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Introduction: Numerous studies show that microbes in the human body are very 
closely linked to the human host and can affect the human host by modulating 
the efficacy and toxicity of drugs. However, discovering potential microbe-drug 
associations through traditional wet labs is expensive and time-consuming, 
hence, it is important and necessary to develop effective computational models 
to detect possible microbe-drug associations.

Methods: In this manuscript, we  proposed a new prediction model named 
LCASPMDA by combining the learnable graph convolutional attention network 
and the self-paced iterative sampling ensemble strategy to infer latent microbe-
drug associations. In LCASPMDA, we  first constructed a heterogeneous 
network based on newly downloaded known microbe-drug associations. 
Then, we  adopted the learnable graph convolutional attention network to 
learn the hidden features of nodes in the heterogeneous network. After that, 
we  utilized the self-paced iterative sampling ensemble strategy to select the 
most informative negative samples to train the Multi-Layer Perceptron classifier 
and put the newly-extracted hidden features into the trained MLP classifier to 
infer possible microbe-drug associations.

Results and discussion: Intensive experimental results on two different public 
databases including the MDAD and the aBiofilm showed that LCASPMDA could 
achieve better performance than state-of-the-art baseline methods in microbe-
drug association prediction.
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1 Introduction

The human body contains trillions of microbes, including bacteria, 
archaea, fungi, protozoa, and viruses, which constitute the human 
microbiota and interact closely with the human host (The Human 
Microbiome Project Consortium, 2012; Sommer and Bäckhed, 2013). 
These microbes can be  found in the skin, oral cavity, nasal cavity, 
gastrointestinal tract, genitourinary tract and other parts of the human 
body, and play an important role in regulating human health. For 
example, they can regulate the pathology of the gastrointestinal tract and 
harmonize the homeostasis of the internal environment in order to 
promote the metabolic functions of the body (Gill et al., 2006; Ventura 
et  al., 2009). The microbiome and host mucosal sites interact in a 
synergistic manner to protect against pathogens (Macpherson and 
Harris, 2004). Microorganisms promote the synthesis of sugar 
metabolism and facilitate the synthesis of vitamins required for t-cell 
reactions (Kau et al., 2011). But microorganisms also have adverse effects 
on the human body. For instance, studies have proved that dysbiosis of 
microbial communities can induce diabetes (Wen et  al., 2008), 
inflammatory bowel disease (Durack and Lynch, 2019) and even cancer 
(Schwabe and Jobin, 2013). And additionally, pathogens such as bacteria 
and viruses have been proven to be able to cause as many as 27 infectious 
diseases such as COVID-19 (Xiang et al., 2020). Moreover, in recent 
years, due to the abuse and irrational use of drugs, microbes have 
developed resistance to some drugs, which has brought serious 
challenges to clinical medicine and drug development. In addition, 
recent studies have also shown that the efficacy of drugs is significantly 
influenced by the microbial metabolism (McCoubrey et al., 2022). When 
drugs are functioning in the human body, microorganisms play an 
important role in drug absorption and metabolism, thereby modulating 
drug efficacy and toxicity (Zimmermann et al., 2019). Concetta et al. 
reported that gut microbiota can interact with anticancer drugs, thus 
affecting the therapeutic efficiency and toxic side effects of drugs. They 
considered the probiotics, prebiotics, synbiotics, biologics and antibiotics 
as emerging strategies for microbiota control, which might improve 
treatment outcomes or ensure that patients have a better quality of life 
during anticancer treatment (Panebianco et al., 2018). Therefore, the 
discovery of potential microbial-drug associations is one of the key 
problems to be solved in the field of precision medicine, and the need to 
develop an efficient computational model to discover potential 
microbial-drug associations is becoming more and more urgent.

