therapeutic impacts, 
requires further in depth exploration, and additional relevant 
clinical trials.

Through MR analysis, we also identified a causal association of 
three microorganisms protective against DLBCL. In response to 

FIGURE 4

Scatter plots of causal estimates for genetically predicted plasma metabolites protective against diffuse large B-cell lymphoma (DLBCL) risk. 
(A) Methionine sulfoxide levels; (B) DHEAS levels; (C) Glycolithocholate levels; (D) 4-ethylphenylsulfate levels; (E) 5alpha-pregnan-3beta,20alpha-diol 
monosulfate levels; (F) Androstenediol monosulfate levels; (G) N-formylphenylalanine levels; (H) Methyl-4-hydroxybenzoate sulfate levels; 
(I) Ceramide levels; (J) Dihomo-linolenoylcarnitine levels; (K) 8-methoxykynurenate levels; (L) 4-methylhexanoylglutamine levels; (M) Gamma-
glutamylglutamine levels; (N) Citrate levels; (O) Cholesterol levels; (P) Androsterone sulfate levels.
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FIGURE 5

Scatter plots of causal estimates for genetically predicted plasma metabolites contributing to diffuse large B-cell lymphoma (DLBCL) risk. (A) 3-methyl-
2-oxobutyrate levels; (B) 2,3-dihydroxypyridine levels; (C) 5-dodecenoate levels; (D) Alpha-hydroxyisovalerate levels; (E) N-methyl-2-pyridone-5-
carboxamide levels; (F) 4-hydroxyglutamate levels; (G) Arabitol/xylitol levels; (H) Behenoyl dihydrosphingomyelin levels; (I) 1-myristoyl-2-
arachidonoyl-GPC levels; (J) Glycosyl-N-tricosanoyl-sphingadienine levels; (K) 3-ureidopropionate levels.

FIGURE 6

Associations of genetically predicted metabolite ratios with diffuse large B-cell lymphoma (DLBCL) risk analyzed using inverse the variance weighting 
(IVW) method.
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TABLE 3 Mendelian randomization analysis of association between metabolite ratios and diffuse large B-cell lymphoma.

