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2-Hydroxy-4-methoxy
benzaldehyde, a more effective 
antifungal aroma than vanillin and 
its derivatives against Fusarium 
graminearum, destroys cell 
membranes, inhibits DON 
biosynthesis, and performs a 
promising antifungal effect on 
wheat grains
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Fusarium graminearum (F. graminearum) is a severe pathogen threatening the 
safety of agriculture and food. This study aimed to explore the antifungal efficacies 
of several plant-derived natural compounds (vanillin and its derivatives) against the 
growth of F. graminearum and investigate the antifungal mechanism of 2-hydroxy-
4-methoxybenzaldehyde (HMB), the strongest one. The minimum inhibitory 
concentration (MIC) of HMB in inhibiting mycelial growth was 200 μg/mL. HMB 
at MIC damaged cell membranes by increasing the permeability by about 6-fold 
(p < 0.05) as evidenced by propidium iodide (PI) staining. Meanwhile, the content of 
malondialdehyde (MDA) and glycerol was increased by 45.91 and 576.19% by HMB 
treatment at MIC, respectively, indicating that lipid oxidation and osmotic stress 
occurred in the cell membrane. Furthermore, HMB exerted a strong antitoxigenic 
role as the content of deoxynivalenol (DON) was remarkably reduced by 93.59% at 
MIC on 7th day. At last, the antifungal effect of HMB against F. graminearum was 
also confirmed on wheat grains. These results not only revealed the antifungal 
mechanism of HMB but also suggested that HMB could be applied as a promising 
antifungal agent in the preservation of agricultural products.
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Introduction

Fusarium graminearum (F. graminearum) belongs to deuteromycotina (imperfect fungi) 
in Fusarium spp., and is a common filamentous pathogen that causes Fusarium head blight 
(FHB; Chen et al., 2022; Tian et al., 2022). FHB is a devastating disease threatening wheat and 
other small cereal grains and therefore causes huge yield reduction and economic losses 
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worldwide. In the USA, from the beginning of the 90’s of the 20th 
century to 2008, the wheat yield loss caused by FHB was estimated to 
reach US $3 billion (Windels, 2000). Since 2000, the occurrence of 
FHB has increased in China, and till 2018, 4.5 million hectares were 
affected, accounting for approximately 20% of the total planted area 
of wheat, and the yield loss per year exceeded 3.41 million tons (Chen 
et al., 2019).

Apart from the strain itself, various mycotoxins are produced 
through its secondary metabolism, mainly including trichothecenes 
and zearalenones, which are toxic to humans and livestock (Chen 
et al., 2022). Ingestion of these mycotoxin-contaminated unprocessed 
and processed grains usually causes detrimental health effects, such as 
immunosuppression, infertility, nephropathy, cancer, or even death 
(Wu et al., 2017). As these Fusarium mycotoxins are thermally stable, 
common food processing methods are not able to degrade and/or 
remove them. At present, among various strategies for controlling 
FHB, chemical fungicides are the primary means, such as 
carbendazim, tebuconazole, flutriafol, etc. (Moonjely et al., 2023). 
However, resistant fungi strains have been detected in a growing trend 
in the past 10 years in China, and such fungicides are not friendly to 
environmental safety and human health (Sun et al., 2018; Zhang et al., 
2020). Therefore, it is an urgent prerequisite to search for safe methods.

Plant-derived compounds are superior to chemical fungicides 
due to many advantages, such as high-yield, effective, eco-friendly, 
etc. (Arunachalam et al., 2023). Representative compounds, such as 
thymol (Gao et al., 2016), ferulic acid (Yan et al., 2023), and camphor 

