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Yunnan snub-nosed monkeys (Rhinopithecus bieti) are the highest elevation 
lived non-human primate, and their survival has been threatened for decades. To 
promote their population growth, a reserve provides a typical monkey population 
with supplemental food. However, the influences of this food provisioning on 
their gut microbiota and antibiotic resistance genes (ARGs) were unknown. 
Therefore, we investigated the gut microbiota and ARGs of the food-provisioned 
monkey population compared with another wild foraging population. We found 
that food provisioning significantly increased the gut microbiota diversity 
and changed the community composition, particularly increased both the 
Firmicutes abundance and Firmicutes/Bacteroidetes ratio. Meanwhile, the 
food provisioning decreased the complex and stable gut microbiota network. 
KEGG functions were also influenced by food provisioning, with wild foraging 
monkeys showing higher functions of metabolism and genetic information 
processing, especially the carbohydrate metabolism, while food-provisioned 
monkeys exhibited increased environmental information processing, cellular 
processes, and organismal systems, including valine, leucine, and isoleucine 
degradation. In addition, food provisioning increased the abundance of ARGs 
in the gut microbiota, with most increasing the abundance of bacA gene and 
changing the correlations between specific ARGs and bacterial phyla in each 
population. Our study highlights that even food provisioning could promote 
wildlife nutrient intake, and it is necessary to pay attention to the increased ARGs 
and potential effects on gut microbiota stability and functions for this human 
conservation measure.
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Introduction

Gut microbiota play an important role in food digestion, absorption, and metabolism of 
the host, as well as in building the gut barrier and defense system (Lee and Hase, 2014; Zheng 
et al., 2020). They help maintain the normal functions of the gut and the health of the host 
(Jandhyala et al., 2015; Rosshart et al., 2017). In this relationship, the host provides a nutrient-
rich and stable environment for the gut microbiota (Tsuji et al., 2008) and can influence the 
composition and functions of gut microbiota through various factors, such as diet, phylogeny, 
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disease, age, and lifestyle (Gerritsen et al., 2011). Among these factors, 
diet, including its diversity and nutrient intake, is the most important 
one (Tomova et al., 2019; Cui et al., 2022).

Kilburn et  al. (2020) found that a high-fat, high-protein diet 
increases the abundance of Bacteroidetes, and Wu et al. (2011) showed 
that a high-carbohydrate, high-fiber diet increases the abundance of 
Prevotella. In addition, previous studies have confirmed that diet can 
influence host health and resistance to disease by influencing gut 
microbiota (Makki et al., 2018; Catalkaya et al., 2020). All of these 
studies mainly related to human and rodents, while studies on 
non-human primates are relatively rare (Nagpal et al., 2018; Cui et al., 
2022; Yang et  al., 2023). This is important because non-human 
primates are the closest phylogenetic relatives of humans compared 
with other animals, making them valuable for understanding 
microbiota–host interactions and human coevolution (Ley et al., 2008; 
Yang et al., 2022). Therefore, it is necessary to investigate the impact 
of diet on the gut microbiota of non-human primates.

The Yunnan snub-nosed monkey (Rhinopithecus bieti) is a rare 
and endemic endangered species in China. It is the highest-distributed 
non-human primate and lives in the high-latitude forests (3,000–
4,400 m) of northwestern Yunnan Province and southeastern Tibet 
Autonomous Region of China (Xia et  al., 2020). Approximately 
40 years ago, R. bieti was more endangered due to the threat of habitat 
reduction and fragmentation and hunting (Liu et al., 2009). With the 
establishment of the Yunnan Baima Snow Mountain National Nature 
Reserve, the population of R. bieti recovered and reached 
approximately 3,800 individuals (Zhao et  al., 2019). To further 
increase the population and address the food shortage in the wild, the 
reserve has supplied artificial foods to one representative natural 
population of R. bieti. This supplementary food consists of native 
lichens, carrots, peanuts, apples, eggs, or pumpkin seeds (Zhu et al., 
2016). Artificial food supply contributes greatly to the population 
expansion of R. bieti, but whether there is a negative effect on the 
health is unknown, especially for the gut microbiota.

Previous studies mainly explored the effect of diet on gut 
microbiota community composition and diversity, but they have 
widely ignored the impact on the gut microbiota network (Li et al., 
2016; Huang et al., 2021). Microbiota network plays a critical role in 
shaping the overall functionality of the gut community (Weiss et al., 
2016) because the positive and negative correlations within the 
network reflect interdependence and competitive exclusion, 
respectively (Wagg et al., 2019). Therefore, confirming the influence 
of food provisioning on gut microbiota network can help to 
understand its impact on gut microbiota.

