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De novo assembly plays a pivotal role in metagenomic analysis, and the 
incorporation of third-generation sequencing technology can significantly 
improve the integrity and accuracy of assembly results. Recently, with 
advancements in sequencing technology (Hi-Fi, ultra-long), several long-read-
based bioinformatic tools have been developed. However, the validation of the 
performance and reliability of these tools is a crucial concern. To address this 
gap, we  present MCSS (microbial community simulator based on structure), 
which has the capability to generate simulated microbial community and 
sequencing datasets based on the structure attributes of real microbiome 
communities. The evaluation results indicate that it can generate simulated 
communities that exhibit both diversity and similarity to actual community 
structures. Additionally, MCSS generates synthetic PacBio Hi-Fi and Oxford 
Nanopore Technologies (ONT) long reads for the species within the simulated 
community. This innovative tool provides a valuable resource for benchmarking 
and refining metagenomic analysis methods.

Code available at: https://github.com/panlab-bio/mcss
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1 Introduction

Metagenomic sequencing treats microbes in the environment as a unified entity to obtain 
genomic sequences, which can be used to study the taxonomic composition of microbial 
communities and identify novel species (Handelsman et al., 1998; Handelsman, 2004; Chen 
and Pachter, 2005; Frioux et al., 2020; Yang et al., 2021). And the assembly of metagenomic 
sequencing reads into metagenome-assembled genomes (MAGs) is a crucial step in the 
metagenomic analysis. Assembly tools, such as hifiasm_meta (Feng et al., 2022) and metaFlye 
(Kolmogorov et al., 2020) enhance contiguity in assemblies using nanopore (Wang et al., 2021) 
and PacBio (Rhoads and Au, 2015) sequencing data compared to short-read assemblies. And 
they can effectively address challenges of uneven species composition and intra-species 
heterogeneity in complex microbial communities (Marx, 2021; Bickhart et al., 2022). The 
development and testing of these metagenome assembly algorithms require high-quality 
benchmark datasets with ground truth, but obtaining ground truth for real datasets can 

OPEN ACCESS

EDITED BY

Chen Li,  
Northeastern University, China

REVIEWED BY

Bin Hu,  
Los Alamos National Laboratory (DOE), 
United States
Xiaowen Feng,  
Dana–Farber Cancer Institute, United States

*CORRESPONDENCE

Fang Liu  
 liufcri@163.com  

Weihua Pan  
 panweihua@caas.cn

†These authors have contributed equally to 
this work

RECEIVED 20 December 2023
ACCEPTED 20 February 2024
PUBLISHED 07 March 2024

CITATION

Hui X, Yang J, Sun J, Liu F and Pan W (2024) 
MCSS: microbial community simulator based 
on structure.
Front. Microbiol. 15:1358257.
doi: 10.3389/fmicb.2024.1358257

COPYRIGHT

© 2024 Hui, Yang, Sun, Liu and Pan. This is an 
open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE Technology and Code
PUBLISHED 07 March 2024
DOI 10.3389/fmicb.2024.1358257

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2024.1358257﻿&domain=pdf&date_stamp=2024-03-07
https://www.frontiersin.org/articles/10.3389/fmicb.2024.1358257/full
https://www.frontiersin.org/articles/10.3389/fmicb.2024.1358257/full
https://github.com/panlab-bio/mcss
mailto:liufcri@163.com
mailto:panweihua@caas.cn
https://doi.org/10.3389/fmicb.2024.1358257
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2024.1358257


Hui et al. 10.3389/fmicb.2024.1358257

Frontiers in Microbiology 02 frontiersin.org

be  challenging, making it difficult to assess the accuracy of the 
algorithms (Escalona et al., 2016; Zhao et al., 2017; Alosaimi et al., 
2020). Therefore, the development of simulation software that can 
generate synthetic metagenomic data is highly meaningful.