(Kong et  al., 2022) have been reported to inhibit the growth of 
F. graminearum by disrupting the integrity of cell membranes. 
Vanillin, o-vanillin and 2-hydroxy-4-methoxybenzaldehyde (HMB) 
are isomers (C8H8O3) derived from benzaldehydes (chemical 
structures shown in Figure 1) and have broad antimicrobial spectrum, 
including Aspergillus spp. (López-Malo et al., 1997; Kim et al., 2011), 
Penicillium spp. (Scora and Scora, 1998; Matamoros-León et al., 1999; 
Mohana and Raveesha, 2010), and Cryptococcus neoformans (Kim 
et al., 2014). Interestingly, many recent studies suggested that cell 
membrane is a potential antifungal target of vanillin and its 
derivatives in various conditional pathogens [e.g., Botrytis cinerea 
and Alternaria alternata (Yang J. et al., 2021)], Escherichia coli (E. coli) 
O157:H7 (Chen et al., 2023), Aspergillus flavus (A. flavus; Li et al., 
2021d), and Staphylococcus aureus (Kannappan et al., 2023). Our 
previous study demonstrated that vanillin and its derivatives 
performed strong antifungal effects on A. flavus and among them, 
HMB was the most effective one (Li and Zhu, 2021). HMB is a flavor 
compound found in the roots and rhizomes of many medicinal 
plants, such as Decalipus hamiltonii, Hemidesmus indicus, Mondia 
whitei, Periploca sepium, and Sclerocarya caffra, and it has been 
reported to play roles in many biological functions, such as 
antimicrobial, anti-inflammatory, hepatoprotective, neuroprotective, 
etc. (Rathi et al., 2017). In addition, HMB is a generally regarded as 
safe (GRAS) reagent and applied as a flavoring agent, adjuvant or 
medicine (FDA, 2021). Consequently, it is supposed to be a promising 
antifungal agent applied in food processing and preservation. A 
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recent study reported that the antifungal effect of HMB against 
A. flavus was attributed to the damage of the integrities of cell walls 
and cell membranes as well as suppression of respiration (Li et al., 
2021c). Although the antiaflatoxigenic activity of HMB on A. flavus 
has also been suggested (Li et  al., 2021c), its mode of action on 
F. graminearum is still unknown. To screen out the strongest aroma 
among vanillin and its derivatives and explore the potential antifungal 
target, in this study, the antifungal efficacy of vanillin, o-vanillin, and 
HMB against F. graminearum was first compared, then the effects of 
HMB on the cell surface and the integrity of cell membranes were 
determined. Finally, the content of deoxynivalenol (DON) was 
quantified and the antifungal effect on wheat grains against 
F. graminearum was evaluated.

Materials and methods

Fungal species

Fusarium graminearum PH-1 was kindly gifted from the food 
microbiological hazard control lab at Henan University of 
Technology. The strain was cultured with Potato Dextrose Agar 
(PDA) containing 200 g/L of potato, 20 g/L dextrose, and 15 g/L of 
agar at 28°C ± 2°C. Mycelia used for experiments in this study were 
cultured with Potato Dextrose Broth (PDB) containing 200 g/L of 
potato and 20 g/L dextrose. Spores were collected as follows: 5 
mycelial plugs (6 mm diameter) were inoculated into CMC 
(carboxymethylcellulose sodium medium) containing 15 g/L of 
carboxymethylcellulose sodium, 1 g/L of yeast extract, 1 g/L of 
NH4NO3, 1 g/L of KH2PO4, and 0.5 g/L of MgSO4•7H2O. After 
shaking cultivated at 180 r/min for 7 days, the filtrate was collected by 
3 layers of lens wiping paper. Afterwards, the filtrate was centrifuged 
at 3,000 r/min for 10 min, the precipitation was collected and the 
concentration of spores was adjusted with a hemocytometer to the 
desired numbers.

Chemicals

Vanillin (98%, CAS: 121-33-5), o-vanillin (99%, CAS: 148-53-
8), HMB (98%, CAS: 673-22-3), and propidium iodide (PI) were 
purchased from Aladdin BioChem Technology Co. 
(Shanghai, China).

Susceptibility test

Effects of vanillin, o-vanillin, and HMB on mycelial growth of 
F. graminearum were determined in vitro as described previously (Gao 
et al., 2016). In brief, the above three aromas were mixed with PDA 
(20 mL) and poured into sterilized Petri dishes (80 mm diameter). The 
final concentrations of vanillin were 0, 200, 400, 800, 1,200, and 
1,600 μg/mL, the final concentrations of o-vanillin were 0, 50, 100, 
200, 300, and 400 μg/mL, the final concentrations of HMB were 0, 40, 
80, 120, 160, and 200 μg/mL. A mycelial plug (6 mm diameter) from a 
one-week-old culture plate was cut off and inoculated into the center 
of an aroma-PDA plate. The mycelial growth inhibition rate was 
calculated as the following formula:
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Where dc (cm) is the average colony diameter in the control group 
(without aroma addition), and dt is the average colony diameter in the 
treatment groups. Minimum inhibitory concentration (MIC) was 
considered as the MGI was 100% after 72 h.