Antibiotic resistance genes (ARGs) can be  transmitted 
horizontally through mobile genetic elements or the food chain in the 
environment (Ramsamy et al., 2022). Their enrichment within gut 
microbiota can enhance the antibiotic resistance of pathogenic 
microbiota, leading to significant difficulty in potential treatment of 
infections (Allen et al., 2010). In food provisioning, the increased 
frequency of contact with humans and artificial food may facilitate the 
transfer of ARGs to gut microbiota (Allen et al., 2010; Hu et al., 2017). 
However, this potential effect on the abundance and diversity of ARGs 
has yet to be confirmed.

In this study, we compared two populations of R. bieti living in the 
Yunnan Baima Snow Mountain National Nature Reserve in China. 
One population foraged naturally, while the other received 
supplemental food. Both populations lived under similar 

environmental conditions. The aim of our study was to answer two 
questions: (1) How does food provisioning affect the gut microbiota 
community of R. bieti, especially the microbiota network? (2) How 
does the ARGs in the gut change due to food provisioning? Our results 
will help to evaluate the potential biological risks associated with food 
provisioning from the perspective of the gut microbiota community 
and ARGs and provide scientific support for the future conservation 
of the wild R. bieti population.

Materials and methods

Study area and food provisioning method

The Baima Snow Mountain National Nature Reserve (98°57′-
99°25 E, 27°24′-28°36′ N) is located in Weixi County, Yunnan 
Province, China. The reserve has an annual average daily temperature 
of 9.4°C, ranging from a minimum of 2.7°C in January to a maximum 
of 16.2°C in June. The annual rainfall of the reserve is 1,371 mm, with 
70% concentrated between June and October (Li et al., 2023). The 
typical vegetation is coniferous forest, deciduous broad-leaved forest 
(2,500–3,600 m), and subalpine fir forest (Zhu et al., 2016). The diet of 
wild R. bieti living in the reserve includes lichens, mature leaves, fruit 
seeds, young leaves, bamboo shoots, buds, flowers, insects, and fungi 
(Xia et al., 2022). The wild foraging (WF) population is located in 
Anyi (99°09′ E, 27°27′ N), and the food-provisioned (FP) population 
is located in Xianguqing (99°21′ E, 27°39′ N). The FP population 
consisted of approximately 80 individuals and has been provisioned 
food since 2009. Every day at 9:00 a.m. and 17:00 p.m., this population 
receives 10 kg of lichens and 4 kg of other food, including peanuts, 
apples, pumpkin seeds, and eggs. This supplementary food makes up 
approximately 40% of FP population daily diet, while the bamboo 
shoots make up 32% of WF population daily diet, which is significantly 
higher than that of the FP population (Xia et al., 2022).

Fecal sample collection

Between March and June, reserve forest rangers used telescopes 
to locate and observe the monkeys from a distance of approximately 
200 meters. Once an individual monkey defecated and moved away, 
fecal sample was collected. Any adhering plant litter or soil was 
removed with sterilized tweezers. The collected fecal samples were 
immediately stored in liquid nitrogen and transported to the 
laboratory for storage in a −80°C freezer. In total, we collected 92 fecal 
samples, and 46 samples were collected for each population.

Enzyme activities and nutrients

Freeze-dried fecal samples (0.1 g) were mixed with 1 mL of 
ice-cold phosphate buffer (pH 7.5). The mixture was centrifuged at 
12,000 r/min for 20 min, and the supernatant was used for enzyme 
activity and nutrient measurements. Protease (EC 3.4.21) activity was 
measured using the Folin-phenol method (McDonald and Chen, 
1965); amylase (EC 3.2.1.1) activity was measured using the starch-
iodine method (Xiao et al., 2006); lipase (EC 3.1.1.3) activity was 
measured using the polyvinyl alcohol olive oil emulsion hydrolysis 
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method (Andersson, 1980); cellulase (EC 3.2.14) activity was 
measured using the 3,5-dinitrosalicylic acid method (Breuil and 
Saddler, 1985). The protein content was measured using the 
Coomassie brilliant blue dual-wavelength method (Sedmak and 
Grossberg, 1977); the glucose content was measured using the 
3,5-dinitrosalicylic acid method (Borji et al., 2017). A suitable amount 
of freeze-dried feces was mixed with five times of its weight of sterile 
water, and then it was used to measure the pH.

DNA extraction and 16S rRNA sequencing

Total DNA was extracted from 0.25 g fecal samples using the 
E.Z.N.A.® soil DNA kit (Omega Bio-tek, Norcross, GA, USA), and the 
extracted DNA was then checked using 1% agarose gel and NanoDrop 
One Microvolume UV–VIS Spectrophotometer (Thermo Fisher 
Scientific, MA, USA). PCR amplifications were performed in triplicate 
to amplify the V3-V4 hypervariable region of the 16S rRNA gene 
using the primer pair 338F and 806R (Liu et  al., 2016). The PCR 
products were examined and subsequently subjected to high 
throughput sequencing using Illumina Miseq PE300 platform by a 
commercial facility (Shanghai Majorbio Bio-Pharm Technology 
Corporation, Shanghai, China).