Exposure MR method
No. of 
SNP

β SE OR 95% CI p-value

S-adenosylhomocysteine/ 

5-methyluridine

MR Egger 21 −0.300 0.551 0.741 0.252 2.180 0.592

Weighted median 21 −0.882 0.316 0.414 0.223 0.769 0.005

Inverse variance weighted 21 −0.573 0.241 0.564 0.351 0.904 0.017

Weighted mode 21 −0.767 0.329 0.464 0.244 0.885 0.030

Simple mode 21 −0.767 0.493 0.464 0.177 1.221 0.136

Adenosine 

5′-monophosphate / 

proline

MR Egger 21 −0.923 0.612 0.397 0.120 1.320 0.148

Weighted median 21 −0.565 0.409 0.568 0.255 1.268 0.168

Inverse variance weighted 21 −0.596 0.284 0.551 0.316 0.962 0.036

Weighted mode 21 −1.104 0.736 0.331 0.078 1.403 0.149

Simple mode 21 −0.768 0.792 0.464 0.098 2.190 0.344

Serine / alpha-

tocopherol

MR Egger 28 1.414 0.546 4.111 1.409 11.995 0.016

Weighted median 28 0.597 0.328 1.817 0.956 3.453 0.068

Inverse variance weighted 28 0.608 0.249 1.836 1.126 2.994 0.015

Weighted mode 28 0.650 0.495 1.916 0.726 5.055 0.200

Simple mode 28 0.296 0.616 1.344 0.402 4.492 0.635

Glutamate / glutamine MR Egger 25 1.293 0.589 3.642 1.148 11.559 0.039

Weighted median 25 0.685 0.364 1.984 0.973 4.048 0.059

Inverse variance weighted 25 0.569 0.274 1.766 1.031 3.025 0.038

Weighted mode 25 0.810 0.596 2.248 0.698 7.233 0.187

Simple mode 25 0.693 0.691 1.999 0.516 7.749 0.326

Uridine / cytidine MR Egger 21 0.625 0.582 1.868 0.597 5.845 0.296

Weighted median 21 0.109 0.391 1.115 0.518 2.400 0.781

Inverse variance weighted 21 0.554 0.274 1.740 1.016 2.980 0.044

Weighted mode 21 0.075 0.572 1.078 0.351 3.309 0.897

Simple mode 21 0.177 0.623 1.194 0.352 4.050 0.779

Adenosine 

5′-diphosphate/ glycerate

MR Egger 16 0.827 0.769 2.286 0.506 10.326 0.301

Weighted median 16 0.644 0.376 1.904 0.911 3.979 0.087

Inverse variance weighted 16 0.565 0.268 1.760 1.042 2.973 0.035

Weighted mode 16 1.016 0.647 2.762 0.777 9.819 0.137

Simple mode 16 1.003 0.713 2.725 0.674 11.023 0.180

Glycine / phosphate MR Egger 26 0.350 0.253 1.418 0.864 2.329 0.180

Weighted median 26 0.154 0.197 1.167 0.793 1.717 0.434

Inverse variance weighted 26 0.387 0.168 1.472 1.059 2.047 0.021

Weighted mode 26 0.205 0.197 1.227 0.833 1.807 0.310

Simple mode 26 0.512 0.5613 1.669 0.556 5.015 0.370

Cholate / bilirubin MR Egger 26 0.168 0.497 1.183 0.447 3.133 0.738

Weighted median 26 0.481 0.336 1.617 0.837 3.124 0.152

Inverse variance weighted 26 0.496 0.244 1.641 1.018 2.647 0.042

Weighted mode 26 0.501 0.344 1.651 0.841 3.241 0.158

Simple mode 26 0.785 0.549 2.193 0.748 6.435 0.165

Cholate / adenosine 

5′-monophosphate

MR Egger 22 0.252 0.430 1.286 0.554 2.989 0.565

Weighted median 22 0.508 0.346 1.661 0.843 3.273 0.142

Inverse variance weighted 22 0.554 0.236 1.741 1.095 2.767 0.019

Weighted mode 22 0.450 0.477 1.569 0.616 3.994 0.356

Simple mode 22 1.392 0.570 4.023 1.315 12.307 0.024
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TABLE 3 (Continued)

Exposure MR method
No. of 
SNP

β SE OR 95% CI p-value

Taurine / glutamate MR Egger 17 −1.371 0.862 0.254 0.047 1.375 0.132

Weighted median 17 −0.973 0.472 0.378 0.150 0.953 0.039

Inverse variance weighted 17 −0.971 0.346 0.379 0.192 0.746 0.005

Weighted mode 17 −1.299 0.748 0.273 0.063 1.181 0.102

Simple mode 17 −1.375 0.750 0.253 0.058 1.098 0.085

Glutarate (C5-DC) / 

caprylate (8:0)

MR Egger 25 0.868 0.418 2.383 1.050 5.406 0.049

Weighted median 25 0.626 0.370 1.871 0.906 3.861 0.090

Inverse variance weighted 25 0.528 0.235 1.695 1.070 2.685 0.025

Weighted mode 25 0.623 0.379 1.864 0.888 3.916 0.113

25 0.491 0.544 1.634 0.5636 4.744 0.375

Taurine / cysteine MR Egger 20 0.038 0.701 1.039 0.263 4.105 0.957

Weighted median 20 0.763 0.446 2.144 0.894 5.142 0.087

Inverse variance weighted 20 0.717 0.318 2.048 1.097 3.823 0.024

Weighted mode 20 0.881 0.677 2.412 0.639 9.099 0.209

Simple mode 20 0.881 0.743 2.412 0.563 10.341 0.250

Phosphate / linoleoyl-

arachidonoyl-glycerol 

(18:2–20:4)