Since traditional wet tests are very expensive, time-consuming and 
inefficient, moreover, in recent years, the advances in bioinformatics 
technology have given birth to lots of public microbial drug association 
databases, including MDAD (Sun et al., 2018), aBiofilm (Rajput et al., 
2018), and DrugVirus (Andersen et al., 2020), researchers have developed 
more and more feasible and efficient computational models based on 
these publicly available databases to infer potential microbe-drug 
associations (Long et al., 2022), which can be roughly divided into five 
main categories: network-based, matrix decomposition, matrix 
complementation, regularization and neural networks. For example, Zhu 
et al. (2019) designed a method called HMDAKATZ to detect latent 
associations between microbes and drugs by combining microbe-drug 
heterogeneous networks with the KATZ metrics. Long et al. proposed a 
prediction model named GCNMDA by adopting graph neural networks 
and conditional random fields with attentional mechanisms to learn deep 
representations of microbes and drugs (Long et  al., 2020a), and a 
calculation model called EGATMDA (Long et  al., 2020b) to predict 
potential associations between microorganisms and drugs by adopting a 

graph convolutional network with graph-level attention mechanism to 
learn the importance of different heterogeneous networks and a graph 
convolutional network with node-level attention to learn the embedding 
of nodes in the heterogeneous networks. Deng et al. (2022) devised a 
method called Graph2MDA to detect possible associations between 
microbes and drugs, in which, multimodal attribute maps were 
constructed as inputs of the variogram self-encoder to obtain informative 
and interpretable latent features of microbes and drugs. Tan et al. (2022) 
constructed a novel prediction model GSAMDA by integrating the graph 
attention network and the sparse self-encoder, in which, the graph 
attention network and the sparse self-encoder were adopted to extract 
topological features and node features of microbes and drugs in 
heterogeneous networks, respectively. Ma et  al. (2023) employed a 
two-layer graphical attention network to learn the features of microbes 
and drugs, and subsequently adopted a convolutional neural network 
classifier to detect potential microbe-drug associations. MHBVDA 
combined two new methods, such as the Matrix Decomposition for 
Heterogeneous Graph Inference (MDHGI) and the Bounded Nucleus 
Paradigm Regularization (BNNR), to construct virus-drug heterogeneous 
networks by using multi-source heterogeneous data of viruses and drugs, 
and then reconstructed the adjacency matrix of the network to predict the 
missing virus-drug associations (Qu et  al., 2023). NIRBMMDA first 
obtained two potential microbe-drug association matrices to calculate 
drug-microbe associations for similar drugs and microbe-drug 
associations for similar microbes by using different thresholds to find 
similar neighbors of drugs or microbes, respectively, and then obtained 
another potential microbe-drug association matrix based on the contrast 
scatter algorithm and the sigmoid function to learn the hidden probability 
distributions in the known microbe-drug associations (Cheng et al., 2022).