The paired-end reads were quality-filtered and spliced using fastp 
v.0.20.0 (Chen et al., 2018) and FLASH v.1.2.11 (Magoč and Salzberg, 
2011). The merged reads were then analyzed on QIIME2 v.2021.4 
platform (Bolyen et al., 2019). DADA2 was employed to truncate the 
reads at 400 bp and perform quality control, read assembly, 
dereplication, chimera removal, and generation of amplicon sequence 
variants (ASVs) and the according abundance (Callahan et al., 2016). 
Singleton ASVs were removed, and the remaining ASVs were 
taxonomically classified using the feature-classifier classify-sklearn 
plugin with a confidence score of 0.8 (Bokulich et al., 2018) against the 
training classifier on Silva 16S rRNA v.138 dataset (Quast et al., 2012). 
Only bacterial ASVs were retained, and the reads for each sample were 
resampled to the same depth (3,996 reads).

Metagenomic sequencing and analysis

Each of 16 fecal samples from the feces of WF and FP monkeys 
was randomly selected for metagenomic sequencing 
(Supplementary Table S1). Sequencing was performed on an Illumina 
NovaSeq PE150 platform (Shanghai Majorbio Bio-Pharm Technology 
Corporation, Shanghai, China), generating 10G of raw data for each 
sample. The fastp v.0.20.0 was used to remove the adapters and 
low-quality reads, which were with a length of <50 bp, or an average 
quality value of <20, or having N bases (Chen et al., 2018). The reads 
belonging to R. bieti genome (NCBI accession number: 
GCF_001698545) were removed by BWA v.0.7.9a (Li and Durbin, 
2009). The remaining reads were assembled into contigs using 
MEGAHIT v.1.1.2 (Li et al., 2015), and contigs exceeding 300 bp were 
used to predict open reading frames (ORFs) with Prodigal (Hyatt 
et al., 2010). Predicted ORFs with a length of ≥100 bp were retrieved 
and translated into amino acid sequences. CD-HIT v.4.6.1 (Fu et al., 
2012) was employed to construct a non-redundant gene catalog with 
90% identity and 90% coverage. The high-quality reads were then 
aligned to this catalog using SOAP aligner v.2.21 (Li et al., 2008), to 

calculate the gene abundance with a 95% identity threshold. The 
KEGG annotation was conducted using Diamond v.0.8.35 (Buchfink 
et al., 2015) against the Kyoto Encyclopedia of Genes and Genomes 
database1 with an e-value cutoff of 1e−5. Antibiotic resistance 
annotation for the non-redundant gene catalog was performed using 
Diamond v.0.8.35 against the ARDB database2 with an e-value cutoff 
of 1e−5.

Statistical analysis

Main statistical analyses were conducted using R v.4.3.1 (R Core 
Team, 2013). Phylogenetic tree was generated for ASV sequences 
using Qiime2 align-to-tree-mafft-fasttree command. Rooted and 
unrooted phylogenetic trees were used to calculate phylogenetic 
diversity (PD) and nearest taxon index with the ape and picante 
packages (Kembel et al., 2010; Paradis and Schliep, 2018). Bray–Curtis 
similarity among gut microbiota communities was calculated with the 
vegan package (Oksanen et al., 2007) and used for principal coordinate 
analysis (PCoA). Difference in gut microbiota community structure 
between WF and FP populations was tested using Adonis 
permutational multivariate analysis of variance (PERMANOVA) with 
9,999 permutations. A group of biomarker taxa, which were most 
sensitive to the food provisioning treatment, were identified using a 
Random Forest model with the randomForest package (Liaw and 
Wiener, 2014). Differential ASV abundance between WF and FP gut 
microbiota was visualized using a Manhattan plot, and the p-values 
for this plot were adjusted using the FDR method (Kaler et al., 2020). 
The relationships between the microbiota community structure and 
gut environmental conditions including fecal enzyme activities and 
nutrients were tested by the Mantel test (Oksanen et al., 2007). To 
further explore the importance of enzyme activity and gut nutrient in 
explaining variance of the gut microbiota community structure, 
variance partition was performed based on the hierarchical 
partitioning theory using the rdacca.hp package (Lai et al., 2022). 
Gradient forests implemented through the gradientForest package 
were used to explore the individual contributions of gut environmental 
conditions to the variance of each main ASV taxon (Ellis et al., 2012). 
This analysis included only the 300 most abundant ASVs in WF or FP, 
and the overall predictive ability of these predictors was calculated as 
the average proportion of variance explained by the fitted forest.