MR Egger 23 −0.621 0.412 0.537 0.240 1.204 0.146

Weighted median 23 −0.528 0.290 0.590 0.335 1.041 0.068

Inverse variance weighted 23 −0.433 0.204 0.648 0.434 0.968 0.034

Weighted mode 23 −0.512 0.306 0.599 0.329 1.093 0.109

Simple mode 23 −0.482 0.539 0.617 0.215 1.775 0.380

Tyrosine / pyruvate MR Egger 24 0.529 0.426 1.697 0.736 3.914 0.228

Weighted median 24 0.442 0.364 1.556 0.763 3.175 0.224

Inverse variance weighted 24 0.501 0.236 1.651 1.041 2.620 0.033

Weighted mode 24 0.456 0.376 1.578 0.756 3.29 0.237

Simple mode 24 0.245 0.551 1.277 0.434 3.763 0.661

Succinate / proline MR Egger 15 −0.752 0.6205 0.471 0.140 1.587 0.246

Weighted median 15 −0.493 0.432 0.611 0.262 1.425 0.254

Inverse variance weighted 15 −0.664 0.307 0.515 0.282 0.940 0.031

Weighted mode 15 −0.322 0.602 0.724 0.223 2.356 0.601

Simple mode 15 −0.091 0.718 0.912 0.223 3.731 0.900

Phosphate / EDTA MR Egger 20 −0.503 1.217 0.605 0.056 6.571 0.684

Weighted median 20 −1.265 0.487 0.282 0.109 0.732 0.009

Inverse variance weighted 20 −0.785 0.370 0.456 0.221 0.941 0.034

Weighted mode 20 −1.570 0.603 0.208 0.064 0.678 0.018

Simple mode 20 −1.570 0.730 0.208 0.050 0.870 0.045

Adenosine 

5′-diphosphate / 

mannitol to sorbitol

MR Egger 19 −0.454 0.574 0.635 0.206 1.957 0.440

Weighted median 19 −0.497 0.337 0.608 0.314 1.178 0.140

Inverse variance weighted 19 −0.527 0.238 0.590 0.370 0.942 0.027

Weighted mode 19 −0.972 0.598 0.379 0.117 1.221 0.121

Simple mode 19 −0.972 0.647 0.379 0.107 1.344 0.150

Phosphoethanolamine / 

choline

MR Egger 22 1.131 0.829 3.098 0.610 15.727 0.188

Weighted median 22 0.593 0.412 1.809 0.808 4.053 0.150

Inverse variance weighted 22 0.763 0.291 2.145 1.213 3.794 0.009

Weighted mode 22 0.235 0.638 1.265 0.362 4.416 0.716

Simple mode 22 0.983 0.714 2.673 0.660 10.825 0.183
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identification of Eubacterium coprostanoligenes group as beneficial, 
we also found that patients with higher Eubacterium coprostanoligenes 
group abundance exhibited better progression-free survival. In 
addition, Yuan et al. (2023) used Eubacterium coprostanoligenes group 
and Prevotella in construction of a model to estimate the risk of 
recurrence in patients with hypopharyngeal squamous cell carcinoma, 
and found that lower abundance of Eubacterium coprostanoligenes 
group was associated with higher recurrence and metastasis rates. 
Eubacterium_coprostanoligenes_group refers to a group of anaerobic 
Gram-positive bacteria involved in cholesterol transformation and 
regulation of cholesterol levels. Cholesterol level reduction is reported 
to inhibit tumor growth and metastasis (Chimento et al., 2018; Huang 
et al., 2020), while elevated cholesterol levels are correlated with breast 
cancer recurrence, which can be reduced by the administration of 
statins. In addition, cholesterol metabolites may promote tumor 
metastasis by interacting with T cells and neutrophils (Baek et al., 
2017). The relationship between Eubacterium coprostanoligenes group 
and cholesterol in DLBCL warrants in depth exploration in the future 
to provide new insights to inform targeted therapy.