Although above methods can achieve excellent prediction 
performance, there still exist some limitations. For instance, 
HMDAKATZ uses only simple metrics to evaluate the strength of 
microbe-drug associations, EGATMDA only randomly selects negative 
samples while ignores the specificity of different negative samples. 
Besides, recent studies have shown that the performance of Graph 
Convolutional Networks (GCN) and Graph Attention Networks (GAT) 
depend on the nature of selected datasets (Knyazev et al., 2019; Baranwal 
et al., 2021; Fountoulakis et al., 2022), which means that the GCN-based 
GCNMDA cannot achieve satisfactory prediction on multiple different 
datasets at the same time, neither can the GAT-based 
GSAMDA. Therefore, in order to achieve better prediction performance, 
we need to choose between Graph Convolutional Networks (GCN) and 
Graph Attention Networks (GAT) through cross-validation. For this 
purpose, CAT (Graph Convolutional Attention Layer) is introduced to 
solve this problem. However, intensive experimental results have 
demonstrated that CAT can achieve better performance than both GAT 
and GCN at low noise levels in the dataset, but cannot improve the 
prediction performance significantly at higher noise levels, which means 
that there is no absolute difference between GCN, GAT and CAT, and 
their effectiveness is directly affected by the selected dataset. To solve this 
problem, Learnable Graph Convolutional Attention Networks (LCAT; 
Javaloy et al., 2023) came into existence. Through efficiently combining 
the different GNN layers by adding two scalar parameters that are 
automatically interpolated in each layer of GCN, GAT and CAT, LCAT 
outperforms the methods of GCN, GAT and CAT in a wide range of 
datasets. Hence, it is obvious that, if we employ LCAT in the prediction 
model to infer possible microbial-drug associations, we can not only 
achieve better performance but also subtract the cross-validation 
requirement of choosing between the methods of GCN, GAT and CAT.
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Moreover, in binary relationship prediction, how to select negative 
samples is important for model training, but selecting informative 
negative samples from the set of candidate negative samples is still an 
intractable problem (Li et al., 2022). In link prediction problems, how 
to generate candidate negative samples has always been one of the 
challenges. Existing machine learning methods usually treat known 
associations between entities (labeled samples) as positive samples and 
unrecognized associations (unlabeled samples) as candidate negative 
samples (Yang et al., 2012). However, since the number of known 
microbe-drug associations is very small in existing public datasets, the 
proportion of positive and negative samples will be  extremely 
unbalanced in this case. Therefore, in order to avoid extreme 
imbalance in the proportion of positive and negative samples affecting 
the performance of the prediction model, we need further to perform 
a negative under-sampling strategy for candidate negative samples. 
But, as for the negative under-sampling strategies, the most common 
method is the random sampling, i.e., a subset of negative samples with 
the same number as the set of positive samples will be  randomly 
selected from the candidate negative samples (Lou et al., 2022). These 
random sampling-based strategies, while simple, tend to ignore 
informative negative samples and introduce less meaningful and noisy 
negative samples (López et al., 2013). Although there are some models 
that can improve the negative sampling strategy (Zeng et al., 2020; Wei 
et al., 2021; Dai et al., 2022), but they do not focus on filtering out the 
most informative negative samples that play an important role for the 
classifier during the model training process, which may lead to under-
training of the model, thus limiting the predictive power of the model.

Based on above analysis, in this study, we  proposed a novel 
computational model LCASPMDA by integrating the Learnable 
Graph Convolutional Attention network and the Self-Paced iterative 
sampling ensemble strategy to identify potential Microbe-Drug 
Associations. In LCASPMDA, we will first construct a heterogeneous 
network of microbes and drugs based on these newly downloaded 
known microbe-drug associations and an integrated similarity of 
microbes and drugs. And then, we will employ LCAT to learn the 
hidden feature representations of nodes from heterogeneous networks. 
Subsequently, we  will introduce the self-paced iterative sampling 
ensemble scheme to train the MLP classifier by selecting the most 
informative negative samples based on the prediction results after each 
training of the model, and finally input the feature representations 
extracted by the LCAT into the trained MLP (Multi-Layer Perceptron) 
classifier to infer potential associations between microbes and drugs. 
Intensive experimental results on two well-known public datasets 
showed that LCASPMDA significantly outperformed state-of-the-art 
competitive prediction methods in the prediction task of latent 
microbe-drug associations. And in addition, case studies of two 
common drugs further demonstrated the superiority of LCASPMDA 
in discovering new microbe-drug associations as well.

2 Materials and methods

As illustrated in Figure 1, LCASPMDA consists of four major 
steps. In the first step, we  construct a heterogeneous network of 
microbes and drugs based on newly-downloaded known microbe-
drug associations and an integrated similarity of microbes and drugs. 
In the second step, we  adopt the LCAT to learn the feature 
representations of nodes in the heterogeneous network of microbes 

and drugs. In the third step, we  introduce a Self-Paced Iterative 
Sampling Ensemble to select informative negative samples to train the 
MLP classifier. In the final step 4, we utilize the trained MLP to detect 
potential microbe-drug associations based on a novel loss function.

2.1 Datasets

In this section, we  first downloaded known microbe-drug 
associations from the MDAD database, which were derived from 993 
papers covering 1,388 drugs and 180 microorganisms (Wang et al., 
2022). After de-duplication, we finally obtained 2,470 known microbe-
drug associations involving 173 microbes and 1,373 drugs. 
Subsequently, we  further downloaded known microbe-drug 
associations for validation from the aBioflm database, which contained 
2,884 known microbe-drug associations between 1,720 drugs and 140 
microbes. Additionally, we downloaded the dataset of DrugVirus from 
the research (Long et al., 2020a),1 in which, there are 95 microbes and 
175 drugs including 933 microbe–drug associations between them. 
Table 1 illustrated the statistical information of these two kinds of 
newly downloaded datasets.