Spearman’s correlations were calculated among the 500 most 
abundant ASVs in each population gut microbiota. Then, the results 
of Spearman’s correlation with |r| > 0.5 and p < 0.05 were considered 
significant and then used to construct the network by Gephi v.0.9.3 
(Bastian et al., 2009). Meanwhile, 10,000 random networks, which had 
the same number of nodes and edges as the real networks, were 
generated for each real network to evaluate whether the significance 
of observed correlations was caused by the random incidence (Ju et al., 
2014). The significance of differences between the properties of real 
and random networks was tested by the Z-test. To compare the gut 
network stability of the WF and FP populations, the average degree 
and natural connectivity were tracked as 0–80% nodes were randomly 

1  http://www.genome.jp/keeg/

2  http://ardb.cbcb.umd.edu/
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removed from each network, simulating microbial extinction (Peura 
et al., 2015). Linear discriminant analysis (LDA) effect size (LEfSe) 
analysis was used to identify differentially abundant KEGG pathway 
annotation between the gut microbiota of the WF and FP populations. 
KEGG pathway annotation biomarkers were detected by LEfSe with 
an LDA score threshold of >3.0, p < 0.05 using the microeco package 
(Liu et al., 2021). Finally, a Pearson correlation analysis was used to 
calculate the correlations between ARGs and bacterial phyla, and only 
correlations with |r| > 0.4 and p < 0.05 were considered significant. 
PCoA and PERMANOVA were also used to test the differences of 
compositions of KEGG pathways and ARGs between WF and 
FP populations.

Results

Food provisioning increased gut 
microbiota diversity and changed their 
community composition

We found that food provisioning significantly decreased amylase 
activity and protein concentration (Table  1). It also resulted in a 
decrease in glucose concentration and an increase in pH, although 
these changes were not statistically significant (Table 1). From these 
fecal samples, we  got 4,298,438 high-quality sequences, and the 
average quality score was 38 (Supplementary Figure S1). After 
resampling to the same depth, 3,973 ASVs were identified from all the 
fecal samples. The WF population had 2,085 ASVs, while the FP 
population had 2,363 ASVs, and there were 475 ASVs shared by both 
populations. Food provisioning significantly enhanced gut microbiota 

Shannon–wiener diversity, richness, evenness, and phylogenetic 
diversity and had no significant effect on the nearest taxon index 
(Table 2). For both WF and FP populations, the gut microbiota phyla 
were dominated by Firmicutes, Bacteroidetes, Proteobacteria, 
Spirochaetes, and Actinobacteria (Figure 1A). Notably, Proteobacteria 
and Firmicutes were the dominant phyla in the WF and FP 
populations, respectively (Figure 1A). Both their abundance in the 
dominant population was higher than that observed in the other 
populations (both p < 0.001). Furthermore, we  found that the 
Firmicutes/Bacteroidetes (F/B) was 0.562  in the WF population, 
which was significantly lower than 5.019 of FP population 
(Supplementary Figure S2).

A Random Forest model was used to identify the most sensitive 
taxa to food provisioning (Figure 1B). The error curve stabilized with 
involving the 17 most sensitive classes, which belonged to 12 phyla, 
and these classes were identified as biomarker taxa (Figure  1B). 
Among these, the relative abundances of 11 classes, namely, Clostridia, 
Coriobacteriia, Fibrobacteria, Desulfovibrionia, Brachyspirae, 
Campylobacteria, Desulfuromonadia, Negativicutes, Kiritimatiellae, 
Saccharimonadia, and Fusobacteriia, were significantly increased by 
food provisioning. Conversely, five classes, namely, 
Gammaproteobacteria, Alphaproteobacteria, Actinobacteria, Bacilli, 
and Bacteroidia, were significantly reduced by food provisioning 
(Figure 1B). The Manhattan plot highlighted that food provisioning 
had a major impact on the ASVs from Bacteroidota, Firmicutes, and 
Proteobacteria. Food provisioning reduced 179, 126, and 332 ASVs in 
these phyla, respectively, and increased 39, 395, and 2 ASVs, 
respectively (Figure 1C). The PCoA showed a distinct clustering and 
separation of microbiota communities in the gut between WF and FP 
populations. PERMANOVA confirmed a significant effect of food 
provisioning on community structure (p < 0.001; Figure 1D). Beta-
diversity of gut microbiota communities based on Bray–Curtis 
dissimilarity showed that the WF population had a higher dispersion 
(Figure 1D).