So far, several simulation tools have been developed. Read 
simulators like Pbsim3 (Ono et al., 2022) and NanoSim (Yang et al., 
2017) can generate simulated third-generation sequencing reads, 
which provide foundational data for benchmark testing. However, 
they cannot simulate metagenomic data. Meta-NanoSim (Yang et al., 
2023) and CAMISIM (Fritz et al., 2019) can simulate metagenomic 
datasets but require users to provide additional information, such as 
a reference metagenome list or the composition of the microbial 
community. This requires users to have a prerequisite level of domain 
expertise, so in many cases, users may not be certain about the species 
composition of the microbial community they want to simulate. 
M&Ms García-García et al. (2022) can simulate datasets based on 
environmental parameters, allowing users to specify the environment 
they want to simulate and obtain simulated metagenomes. Since 
M&Ms acquire species within genera through random sampling, it 
does not consider the structural characteristics of communities at the 
species level and cannot learn from the characteristics of the real 
sequencing samples entered by the user. Additionally, the sequencing 
data simulated by M&Ms. is limited to 16S rDNA and cannot generate 
third-generation sequencing data for whole genomes.

Therefore, we  have developed MCSS, which can simulate 
microbial communities and generate third-generation sequencing 
data. MCSS generates simulated data based on community structure 
at the species level, preserving the structural features of real samples 
while expanding the diversity of the simulated community. Moreover, 
MCSS can simulate both the abundance of species within the 
community and intra-species heterogeneity, which increases the 
complexity of the simulated data, making it more closely resemble real 
samples. Finally, the generated long reads can be used directly as input 
for assembly tools, greatly reducing the workload for users.

2 Materials and methods

MCSS generates simulated microbial communities and 
sequencing data by learning the structure, abundance, and intra-
species heterogeneity information from real samples of microbial 
communities. MCSS primarily generates simulated data through the 
following four steps (Figure 1): (1) determine the species composition, 
(2) determine the abundance of each species in the community, (3) 
find the reference genomes of the species in the GTDB reference 
database (Parks et al., 2020), and (4) call Pbsim3 to generate simulated 
long reads.

The core function of step 1 is to determine the species composition 
of the simulated microbial community based on real samples. In the 
community, each species can be  mapped to a corresponding 
taxonomic rank (domain, phylum, class, order, family, genus, and 
species) within the GTDB database. This taxonomic rank resembles a 
branch, and all the species’ taxonomic ranks form a tree. High-level 
taxonomic units may have one or more subordinate low-level 
taxonomic units. Consequently, we  have decided to represent the 
taxonomic profiles of microbial communities using a multiway tree 
structure, which is a data structure allowing multiple branches for 
each node (Figure 2). In our study, we use a multiway tree to represent 
the structural characteristics of a microbial community and construct 

a multiway tree for each real sample’s community. Then, we construct 
a multiway tree based on all species in the GTDB reference database 
using the same method, to serve as a reference multiway tree. For each 
simulation, we sample a multiway tree from real samples, and then 
identify the optimal subtree of the sampled multiway tree within the 
reference multiway tree, representing the species composition of the 
simulated community. We have pre-generated community multiway 
trees for multiple samples under various environmental conditions 
(Table  1), which serve as the basis for sampling and creating the 
sampled multiway trees. Furthermore, MCSS can produce sampled 
multiway trees using user-input sequencing data.

In the second step, the abundance of each species in the community 
is determined by sampling based on species abundance observed in real 
samples. Because not all community species abundance distributions 
can be fitted with appropriate models, sampling from real samples is 
widely applicable across various environments.

In the third step, MCSS searches the GTDB reference database for 
the genomes of each species in the community. If the user specifies the 
number of strains within each species, the tool will search for that 
specified quantity of genomes for each species to reflect the diversity 
between species.

In the final step, the user needs to specify the minimum depth 
of coverage or average depth of coverage, as well as the sequencing 
model for Pbsim3. MCSS then calls Pbsim3 to generate simulated 
sequencing data. By using simulated community genome list as 
input, Pbsim3 simulation allows the generation of synthetic 
metagenomic sequencing data. Pbsim3 can generate both high-
accuracy Hi-Fi reads and ultra-long ONT reads, with sequencing 
costs higher than those associated with second-generation 
sequencing reads. In addition, we provide the function to exclusively 
generate simulated community genome data. Users can choose a 
sequence simulation tool that suits their research to generate 
sequencing reads for simulated genomes.

2.1 Determine the species composition

2.1.1 Data sources
We downloaded sequencing data for six environmental conditions 

(Table 1) from the MGnify (Richardson et al., 2023) and NCBI SRA 
(Sayers et al., 2023) database, which include the gut (PRJNA398089) 
(Zhang et al., 2022), marine (PRJNA329908) (Tremblay et al., 2017), 
oral (PRJNA362687) (Qiao et al., 2018), rhizosphere (PRJEB23682) 
(Maarastawi et al., 2018), skin (PRJEB26427) (Lam et al., 2018), and 
soil (PRJNA252425) (Větrovský et al., 2020). For each environment, 
we downloaded multiple samples where, each set of sequencing data 
represents a single sample.