The dry weight of mycelia was determined as follows: 1 mL of 
spore suspension (105 spores/mL) was inoculated in 100 mL of PDB, 
after shaking cultivated at 150 r/min for 24 h, HMB was added to reach 
the final concentrations of 0, 50, 100, and 200 μg/mL. After another 
cultivation for 24 h, mycelia were collected, dried (80°C) and weighed.

Fourier transform infrared spectroscopy

Fourier transform infrared spectroscopy (FT-IR) characterization 
was conducted as described previously (Li et al., 2021d). In brief, 1 mg 
of mycelial lyophilized powder was mixed with 100 mg of KBr and 
pressed into a sheet. An FT-IR spectrophotometer (Alpha, Bruker 
Corp., Karlsruhe, Germany) was used to collect the spectra.

Cell membrane integrity test

PI staining was conducted as the protocol provided by the supplier. 
Fresh mycelia were collected and stained with PI (1 μL/mL) for 20 min in 
darkness. Samples were ready for visualization with a fluorescence 
microscope (DFC 7000 T, Leica, Germany) after extensive washing.

FIGURE 1

Chemical structures of vanillin, o-vanillin, and HMB.
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Determination of relative conductivity and 
pH value

The relative conductivity and pH value were investigated as 
described previously with slight modifications (Li et  al., 2021b). 
Briefly, fresh mycelia were collected and washed twice with pure water. 
Five hundred micrograms of mycelia were suspended in 20 mL pure 
water and the conductivity was measured at 0, 30, 60, 90, 120, 150, and 
180 min with a conductivity meter (DZS-706-C, INESA Scientific 
Instrument Co., Ltd., Shanghai, China). Finally, the conductivity of 
mycelia after boiling for 5 min was also measured. The relative 
conductivity was calculated as the following formula:

 
Relative conductivity
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b
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−
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Where C1 and C2 represent the conductivities of mycelia before 
and after boiling, respectively. Ca and Cb represent the conductivities 
of pure water before and after boiling, respectively.

The pH values were determined right after conductivity.

Determination of the content of 
malondialdehyde and glycerol

The content of malondialdehyde (MDA) was measured with a 
malondialdehyde content assay kit (BC0020, Solarbio Science & 
Technology Co. Beijing, China). The content of glycerol was measured as 
the method described previously (Lynch and Yang, 2004). In brief, 10 mg 
of lyophilized mycelia was dissolved in 4 mL of petroleum ether and 4 mL 
of 50% ethanol. This procedure was followed by vortexing for 5 min and 
centrifugation at 3,000 r/min for 10 min, 100 μL of the lower layer was 
mixed with 900 μL of 50% ethanol. Then, 1 mL of 0.015 mol/L KIO4 was 
added, and after incubation for 10 min, 2 mL of 5.5 mM/L L-rhamnose 
monohydrate and 4 mL of Nash reagent (150 g of ammonium acetate, 
2 mL of acetic acid, and 2 mL of acetylacetone dissolved in distilled water 
to 1 L) was added. Lastly, the mixture was incubated in a water bath at 
53°C for 15 min, and the absorbance of samples was measured with a 
UV/Vis spectrophotometer (UV-6100S, Mapada, Shanghai, China).

Determination of DON content

The content of DON was determined as the method described 
previously (Song et al., 2014). Spores were added in 100 mL of PDB 
to reach the final concentration of 105 spores/mL. After shaking 
cultivation for 24 h, HMB was added to reach the final concentrations 
of 0, 50, 100, and 200 μg/mL. After 2, 4, 6 days of cultivation, the 
culture medium was collected by centrifugation at 8000 r/min and 
DON was extracted by using the DON immunoaffinity column 
according to the manuscript provided by the supplier (GYIC-030-3, 
guanyibio, Wuxi, China). The content of DON was determined by 
High-performance Liquid Chromatography (HPLC, Agilent 1,260 
Infinity II, Agilent Technologies, China) with Eclipse Plus C18 
column (250 mm × 4.6 mm, 5 μm) according to GB 5009.111-2016. 
The detection conditions were as follows: column temperature 35°C, 
mobile phase water and methanol mixture (v:v = 7:3), flow rate 1 mL/
min, detection wavelength 218 nm.