Mantel tests revealed a significant correlation between the gut 
microbiota community and a combination of the gut enzyme activities 
and nutrient contents in the WF population (r = 0.334, p < 0.001) but 
not in the FP population (r = 0.156, p = 0.051; Supplementary Figure S3). 
For the WF population, of these individual environmental factors, 
only pH significantly predicted the variance of microbiota community 
(Supplementary Figure S4). In contrast, no individual factors 
significantly predicted the variance of gut microbiota community of 
FP population. For the 300 most abundant ASVs, our gradient forest 
analysis successfully explained the variance of only 69 ASVs in the WF 
population and 30 ASVs in the FP population 
(Supplementary Figure S5). In addition, a t-test showed significantly 
higher explanation for the WF population (Figure 2). This suggests 
that the predominant ASVs in the WF population have a tighter 
correlation with gut environmental conditions compared with the FP 
population, and it was compatible with the results of the Mantel test.

Food provisioning decreased gut 
microbiota network complexity and 
stability

Comparison of the main properties of real network, including 
clustering coefficient, modularity, average path length, and network 
diameter, with those of random network indicated that the real 

TABLE 1  The effect of food provisioning on gut enzyme activities and 
nutrients.

Physicochemical 
properties

WF FP p-value

Protease activity (U/mg) 6.75 ± 0.32 6.84 ± 0.58 0.384

Cellulase activity (U/kg) 7.03 ± 2.77 6.79 ± 1.97 0.637

Amylase activity (U/mg) 3.24 ± 1.78 1.61 ± 1.28 <0.001

Lipase activity (U/g) 0.25 ± 0.13 0.26 ± 0.17 0.903

Protein concentration (μg/

μl)

16.45 ± 4.11 12.96 ± 6.92 0.004

Glucose concentration (mg/

ml)

5.30 ± 1.21 4.84 ± 1.16 0.066

pH 6.51 ± 0.33 6.63 ± 0.28 0.052

TABLE 2  The effect of food provisioning on gut microbiota diversity and 
nearest taxon index.

Index WF FP p-value

Shannon-wiener 3.57 ± 0.71 4.49 ± 0.48 <0.001

Richness 177.85 ± 57.84 276.46 ± 68.83 <0.001

Evenness 0.69 ± 0.12 0.80 ± 0.06 <0.001

Phylogenetic 

diversity

14.58 ± 3.08 21.16 ± 2.87 <0.001

Nearest taxon 

index

3.10 ± 1.10 2.79 ± 1.50 0.253
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networks were non-random (Table 3). We found that the positive 
correlation dominated the gut microbiota network of both populations 
(Table  3). However, compared with the WF population, the gut 
microbiota network in the FP population had fewer nodes, links, 

average degree, linkage density, and network diameter (Figure 3A; 
Table 3). Thus, the WF population had a more complex gut microbiota 
network. Furthermore, a robustness test showed that the WF 
population maintained higher average degree and natural connectivity 

FIGURE 1

(A) Relative abundance of bacterial phyla in wild foraging (WF) and food-provisioned (FP) fecal samples. (B) The biomarker taxa listed in descending 
order of importance to the model accuracy, the up arrow means abundance increasing in FP fecal samples, vice versa. (C) Manhattan plots showing 
enriched or depleted ASVs in WF or FP fecal samples. Threshold  =  −loge (p  −  value)  >  3. (D) PCoA of gut microbial communities and ellipses with 
different colors indicate 95% confidence intervals for each treatment. Boxplot above the PCoA ordination is the comparison of beta diversity of gut 
microbial communities based on Bray–curtis distance. ***p  <  0.001; **p  <  0.001; and *p  <  0.05.
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than the FP population as we removed 0–80% of the nodes from the 
networks (Figure 3B). This demonstrates a greater stability of the gut 
microbiota network of WF population.

Effect of food provisioning on the 
predicted KEGG pathways

KEGG functional analysis revealed that the predicted genes 
mapped to 6 level 1, 46 level 2, and 446 level 3 pathways. 
PERMANOVA analysis identified a significant effect of food provision 
on the overall KEGG pathway composition at all levels (levels 1–3, 
p < 0.001; Supplementary Figure S6). Analyzing KEGG level 1 revealed 
that the FP population had higher pathways involved in metabolism 
and genetic information processing, while the WF population had 
higher pathways involved in environmental information processing, 

cellular processes, and organismal systems (Figure 4A). At KEGG level 
2, the FP population had higher 8 pathways, including the metabolisms 
of glycan and nucleotide, carbohydrate, and other pathways types such 
as cell growth and death and global metabolic and overview maps. The 
WF population had higher 10 pathways, including the metabolisms of 
cofactor and vitamin, amino acid, lipid, energy, and other amino acids, 
and other pathways types such as signal transduction, xenobiotic 
degradation, and metabolism (Figure 4B). At KEGG level 3, the FP 
population had higher 21 pathways, including the biosynthesis of 
amino acids, secondary metabolites, aminoacyl-tRNA, peptidoglycan, 
and lysine, and the metabolisms of starch and sucrose, pyrimidine, 
galactose, amino sugar, and nucleotide sugar, cysteine and methionine, 
fructose and mannose, and even the metabolic pathways. The WF 
population had higher 18 pathways, including the degradation of 
valine, leucine and isoleucine, benzoate, fatty acid, and lysine and the 
metabolisms of sulfur, fatty acid, tryptophan, glutathione, glyoxylate, 
and dicarboxylate (Figure 4C).