In recent years, infection with a number of agents, such as 
Epstein–Barr virus (EBV), human herpesvirus 8, and human 

immunodeficiency virus infection, has been strongly associated 
with the risk of developing NHL. Identifying possible pathogens 
correlated with NHL and understanding the relationship between 
NHL and pathogens is crucial for disease prevention and screening. 
Siqueira et al. (2023) showed that there is viral diversity in NHL. Joo 
et  al. (2021) found that Eubacterium coprostanoligenes was 
significantly increased in patients with low HBV DNA, suggesting 
a relationship between gut flora composition and chronic HBV 
infection load. More importantly, HIV-infected patients have been 
identified as at increased risk for hematologic neoplasms, of which 
DLBCL is the most common type. Although little is known about 
the pathogenesis of HIV-associated DLBCL, Huguet et al. (2023) 
reported an improved rate of complete remission in patients treated 
with conventional chemotherapy combined with antiretroviral 
therapy. Direct or indirect interactions between intestinal bacteria 
and the intestinal mucosal immune system can modulate 
physiological immune response. Slackia has been reported as 
potentially related to adaptive immune activation, as it is positively 
correlating with IF13 production, as well as the T-cell cytokines, 
IL-10, IFN-γ, and IL-17, which contribute to memory T cells 
activations (Margiotta et al., 2021). Regarding Methanobrevibacter, 

TABLE 3 (Continued)

Exposure MR method
No. of 
SNP

β SE OR 95% CI p-value

Serine / threonine MR Egger 25 0.415 0.405 1.514 0.685 3.347 0.316

Weighted median 25 0.311 0.291 1.365 0.772 2.412 0.284

Inverse variance weighted 25 0.428 0.198 1.534 1.041 2.262 0.031

Weighted mode 25 0.385 0.276 1.470 0.856 2.525 0.175

Simple mode 25 0.566 0.472 1.762 0.698 4.448 0.242

MR, Mendelian randomization; SNP, single nucleotide polymorphisms; β, Beta; SE, standard error; OR, odds ratio; CI, confidence interval.

FIGURE 7

Scatter plots of causal estimates for genetically predicted metabolite ratios protective against diffuse large B-cell lymphoma (DLBCL) risk. 
(A) S-adenosylhomocysteine to 5-methyluridine ratio; (B) Adenosine 5’-monophosphate to proline ratio; (C) Taurine to glutamate ratio; (D) Phosphate 
to linoleoyl-arachidonoyl-glycerol ratio; (E) Succinate to proline ratio; (F) Phosphate to EDTA ratio; (G) Adenosine 5’-diphosphate to mannitol to 
sorbitol ratio.
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there are reports that adjuvants can overcome tolerance to tumor-
associated melanoma antigens and induce CD8+ T cell responses 
(Krishnan et al., 2010). Together, these studies suggest that focusing 
on the management and modification of patient intestinal flora 
during consultations with clinicians may help to reduce the risk of 
DLBCL development and improve patient outcomes.

Changes in metabolism lead to metabolic phenotypes, which can 
serve as biomarkers for early detection of cancer and treatment 
optimization (Luengo et  al., 2017). There is an urgent need for 
identification of metabolites that can be assessed using non-invasive 
body fluid samples (such as blood, urine, etc.) as biomarkers to help 
diagnose lymphoma. Hexokinase 2 (HK2) is an important regulator 
involved in glucose metabolism, and is associated with carcinogenesis 
in various malignant tumors. Zhao et al. reported that HK2 exerts a 
malignant biological effect on DLBCL cells through ERK1/2 signaling 
(Zhao et al., 2023). In this study, we detected causal relationships of 
plasma metabolites and metabolite ratios with DLBCL, particularly 
the metabolism of amino acids. Some hematological tumors are 
reported to exhibit high asparagines consumption rates, which 
maintains malignant tumor cell growth. Asparagine is associated with 
mTORC1 activity and can regulate the uptake of amino acids, such as 
serine. Many tumor cells rely heavily on serine to support a functional 
nucleotide library, which facilitates cell proliferation (Eraslan et al., 
2021). Our data also indicate that serine/threonine and serine/α-
tocopherol ratios are causally related to high risk of DLBCL. Fouad 