In each dataset, we used an adjacency matrix to represent the 
association relationship between microorganisms and drugs. Without 
loss of generality, the adjacency matrix can be  represented as 
A RN Nd mÎ ´ , where Nm and Nd denote the number of microbes and 
drugs in the dataset, respectively. In the adjacency matrix A, for any 
given drug di and microbe mj, if there is a known association between 
them, then the value of A i j,( ) will be 1, otherwise the value of A i j,( ) 
will be 0.

2.2 Construction of the heterogeneous 
network of microbes and drugs

2.2.1 Calculation of the integrated similarity of 
microbe

In LCASPMDA, the similarity between microbes will be measured 
in two different ways. This first one is measured by the Gaussian 
interaction-profile-kernel similarity. Considering that drugs with 
similar therapeutic effects will be  associated with similar 
microorganisms, let C(i) and C(𝑗) denote the ith and jth column of the 
adjacency matrix A separately, then for any two given microorganisms 
mi and mj, the Gaussian interaction-profile-kernel similarity between 
them can be computed as follows:

 
Sm m m C C jG i j m, i( ) = - ( ) - ( )( )exp m 2

 
(1)

Where mmis the normalized kernel bandwidth, which is 
calculated as:
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1 https://github.com/longyahui/GCNMDA
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Here mm
¢ is the original bandwidth, which is usually set to 1. After 

determining the similarity of all microbial pairs according to above 
equations, then it is obvious that we  can obtain a Microbe 
Gaussian Interaction-Profile-Kernel-based Similarity matrix  
Sm RG

N Nm mÎ ´ .
In LCASPMDA, the second type of microbial similarity is 

measured by the microbial functional similarity in the following 
way: Firstly, we  will construct a microbial protein–protein 
functional association network and obtain genetic neighbor 
scores from the STRING database (Szklarczyk et al., 2021). And 
then, for any two given microbes mi and mj , we will calculate the 
functional similarity Sm fun (m mi j, ) between them based on the 

method proposed by Kamneva (2017). Therefore, we  can 
obtain a microbial functional similarity matrix Sm Rfun

N Nm mÎ ´  
as well.

Hence, for any two given microbes mi and mj, based on above two 
kinds of microbial similarities Sm m mG i j,( )and Sm m mfun i j,( ), it is 
easy to see that we  can obtain an integrated microbial similarity 
Sm m msim i j,( ) according to the following equation (3):

 

Smsim mi m j

SmG mi m j Sm fun mi m j
if Sm fun

SmG mi m j ot
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(3)

2.2.2 Calculation of the integrated similarity of 
drug

Let R(i) and R(𝑗) denote the ith and jth rows of the adjacency 
matrix A separately, then in a manner similar to above 
equations (1), (2), for any two given drugs di and d j , we can obviously 
obtain a drug Gaussian Interaction-Profile-Kernel-based Similarity 
matrix Sr RG

N Nd dÎ ´  as well.

FIGURE 1

The overall framework of LCASPMDA. Step1: a heterogeneous network of microbes and drugs is constructed based on newly-downloaded known 
microbe-drug associations and an integrated similarity of microbes and drugs. Step2: the heterogeneous network is inputted into the LCAT to learn the 
feature representations of nodes. Step 3: The Self-Paced Iterative Sampling Ensemble is adopted to select the most informative samples for training the 
MLP classifier while ensuring the balance of training samples. Step 4: potential associations between microbes and drugs are inferred by the trained 
MLP.

TABLE 1 The statistics of these two newly-downloaded databases.