Increased abundance and altered 
composition of ARGs in the gut microbiota 
with food provisioning

Analysis of ARGs in the gut microbiota of the WF and FP 
populations revealed that vancomycin, tetracycline, and multidrug 
were the major antibiotic types (Figure 5A). Remarkably, the WF 
population had a higher abundance of multidrug, while the FP 
population had higher levels of vancomycin and tetracycline 
(Figure 5A). Compared with the WF population, food provisioning 
significantly enhanced the total abundance of ARGs by 81.7% 
(Figure 5B; Supplementary Figure S7), while food provisioning did 
change the Shannon diversity but reduced the richness of ARGs 
(Supplementary Figure S7). ARGs in both WF and FP populations 
were dominated by the bacA gene (Figure 5B). Food provisioning 
further increased the abundance of bacA with the greatest increase in 
the abundance compared with other ARG genes (Figure  5C). In 
addition, tetW, tetQ, tet40, and tetPB were increased, while mexB, 
mexF, mdtG, ksgA, and acrB were reduced by food provisioning 
(Figure 5C). PERMANOVA revealed a change in ARG composition 
with food provision (Supplementary Figure S8; p < 0.001). Our 

FIGURE 2

Importance of individual variables of gut enzyme activities and 
nutrients across models for all predominant ASV taxa. Asterisk means 
the significant t-test of the importance between WF and FP. 
***p  <  0.001; **p  <  0.001; and *p  <  0.05.

TABLE 3  Characteristics of gut microbiota correlation network.

Parameters WF RN of WF FP RN of FP WF  −  FP

Total nodes 465 465 407 407 58

Total links 2,561 2,561 1,454 1,454 1,107

Positive correlation links 2,389 – 1,296 – 1,093

Negative correlation links 172 – 158 – 14

Average degree 11.015 11.015 7.145 7.145 3.870

Clustering coefficient 0.368A 0.023 (±0.002) 0.331A 0.018 (±0.002) 0.037

Linkage density 5.508 5.508 3.572 3.572 1.936

Modularity 0.783A 0.232 (±0.007) 0.748A 0.301 (±0.010) 0.035

Average path length 4.14A 2.81 (±0.003) 4.13A 3.272 (±0.007) 0.01

Network diameter 13A 4.861 (±0.347) 11A 6.045 (±0.281) 2

WF, wild foraging population; FP, food-provisioned population; RN, random network. The standard deviation for the property of random network was shown in the bracket. ASignificant 
difference (p < 0.001) between the real network and the random network (Z-test).
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correlation network analysis identified positive correlations between 
19 ARGs and 7 phyla taxa in the WF population and between 30 
ARGs and 6 phyla taxa in the FP population (Figure 6). Interestingly, 
Verrucomicrobiota was the only phylum common to both networks 
(Figure 6). In each population, specific phyla had the most correlated 
ARGs: Patescibacteria in WF (9 types) and Proteobacteria in FP 
(22 types).

Discussion

Previous studies show that diet can influence enzyme activities 
and nutrient concentrations in the gut (Basolo et al., 2020; Dagar et al., 

2023). In this study, food provisioning led to a decrease in gut amylase 
activity. Similar results were found in studies with nutrient-rich diets 
(Prakash and Srinivasan, 2012; Saravanan et al., 2014). This could 
be due to the fact that food provisioning provides sufficient energy, 
which reduces the body’s need for amylase. In addition, the WF 
population had higher gut protein concentrations, possibly due to 
their high intake of protein-rich diet (Xia et al., 2022).

We found that food provisioning increased gut microbiota 
diversity (Table 2). This could be due to the additional nutrients and 
carbohydrate substrates provided to the monkeys’ gut, which created 
more ecological niches for microbiota, ultimately leading to higher 
diversity (Louis et al., 2007). Food provisioning offered a wider variety 
of food to the monkey that could also potentially contribute to the 

FIGURE 3

(A) Correlation network of gut microbes in WF and FP populations. The node size indicates the relative abundance of the ASV. (B) Robustness analysis 
for gut microbial communities between WF and FP populations by removing the same proportion of nodes.
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increased gut microbiota diversity (Shepherd et al., 2018). However, 
the increase in ARGs observed in the FP monkeys (Figure 5) suggests 
another potential impact that increased indirect contact with humans 
through provisioning of food which could expand the monkeys’ 
bacterial sources.