Antifungal effect of HMB on wheat grains 
in vitro

Wheat grains were sterilized with 0.5% sodium hypochlorite 
and washed extensively with sterilized water, then, UV light was 
introduced to irradiate the wheat grains for 20 min. Afterward, 60 
wheat grains were mixed with spore suspension (105 spores/mL) 
and HMB (total volume: 1.2 mL), placed in Petri dishes (diameter: 
9 cm), and cultivated for 72 h. The germination of spores on wheat 
grains was observed every 24 h. Finally, 0.9% NaCl was used to 
wash the wheat grains and the survival spores were collected and 
diluted, the viability of spores was calculated after cultivation 
for 24 h.

Statistical analysis

The results are presented as the mean ± SD. The statistical analyses 
were performed using SPSS 20.0 (IBM, Armonk, United States), and 
the significant differences between mean values were calculated by 
one-way ANOVA using Duncan’s multiple range test. Pearson’s 
correlation analysis was used to evaluate the correlation between the 
content of MDA and DON.

Results and discussion

HMB exerted a stronger antifungal effect 
against Fusarium graminearum than vanillin 
and o-vanillin

To evaluate the antifungal strength of vanillin and its derivatives 
against the growth of F. graminearum, the MIC was first determined in a 
time-course experiment. As shown in Supplementary Table S1, the 
growth of F. graminearum was normal when no aroma was added to the 
PDA plate, while it was completely inhibited by vanillin, o-vanillin, and 
HMB at the concentrations of 1,600, 400, and 200 μg/mL within 72 h, 
hence, HMB exerted the greatest antifungal effect and its MIC was 
200 μg/mL. This phenomenon was similar to that on A. flavus, which 
might be attributed to the relative positions of hydroxyl, aldehyde, and 
methoxy group on the benzene ring (Li and Zhu, 2021). Figure 2A shows 
the growth of inoculated mycelial plug treated with different 
concentrations of HMB at 72 h. The MIC of HMB was much higher than 
those of commercial fungicides, such as carbendazim, metconazole, and 
prochloraz (10 μg/mL; Ivić et al., 2011). Meanwhile, the MIC of HMB was 
higher than that of thymol (Gao et al., 2016) and ferulic acid (Yan et al., 
2023; about 100 μg/mL) at 72 h against F. graminearum, but much lower 
than that of camphor (Kong et  al., 2022; 4 mg/mL) at 8 days. The 
difference is probably due to the use of different species, inoculation 
concentration, and temperature. Still, strategies for reducing the dosage 
of HMB are of great interest. As expected, the mycelia weight 
(0.73 ± 0.02 mg/mL) when treated with HMB at 200 μg/mL for 24 h was 
similar (p > 0.05) as that of the control (0.77 ± 0.09 mg/mL) cultured for 
24 h (Figure 2B), the treatment method was used for most of the following 
experiments. The morphology of mycelia treated with HMB was further 
examined with optical visualization (Figure 2C). Slight difference was 
found between the control and the 50 μg/mL group. However, obvious 
chaos of cytoplasm was observed in 100 and 200 μg/mL groups and large 
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vacuoles were present in the mycelia, indicating the injury of HMB at 
high concentrations on the inner components/structures of mycelia.

HMB damaged the morphology of mycelia

To better evaluate the role of HMB in inhibiting the mycelia 
growth of F. graminearum, scanning electron microscopy (SEM) was 
adopted to examine the change of ultrastructure of the mycelia. As in 
Figure  3A, mycelia in the control group appeared strong and the 
surface was smooth. Shrunken mycelia with irregular structures were 
observed in the 50 μg/mL (Figure 3B) and 100 μg/mL (Figure 3C) 
groups. When the concentration of HMB increased to 200 μg/mL, a 
more remarkable damage effect was observed on mycelia, resulting in 
a flattened appearance with severe deformation and distortion 
(Figure 3D). Therefore, the injury effect of HMB on F. graminearum 
mycelia was confirmed, especially in the high concentration groups. 
Several researchers have stated that such loss of integrity and linearity 
of mycelia was usually attributed to the inhibition of enzymes in cell 
wall synthesis and/or leakage of intracellular constituents (Yahyazadeh 
et al., 2007; Sun et al., 2016; Lakshmeesha et al., 2019; Wan et al., 2019).