Choueiry et al. conducted a metabolomics and gene expression study 
and found that alanine, cysteine, aspartic acid, glutamic acid, and 
methionine metabolism were all dysregulated in ibrutinib-resistant 
activated B cell-DLBCL (Choueiry et  al., 2021). Our study also 
revealed that 4-hydroxyglutamate levels, glutamate/glutamine ratio, 
glutarate (C5-DC)/caprylate (8:0) ratio, and taurine/cysteine ratio 
were associated with high risk of DLBCL. Additionally, we identified 
a causal effect of phosphoethanolamine/choline ratio on DLBCL risk. 
Xiong et  al. (2017) identified a direct correlation between MYC 
overexpression and dysregulation of choline metabolism, and reported 
that MYC disrupts choline metabolism and hinders lymphoma cell 
necroptosis in a mitochondrial autophagy-dependent manner, by 
activating phosphohistidine transferase 1 choline-α. Further study is 
needed to explore the role and clinical value of metabolites in DLBCL 
occurrence and progression.

Our research has multiple strengths. First, our study was the 
first to apply MR analysis to investigate the causal effects of gut 
microbiota, plasma metabolites, and metabolite ratios in 
DLBCL. Compared with traditional retrospective clinical studies, 
MR analysis is more reliable, because it reduces bias caused by 
confounding factors. The candidate gut bacteria and plasma 
metabolites identified in this study provide a foundation for 
subsequent research into the underlying mechanisms, which 
could help to discover novel diagnostic biomarkers and 
personalized treatment strategies for patients with 

FIGURE 8

Scatter plots of causal estimates for genetically predicted metabolite ratios contributing to diffuse large B-cell lymphoma (DLBCL) risk. (A) Serine to 
alpha-tocopherol ratio; (B) Glutamate to glutamine ratio; (C) Uridine to cytidine ratio; (D) Adenosine 5’-diphosphate to glycerate ratio; (E) Glycine to 
phosphate ratio; (F) Cholate to bilirubin ratio; (G) Cholate to adenosine 5’-monophosphate ratio; (H) Glutarate to caprylate ratio; (I) Taurine to cysteine 
ratio; (J) Tyrosine to pyruvate ratio; (K) Phosphoethanolamine to choline ratio; (L) Serine to threonine ratio.
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DLBCL. Second, SNPs related to gut microbiota and metabolites 
were sourced from a large GWAS dataset, ensuring the reliability 
of the screened IVs. Additionally, the statistical processing 
capability of R software and corresponding sensitivity analyses 
reduced the effects of bias on our results, ensuring their stability 
and reliability. Nevertheless, this study has some limitations. 
Most subjects included in the GWAS were of European ethnicity, 
which may led to some bias. Further, the minimum classification 
level included in the gut microbiota dataset was genus, preventing 
investigation into causal correlations at the species level. In 
addition, we  were unable to perform subgroup analysis, for 
example, by stratifying germinal center B-cell like and activated 
B-cell like disease subtypes. Further research is needed to 
elucidate the relationships of gut microbiota, plasma metabolites, 
and metabolite ratios with DLBCL, and to explore the role of gut 
microbiota and metabolites on the gut barrier, host immune 
responses, and homeostasis.

6 Conclusion

In summary, our study applied MR analysis to determine the 
causal effects of 5 gut microbiota, 27 plasma metabolites, and 19 
metabolite ratios on DLBCL. Our research findings have potential 
to provide new directions to inform the prevention, auxiliary 
diagnosis, and treatment cure of DLBCL, by targeting gut 
microbiota or metabolites. Further research to determine the 
underlying mechanisms involved is warranted.
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