Proteobacteria dominated the gut microbiota of WF monkeys and 
had higher abundance than that of FP monkeys (Figure  1A). 
Furthermore, Proteobacteria also contained the most sensitive 
biomarker class (Gammaproteobacteria) response to food 
provisioning (Figures 1B,C). This is likely due to the high bamboo 
shoot content in WF diets. Bamboo shoots are rich in unique 
secondary metabolites such as cyanogenic glycosides (Chongtham 
et al., 2011). Previous study showed that Proteobacteria had the genes 
encoding bamboo-degrading enzymes (Sang-A-Gad et al., 2011; Xia 
et  al., 2020), and this is confirmed by the high Proteobacteria 
abundance in bamboo-eating giant pandas (Zhu et  al., 2018). 
Firmicutes dominated the gut microbiota of FP monkeys, exceeding 
that of WF monkeys (Figure 1A), and the Firmicutes/Bacteroidetes 
(F/B) ratio was higher in FP monkeys (Supplementary Figure S2). This 
raises concerns about potential FP obesity, as the high F/B ratio is a 
marker of obesity (Crovesy et  al., 2020), and we  should further 
monitor the individual obesity of monkeys under food provisioning.

The composition of gut microbiota differed between WF and FP 
monkeys (Figure  1C). It may be  caused by the different diet 
composition and overall high nutrient intake (Louis et  al., 2007). 
However, according to Cui et al. (2022), a study focusing on another 
non-human primate, Macaca mulatta, suggests that nutrient level 
exerts a stronger influence on gut microbiota than diet composition. 
This highlights the need for further exploration of how these factors 
differentially impact the gut microbiota of R. bieti. Interestingly, the 
FP population displayed lower community dissimilarity within their 
population compared with WF population (Figure 1C). This result 
could be explained by the food provisioning that leads to a more 
consistent diet among individuals, thereby reducing variation in gut 
microbiota communities (Li et al., 2016). Notably, both Mantel test 
and gradient forest analysis revealed that the gut microbiota 
community of the WF population exhibited a stronger correlation 
with their gut environment. According to the nutrient niche theory, 
we  hypothesize that the increased nutrient intake from food 
provisioning could make the gut environment more conducive to the 
growth of gut microbiota, which enhances the resistance of the 
microbiota community to the changes in the gut environment. This 
seems to reduce the linkage between the gut environmental condition 
and gut microbiota community composition (Freter et  al., 1983), 

FIGURE 4

Plots of KEGG pathways comparisons between the WF (green) and FP (orange) populations at levels (A) 1, (B) 2, and (C) 3 analyzed by LEfSe analysis. 
LDA > 3.0, p < 0.05.
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while this observation figures out that the mechanism behind this 
result needs further investigation.

The analysis of gut microbiota networks revealed that the positive 
correlation dominated both populations, suggesting that microbiota 
growth in their gut mainly relies on collaboration (Layeghifard et al., 
2017). Further comparison of the networks revealed that the gut of 
WF population had a more complex microbiota network (Figure 3A; 

Table 3). This is mainly because most microbiota require nutrient 
exchange to grow normally, and when their overall nutrient intake is 
lower, as in the case of the WF population, their interdependence will 
increase, which promotes the complexity of their networks 
(Layeghifard et al., 2017; Zengler and Zaramela, 2018). The network 
robustness test conducted in our study showed that the gut microbiota 
network degree and natural connectivity of the WF population after 

FIGURE 5

(A) Relative abundance of classification of antibiotic resistance genes (ARGs) according to antibiotic resistance type. (B) Relative abundance of 
predominant ARGs comparing to the total abundance of FP population. (C) Volcano plot revealed the abundance of differentially ARGs between FP 
and WF populations.

FIGURE 6

Correlation networks between antibiotic resistance genes (ARGs) and gut bacterial phyla.
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continuous removal of ASVs were always higher than those of the FP 
population (Figure  3B). This suggests that WF monkeys exhibit 
greater resilience and stability in their gut microbiota communities 
(Coyte et al., 2015).