HMB did not alter the surface functional 
groups of Fusarium graminearum mycelia

The amorphous layer on the outer surfaces of cell walls (also 
called fibrous decorations) was observed in A. flavus (Miyazawa et al., 
2019; Li et al., 2021d), which was also shown in PH-1 strain (Wang 
et al., 2019). Although the components have not been clarified, the 

functional groups could be determined by FT-IR characterization 
and the change of which might direct further analysis of major 
components (Li et al., 2021a,d). To evaluate whether HMB changed 
the surface functional groups of mycelia of F. graminearum, FT-IR 
was conducted. As shown in Figure 4A, the broad absorption band 
in the range of between 3,450 and 3,170 cm−1 for the control and 
HMB-treated groups represented hydrogen bonds (Nandiyanto et al., 
2019). The signal for the stretching vibration of CH2 occurs at 
2,927 cm−1 (Li et  al., 2019), as shown in Figure  4B. A strong 
absorption peak at 1,601 cm−1 (Figure  4C) and a following weak 
absorption peak at 1,550 cm−1 corresponded to the C=O stretching 
(amide I band) and -NH bending vibration (amide II band). The 
absorption peaks at 1,399 cm−1 (Figure  4D) and 1,076 cm−1 
(Figure 4E) corresponded to trimethyl groups and C-C in the glucose 
chain. No significant movement of the wavenumbers was observed 
among the control and all HMB-treated groups; hence, it is suggested 
that the surface functional groups were not altered by HMB 
treatment, which was different with either o-vanillin or paeonol-
treated A. flavus (Li et  al., 2021a,d). The morphology of the 
amorphous layer of F. graminearum mycelia and whether it is 
changed by HMB treatment require further demonstration (e.g., 
TEM and component analysis).

HMB disrupted the integrity of cell 
membranes, changed extracellular relative 
conductivity and pH value

The hydrophobicity property of plant-derived aldehydes enables 
their binding with cell membranes and hence induces a higher membrane 

FIGURE 2

Inhibitory effect of HMB on Fusarium graminearum. (A) Mycelial growth inhibition rate. (B) Mycelial weight. (C) Mycelial morphology under optical 
microscope. Scale bar: 20  μm. a–dSignificant difference (p  <  0.05) according to Duncan’s multiple range test.
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permeability (Burt, 2004). As HMB is hydrophobic in nature, it is 
assumed to affect the integrity of mycelial cell membranes. Hence, PI 
staining was first conducted and the fluorescence intensity was quantified. 
As shown in Figure 5A, fluorescence was observed when mycelia treated 

with HMB not lower than 100 μg/mL. The fluorescence intensity 
increased significantly (p < 0.05) with the increasing concentration of 
HMB, at 50, 100, and 200 μg/mL, the intensities were about 2, 5, and 
7-fold of the control (Figure 5B). This observation suggests a direct injury 
of HMB on cell membranes. Furthermore, this finding led to the 
hypothesis that cell constituents (e.g., proteins and nucleic acid) were 
released out of mycelia. As in Figure 5C, the relative conductivities of the 
HMB-treated groups during the test time were always higher than the 
control group. Moreover, HMB treatment showed a dose-dependent 
manner. In detail, after incubation for 180 min, the relative conductivities 
of 100 and 200 μg/mL groups were 29.95 ± 0.73 and 37.34% ± 4.24%, 
respectively, which were much higher than that of the control 
(26.09% ± 1.17%). A similar growing trend of relative conductivity in 
F. graminearum was also found in many natural and synthetic antifungal 
agents, such as glabridin (Yang J. et al., 2021), guaiacol (Gao et al., 2021), 
ferulic acid (Yan et al., 2023), a quinoline derivative (Yang Y. D. et al., 
2021), and ethylenediaminetetraacetic acid disodium salt (EDTANa2; 
Song et al., 2020). The pH value was determined to evaluate the acid–base 
property of the cellular leakage, and the results are shown in 
Figure 5D. The overall values of HMB-treated groups were lower than 
that of the control, where the 200 μg/mL group ranked as the lowest one, 
indicating that more acidic components were released out of mycelia after 

FIGURE 3

SEM characterization of Fusarium graminearum treated with HMB at (A) 0  μg/mL, (B) 50  μg/mL, (C) 100  μg/mL, and (D) 200  μg/mL.