2.1.2 Real and reference multiway tree
We assign GTDB taxonomic labels (Youngblut and Ley, 2021) to 

sequencing reads with Kraken2 (Wood et  al., 2019) (GTDB_
release207) and retrieve the taxonomic information (kingdom, 
phylum, class, order, family, genus, and species) of each species in the 
samples from the GTDB reference database for constructing the 
multiway tree of the microbial community structure (Figure 2). Each 
node in the multiway tree (T_real) represents a taxonomic unit. The 
edge lengths are determined by calculating the evolutionary distance 
in the GTDB reference tree, representing the evolutionary distance 
between two taxonomic units. Construct a multiway tree based on all 
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FIGURE 1

Flow diagram of the MCSS workflow.

FIGURE 2

Multiway trees: the diagram is an illustration of a microbial community multiway tree, where oval nodes represent entity nodes, and rectangular nodes 
represent non-entity nodes. The evolutionary distance between entity nodes can be calculated, but it is not possible to calculate the evolutionary 
distance between entity nodes and non-entity nodes, or between non-entity nodes themselves. For example, the genus g2 only has one species, s3. 
Although g2 can be mapped to a specific taxonomic unit in the GTDB database, the information in the GTDB database about this genus corresponds 
to s3 rather than the genus itself. Consequently, it is not possible to calculate the evolutionary distance from other nodes to g2. Hence, we consider g2 
as a non-entity node. All domains and species are entity nodes. For other taxonomic hierarchy levels, a node is considered an entity node if it has two 
or more directly adjacent child nodes; otherwise, it is considered a non-entity node. The red dashed lines are used to connect a parent entity node and 
its non-directly adjacent child node to record the evolutionary distance between these two nodes. The evolutionary distance between two directly 
adjacent entity nodes is directly represented by the edge length.
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species in the GTDB reference database using the same method, to 
serve as a reference multiway tree.

2.1.3 Simulated multiway tree
We randomly sample the multiway trees of environmental samples 

to obtain the sampled multiway tree. In the reference multiway tree, use 
Algorithm 1 to identify the subtree that closely resembles the sampled 
multiway tree. The essence of Algorithm 1 lies in finding a subtree in the 
reference multiway tree such that the difference in evolutionary distance 
between this subtree and the sampled multiway tree is minimized, which 
can be  addressed using recursion. The species within this subtree 
constitute the simulated microbial community. To make MCSS more 
practical, users can specify two search modes to find subtrees, which are 
the accurate mode and the prolific mode. In the accurate mode, the 
search in reference multiway tree is based solely on sampled multiway 
tree, while in the prolific mode, adjustments are made using the mean 
and standard deviation of evolutionary distances for species in the 
sample to expand the simulated data. The process of calculating 
evolutionary distance is described by the following formula (formulas 
(1), (2), (3), (4), and (5)):

 
p = ( )B 1 0 5, .

 (1)

 
σ = ( )std dreal

 (2)

 
u = ( )mean dreal

 (3)
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where B 1 0 5, .( )  represents a Bernoulli distribution with 
parameters 1 and 0.5; dref , dsam, and dreal  respectively represent 
the evolutionary distances of species within the GTDB database, 
sampled data, and real samples; dnref  is the result of filtering dref  
based on dreal; drealg  and dnrefg  represent the evolutionary 
distances of species within the genus g; samg  represents the set of 
species within genus g in the sampled data.

When the user provides FastQ files, Kraken2 is used to assign GTDB 
taxonomic labels to the reads in the FastQ files, and then real multiway 
trees are constructed.

ALGORITHM 1 Get_SubTree (T_sample, T_ref): 
Recursively search for the closest subtree.