The KEGG pathway analysis showed that food provisioning 
significantly changed the composition of gut KEGG functions 
(Supplementary Figure S6), enriching the pathway-related metabolism 
and genetic information processing (Figure 4A). This is due to the fact 
that the FP population had higher nutrient intake. In this condition, 
higher nutrient provides gut microbiota with more raw materials to 
build their cellular components and enzymes, which needs more gene 
expression and protein synthesis (Okie et  al., 2020). Furthermore, 
higher nutrient could also enhance to build the pathways for efficient 
and diverse metabolic processes. However, this metabolic enrichment 
was not evenly distributed. The KEGG level 2 analysis revealed this 
enrichment on metabolism pathways that were related to global 
metabolic and overview maps and metabolisms of carbohydrate, 
glycan, and nucleotide, while pathways related to xenobiotic 
degradation and metabolism and metabolisms of cofactor, vitamin, 
amino acid, lipid, energy, and other amino acids were all depleted. Our 
food provisioning, including carbohydrate-rich peanut and pumpkin 
seeds, could trigger the activity of carbohydrate metabolism (Li et al., 
2017). Conversely, the low nutrient intake of the WF population forced 
them to upregulate the pathways involved in breaking down and 
utilization of other substrates such as xenobiotics, cofactors, vitamins, 
amino acids, lipids, and energy-generating molecules to meet the 
energy needs for gut microbiota. Drilling down to KEGG level 3, 
we observed enhanced degradation pathways in the WF population, 
specifically for benzoate, valine, leucine, isoleucine, lysine, and fatty 
acids (Figure  4C). We  hypothesized that the food sources of WF 
population contained more plant toxins such as alkaloids, which 
potentially induced higher microbiota detoxification efforts, including 
geraniol breakdown (Chen and Viljoen, 2010). In addition, the higher 
protein content in WF diets likely provided them with a rich amino 
acid pool, increasing the degradation of valine, leucine, isoleucine, and 
lysine (Madsen et al., 2017).

This study confirmed that the food provisioning increased the 
abundance of ARGs in the gut of R. bieti (Figure 5B). This may 
be because both human contact and artificial food intake during 
food provisioning could increase the horizontal transformation of 
ARGs to the gut (Allen et  al., 2010; Hu et  al., 2017). Another 
possible reason might be due to the dietary influence as Yan et al. 
(2022) found that high-fat/low-fiber diet could also increase both 
abundance and diversity of ARGs of the gut of cynomolgus 
monkeys (Macaca fascicularis). However, our food provisioning 
had no effect on the Shannon diversity and even reduced the 
richness of ARGs (Supplementary Figure S7). While the bacA was 
the most abundant and increased ARGs in our study (Figure 5B), 
this ARG type abundance was not changed by the high-fat diet in 
the study of Yan et  al. (2022). Thus, we  speculated that the 
horizontal transformation was the main mechanism to enrich the 
abundance of ARGs in the gut of R. bieti, but both possible 
mechanisms should be  investigated in the future. In this study, 
bacA was dominated in both WF and FP populations among the 
ARGs. This result is also found from human (Feng et al., 2018; Li 
et al., 2021) and other animals (Thomas et al., 2021; Zhang et al., 
2022). Meanwhile, the most increased ARGs by food provisioning 
were also the bacA (Figure 5B), which might be due to its high 

abundance in human guts (Feng et  al., 2018; Li et  al., 2021), 
facilitating its more and effortless transfer to FP monkeys. Another 
finding is that the abundance of tetracycline ARGs, including 
tetPB, tet40, tetW, and tetQ, was increased by food provisioning 
(Figure 5C). This could be partly explained by the result about the 
suppression of gut protein on tetracycline ARGs, which was 
observed by Zhang et al. (2016). As the FP population had lower 
gut protein concentration compared with the WF population, this 
factor might contribute to the increased abundance of these 
specific ARGs. Our analysis of ARG correlation networks with gut 
bacterial phyla revealed that food provisioning could alter the 
correlations between ARGs and specific bacterial phyla (Figure 6). 
Notably, Patescibacteria had the most correlations with ARGs in 
the WF population, while Proteobacteria had the highest 
correlations in the FP population, with a higher number of 
connections than the WF population. Both phyla have been 
previously implicated in harboring ARGs (Chen et al., 2017; Kim 
et  al., 2023). We  hypothesized that the richer nutritional 
environment in the FP population might stimulate ARG transfer 
to Proteobacteria, but further research was needed to unravel the 
underlying mechanisms.

Conclusion

Our study demonstrated the complex impact of food 
provisioning on the gut microbiota of Yunnan snub-nosed monkeys. 
We observed that while food provisioning increases the diversity of 
gut microbiota, it also changed the gut microbiota community 
composition, leading to greater homogeneity of community 
composition among individuals. The network analysis revealed that 
food provisioning reduced the complexity and stability of the gut 
microbiota network, potentially weakening its resilience to 
disturbance. Furthermore, metagenomic sequencing revealed that 
food provisioning significantly increases the abundance of ARGs in 
the gut, potentially raising the risk of drug resistance in this wildlife. 
These findings underscored the necessity of a comprehensive 
approach when considering food provisioning for wildlife. While 
increasing diversity may seem beneficial (Fan and Pedersen, 2021), 
it was crucial to simultaneously monitor the potential drawbacks, 
including altered community structure, changed network stability, 
and increased ARGs, to truly ensure the benefits of this 
conservation practice.
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