FIGURE 4

FT-IR spectra of Fusarium graminearum mycelia treated with HMB.
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HMB treatment. This result was similar to that of HMB-treated A. flavus 
(Li et al., 2021c), although different antifungal agents and fungal species 
presented differently (Tao et al., 2014; Zhou et al., 2014).

HMB induced nucleic acid and protein 
leakage

The determination of the optical density (OD) value could 
reflect the optical concentration of a solution, such as the nucleic 
acid and protein at the wavelengths of 260 and 280 nm. As the 
integrity of the cell membrane of F. graminearum was injured by 

HMB, the OD260 and OD280 of the culture medium were determined. 
As in Table 1, within the first 24 h, the OD260 and OD280 showed a 
similar trend. In detail, the OD260 value of the control group was 
0.26 ± 0.01, no significant differences were found among the 
control group and the 50 and 100 μg/mL HMB treatment groups. 
However, HMB at 200 μg/mL significantly increased the OD260 
value up to 0.36 ± 0.03 in comparison with either the control group 
(about 38.5% increase) or other HMB treatment groups. For OD280, 
about a 21.9% increase was determined for the 200 μg/mL group 
in comparison with the control group. The above results indicated 
that HMB at a high concentration (not lower than 200 μg/mL) 
promoted membrane permeability, resulting in a great loss of both 
nucleic acid and protein. These findings are consistent with 
previous studies on several plant extracts that they might also 
induce lipid oxidation and osmotic imbalance of cell membrane 
(Qu et al., 2019; Ju et al., 2020a).

HMB induced lipid oxidation and osmotic 
stress

The content of MDA usually reflects the extent of lipid 
peroxidation that underlies the oxidative injury of the cell 

FIGURE 5

Effect of HMB on cell membrane integrity of Fusarium graminearum. (A) PI staining. (B) PI fluorescence intensity. (C) The relative conductivity value. 
(D) The extracellular pH. a-d significant difference (p < 0.05) according to Duncan’s multiple range test.

TABLE 1 Effect of HMB on the cell permeability of Fusarium 
graminearum.

Concentration  
(μg/mL)

OD260 OD280

0 0.26 ± 0.01 b 0.32 ± 0.01 b

50 0.26 ± 0.00 b 0.34 ± 0.02 b

100 0.28 ± 0.01 b 0.35 ± 0.00 b

200 0.36 ± 0.03 a 0.39 ± 0.00 a

a-d significant difference (p < 0.05) according to Duncan’s multiple range test.
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membrane. In the present study, as shown in Figure 6A, the MDA 
concentration was increased remarkably (p  <  0.05) in a dose-
dependent manner with HMB treatment. In comparison with the 
control group (34.19 ± 0.97 mmol/g), the values of the 50, 100, and 
200  μg/mL groups increased by 16.04 ± 4.99, 35.85 ± 3.40, and 
45.91% ± 2.89%, respectively. Although the increase of MDA 
content was found in many natural product treated pathogens (Ju 
et al., 2020b; Yin et al., 2021; Niu et al., 2022; Bao et al., 2023), 
Gao et al. reported that guaiacol exhibited an opposite pattern as 
it served as an antioxidant (Gao et  al., 2021). To examine the 
osmotic stress response across cell membranes induced by HMB, 

the change of glycerol content was quantified. As shown in 
Figure 6B, in comparison with the control group (6.61 ± 1.41 μg/
mL), the content of the 50, 100, and 200 μg/mL groups increased 
by about 3, 4, and 6 times, respectively. Collectively, we assume 
that the binding of HMB with cell membranes increased 
membrane permeability and induced a leakage of electrolytes, 
resulting in lipid oxidation and osmotic stress responses. Kim 
et al. depicted that as a redox-active molecule, HMB interfered 
cellular redox homeostasis and the HOG-MAPK signaling 
pathway (Kim et  al., 2020). Therefore, a comprehensive 
elucidation of HMB in modulating the abovementioned signaling 
pathway (e.g., oxidation–reduction and osmotic stresses) 
is required.