 Input: sampled multiway tree T_sample, reference multiway tree 
T_ref
Output: simulated multiway tree T_sim
If T_sample has two layers:
 if prolific mode:
  adjust T_sample
  calculate evolutionary distance difference between species 

in T_sample and T_ref
 return dis, node_list
Else:
 min_dis = INF
 choice_node = []
 for child_node_T_sample in T_sample.child_nodes
  for child_node_Tref in in T_ref.child_nodes
    dis_tree, node_list = get_subTree(T_

sample_child, T_ref_child)
    if min_dis > dis_tree and child_node_

Tref not chosen
    min_dis = dis_tree
     choice_node.

append(node_list)
 return min_dis, choice_node

2.2 Determine the abundance of each 
species in the community

For a specific environment, we analyze and record statistics on the 
abundance of species in each sample based on the Kraken2 results. Then, 
based on the number of species in the simulated multiway tree, we sample 
and normalize to obtain the abundance of microbial community species. 
Since the normalization process can affect the abundances of sampled 
species, we ensure that the sum of the sampled results approximates 
100%, mitigating the impact of normalization on abundances.

When the input file consists of FastQ reads, we fit the species 
abundance distribution using a log-normal distribution and then 
sample to obtain the community species abundance.

Users can either specify both the species in a community and their 
respective abundances or select a pre-learned environment to generate 
species abundances based on that environment.

2.3 Find the reference genomes of the 
species

We downloaded multiple genomes for each species based on the 
correspondence between species and accession numbers in the GTDB 
database. These genomes are used to represent different strains within 
the same species. For each species in the previously determined 
simulated community, we randomly select the user-specified number of 
strain genomes. We select multiple reference genomes for a species 
because real samples often exhibit genetic variation within the same 
species. To capture these intra-species differences, we  consider all 

TABLE 1 The sources and quantities of actual samples from different 
environments.

Environment Project Sample count

Gut PRJNA398089 104

Soil PRJNA252425 118

Oral PRJNA362687 111

Skin PRJEB26427 102

Marine PRJNA329908 123

Rhizosphere PRJEB23682 120
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distinct genomes classified under the same species when selecting 
species genomes. This approach ensures that the simulated genome 
dataset incorporates internal variations within species, facilitating an 
effective evaluation of the performance of metagenomic tools in 
handling highly similar genomes.

2.4 Generate simulated long reads

Since Pbsim3 (using the qshmm model by default and other error 
models can also be chosen) generates PacBio continuous long reads 

(CLR), we employ SAMtools (Danecek et al., 2021) to convert the 
SAM format data produced by Pbsim3 into BAM format data. 
Subsequently, we utilize CCS (Wenger et al., 2019) to generate PacBio 
high-fidelity (Hi-Fi) reads.

3 Results

To ascertain the extent to which the simulated tree accurately 
represents the structural characteristics of actual microbial 
communities, we randomly choose 30 samples for the test set and use 

FIGURE 3

Box plots displaying the evolutionary distances from species to kingdom in the training set, test set, simulated data from different environments, and 
the GTDB reference database: (A) gut: 30 test samples and 74 training samples, (B) marine: 30 test samples and 93 training samples, (C) oral: 30 test 
samples and 81 training samples, (D) rhizosphere: 30 test samples and 90 training samples, (E) skin: 30 test samples and 72 training samples, (F) soil: 30 
test samples and 88 training samples.
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the remaining ones for the training set and executed the subsequent 
validation procedure.

3.1 Consistency in the structural 
characteristics

In prolific mode, we generated 30 simulated samples using the 
features learned from the training dataset. We analyzed the evolutionary 
distances from species to kingdom in the training set, test set, simulated 

data, and the GTDB reference database. The species in the environment 
are a subset of the species in the GTDB database, reflecting the 
community characteristics of that environment. The community 
simulation process involves searching for species in the overall GTDB 
database that match the environmental characteristics. Figures 3, 4 show 
that species evolutionary distance distributions in different 
environments have distinct features, and they are highly consistent 
between the simulated and test data in each environment. The results 
indicate that MCSS has captured the feature of species evolutionary 
distances within the community from the environment.

FIGURE 4

Histograms showing the evolutionary distances from species to kingdom in the training set, test set, simulated data from different environments, and 
the GTDB reference database: (A) gut: 30 test samples and 74 training samples, (B) marine: 30 test samples and 93 training samples, (C) oral: 30 test 
samples and 81 training samples, (D) rhizosphere: 30 test samples and 90 training samples, (E) skin: 30 test samples and 72 training samples, (F) soil: 30 
test samples and 88 training samples.
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3.2 Species abundance in different 
environments

The Species abundance is a crucial metric of microbial 
communities. To assess the authenticity of the species abundance 
generated by MCSS, we  compared the abundance distribution 
between the simulated data and the test data, and plotted scatter 
diagrams. Figure 5 shows that the sampled species abundances 
closely match the species abundances in the real samples. In 
environments like marine, oral, and rhizosphere, outliers are 
noticeable, and sampling from real samples can capture this 
feature, while obtaining species abundance from a distribution 

function fails to capture these characteristics. These results indicate 
that MCSS has the capability to generate relatively realistic species 
abundance data.