HMB decreased the content of DON

The change in DON content is another aspect of the 
antifungal effect of HMB. As in Figure 7, at 1 day, the content of 
DON in the control group was not detected, and in the following 
week, the content increased in a time-course test. Although the 
DON content of the 50 μg/mL group at 7d was higher than that 
of 0 μg/mL-3d (428.00 ± 9.90 μg/L), the value was much lower 
than that of 0 μg/mL-7d (2431.75 ± 155.21 μg/L), indicating a 
suppression effect of DON biosynthesis induced by HMB 
treatment. Furthermore, the most significant inhibition effect 
was observed in the 200 μg/mL group, where the DON content 
was only 155.8 ± 6.08 μg/L, much lower than 0 μg/mL-3d. Qi 
et  al. reported that salicylic acid at higher concentrations 
(≥0.5 mM) rather than lower concentrations could strongly 
reduce the production of DON (Qi et al., 2012). Other studies 
reported a dose-dependent manner of antifungal agents 
including z-5, a natural-like phenolic compound (Ma et  al., 
2022), hop essential oil (Jiang et al., 2023), thyme oil (Qi et al., 

FIGURE 6

Determination of the content of (A) MDA and (B) glycerol of Fusarium graminearum treated with HMB. a-d significant difference (p < 0.05) according 
to Duncan’s multiple range test.

FIGURE 7

Effect of HMB on DON production of Fusarium graminearum. ND, 
not detected. a-d significant difference (p < 0.05) according to 
Duncan’s multiple range test.
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2023), myriocin (Shao et  al., 2021), etc. To examine the 
relationship between lipid peroxidation and DON production, 
correlation analysis was carried out. Supplementary Table S2 
shows the content of DON and MDA on 5th day after 
inoculation, Pearson’s correlation analysis showed the 
correlation coefficient value (r) was −0.892, indicating that the 
lipid peroxidation and DON production was strongly correlated. 
Therefore, these results suggested that HMB exerted a strong 
effect on DON biosynthesis, and further experiments (qRT-
PCR) are required to demonstrate the oxidation and anti-
toxigenic mechanism.

Antifungal effect of HMB in vitro on wheat 
grains

Wheat is extremely susceptible to F. graminearum due to its 
high moisture content and sufficient nutrients for the growth of 
F. graminearum. As the strong inhibition effect of HMB has been 
proved in mycelia growth, an antifungal test on wheat grains was 
carried out. As in Figure  8A, obvious germination of spores 
started at 48 h in the control group and the 50 μg/mL treatment 
group, whereas no mycelia were observed in other HMB treatment 
groups. At 72 h, spores in all the HMB treatment groups lower 
than 200 μg/mL were germinated, indicating that HMB at a higher 
concentration is effective in restraining spore germination on 
wheat grains. The number of spores after 72 h cultivation was also 
quantified, as shown in Figure 8B. Spores in the control group 
were about 4 × 104, HMB at 50 μg/mL decreased the number of 
spores by about 60%, and this inhibition was enhanced with a 
higher concentration of HMB, and only 1,100 spores were 
detected in the 200 μg/mL group. Therefore, in combination with 
our previous study (Li et  al., 2019), HMB could effectively 
suppress the germination of both A. flavus spores on corn kernels 
and F. graminearum spores on wheat grains.

Conclusion

To sum up, this study for the first time revealed that the inhibition of 
HMB against the growth of F. graminearum was the strongest in 
comparison with vanillin and o-vanillin. The cell membrane was a 
potential antifungal target of HMB, and the antifungal mechanism was 
involved with lipid peroxidation and oxidative stress. Meanwhile, the 
production of DON was significantly reduced, and the upstream 
molecular events of which are probably interesting to be explored in 
future works. In combination with the promising antifungal effect of 
HMB on infected grain crops, the utilization forms of HMB and the 
practical antifungal activity in the storage of agricultural products will 
be further investigated.
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