3.3 The consistency and diversity of the 
species composition

We examined the species composition of real samples and 
simulated samples under user-input sample patterns. Selecting 30 
samples from each environment, we generate simulated data for 
each sample, and then compare the species composition between 

FIGURE 5

Species abundance scatter plot. The x-axis (0  <  x  <  1) represents species abundance, and the y-axis (0  <  y  <  1) represents the proportion of that 
abundance appearing in the samples: (A) gut: 104 samples, (B) marine: 123 samples, (C) oral: 111 samples, (D) rhizosphere: 120 samples, (E) skin: 102 
samples, and (F) soil: 118 samples.
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FIGURE 6

Phylogenetic trees for the species in both the real samples and the simulated samples from each environment. Purple blocks represent species that appear 
only in the simulated samples, red blocks represent species that appear only in the real samples, and green blocks represent species that are present in both 
real and simulated samples. The branch colors represent the phylum categories: (A) gut, (B) marine, (C) oral, (D) rhizosphere, (E) skin, and (F) soil.
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the 30 real samples and the simulated samples. This process is used 
to evaluate the performance of MCSS in generating simulated data 
based on user-input samples. Compare the phylogenetic trees (Xie 
et al., 2023) for the species in both the real and simulated samples 
from each environment (Figure 6). In each environment, a high 
degree of overlap between the species in the simulated samples and 
the species in the real samples is evident. Meanwhile, there is a 
slight difference in the species composition between the simulated 
communities and the real datasets, suggesting MCSS can capture 
real community species composition characteristics while 
introducing diversity.

3.4 The assembly results of both real and 
simulated data

We generated simulated data based on SRR15275210 (Kim et al., 
2022), assembled both real and simulated data separately, and 
analyzed the results. Despite the reduced read count in the simulated 
data (which can be increased by adjusting coverage), the outcomes of 
high-quality contigs do not differ significantly compared to real data. 
This is particularly evident in the number of contigs exceeding 1 M 
(see Table 2).

3.5 Coverage of genomes in different 
environments

The coverage of the genome is a critical metric, which influences 
the quality of the assembly. To analyze the genome coverage in 
simulated data generated by MCSS, we  generated five simulated 

datasets for each environment under default parameters. Figure 7 
illustrates the proportion of genome coverage at various levels in 
different environments.

3.6 Genome divergence between strains of 
species in each environment

To quantify the genetic variation between species, we used mash 
(Ondov et al., 2016) to obtain the genome divergence of strains in 
simulated data across different environments. Figure  8 displays 
variations in the genomic differences among strains of species across 
different environments.

4 Discussion and conclusions

MCSS is a convenient and versatile metagenomic community 
simulation software that can generate diverse simulated data while 

FIGURE 7

Proportion of genome coverage at various levels in different environments: the bar chart in orange and beneath represents the number of genomes 
with coverage greater than 5. The bar chart in green and beneath represents the number of genomes with coverage greater than 10. The bar chart in 
pink and beneath represents the number of genomes with coverage greater than 30. The bar chart in purple and beneath represents the number of 
genomes with coverage greater than 50. The bar chart in blue represents the number of genomes with coverage greater than 100.

TABLE 2 The assembly results of both real and simulated data.

Result Real Sim

Reads 15,240,116,452 6,707,226,299

Species 160 160

Contigs with a size 

>500 K

244 162

Contigs with a size 

>1 M

128 118
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ensuring community similarity. MCSS can generate a simulated 
microbiome based on environmental parameters, learn from user-
input sequencing data features, and allow users to specify the 
microbiome composition. Furthermore, it can simulate the species 
composition, species abundance, and intra-species heterogeneity 
of microbiomes, making the simulated communities closely 
resemble real metagenomic communities. In addition, the 
generated third-generation sequencing data increases its utility. 
The mentioned features allow it to cater to various cases of datasets 
to meet the evaluation needs of metagenomic assembly and 
analysis tools to help relevant researchers improve their software 
or algorithms.
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