Datasets Microbes Drugs Associations

MDAD 173 1,373 2,470

aBiofilm 140 1,720 2,884

DrugVirus 95 175 933

https://doi.org/10.3389/fmicb.2024.1366272
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Yang et al. 10.3389/fmicb.2024.1366272

Frontiers in Microbiology 05 frontiersin.org

Besides, in LCASPMDA, the second type of drug similarity is 
measured by the drug structure similarity proposed by Hattori et al. 
(2010), and for convenience, for any two given drugs di and d j , let the 
drug structure similarity between them be Sr d dstruct i j,( ), then it is 
obvious that we  can obtain a drug structure similarity matrix 
Sr Rstruct

N Nd d ´  as well.
Hence, for any two given drugs di and d j , based on above two 

kinds of drug similarities Sr d dG i j,( ) and Sr d dstruct i j,( ), it is easy to 
see that we  can obtain an integrated drug similarity Sr d dsim i j,( )  
according to the following equation (4):

 

Srsim di d j

SrG di d j Srstruct di d j
if Srstruct

SrG di
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(4)

2.2.3 Construction of the heterogeneous network
Through combining the adjacency matrix A with the integrated 

microbial similarity matrix Smsim and the integrated drug similarity 
matrix Srsim, it is obvious that we  can construct a heterogeneous 
network of microbes and drugs according to the following 
equation (5):
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2.3 Feature extraction for nodes in Y 
by LCAT

With the widespread use of GCN, GAT and CAT 
(Convolutional Attention Networks), researchers have gained 
some new insight into the limitations of these three kinds of 
Graph Neural Networks (GNN). For instance, Baranwal et  al. 
(2021) have demonstrated that GCN are significantly data 
separable when the graph data is neither sparse nor noisy. 
However, if the graph data is too noisy, the convolution essentially 
collapses the data to the same value and the GCN may fail. 
Fountoulakis et al. (2022) have found that GAT exhibits strong 
differentiability even in noisy datasets. However, under this 
particular condition, Anderson (2003) pointed out that simple 
classifiers can also show good results. Therefore, GCN are more 
beneficial in situations where the noise level is low, and GAT can 
perform better than GCN in other situations. That is, there is no 
way to conclude which network structure (GAT or GCN) is the 
optimal solution in all these two cases. In this research 
background, Javaloy et al. (2023) have proposed the CAT, and 
experimentally demonstrated that CAT outperformed GAT with 
reasonable graph noise, however, it is also not always beneficial to 
perform convolution before computing attention, which is 
dependent on the datasets.

It is hard to know before the experiments of cross-validation 
which of GCN, GAT, or CAT works best. Javaloy et al. (2023) believe 
that this problem can be solved by learning to interpolate between 
these three kinds of GNNs, and has proposed a new learnable graph 
convolutional attention network layer in the following way: for any 

given node vi in Y , let the feature of node vi be Yi (i.e., the ith row of 
Y) and the set of neighboring nodes of vi in Y  be  Nvi,  then based on 
the following equations (6), (7), the learnable graph convolutional 
attention network layer can be represented as follows:

attentionviv j LeakyRelu aT W Yi W Yj= é
ë

ù
û( )l1 � �

 where 
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Yi j Nvi
Y j

Nvi
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Îå
exp

exp ttentionv vi k( )
 

(7)

Here, attentionv vi j
 is the attention score between nodes vi and v j, 

rv vi j
 is the normalization of attentionv vi j

, a is the learnable attention 
vector, and LeakyRelu is the commonly used activation function, Yi  
and Yj  denote the new node features after Yi and Yj  have been 
convolved, l1 and l2 are trainable values, and W is a trainable 
weight matrix.

From observing Figure 2, we can understand the way that LACT 
works as a weighted average of the features obtained by GAT, GCN, 
and CAT, which enables that the weights of features obtained by GAT, 
GCN, and CAT can be dynamically adjusted to fit different data sets.

Attention mechanism is an indispensable and complex function 
of the human brain, as well as an important component of the 
LCAT. Through the attention mechanism, the human brain can 
consciously or unconsciously choose from a large number of input 
information to focus on a small number of useful information. This 
ensures that people can work in an organized way amid the 
information bombardment. GAT integrates the attention mechanism 
with graph neural networks, which has the ability to highlight 
important information and ignore irrelevant information. The core 
working principle of GAT is to compute the relationship between 
nodes by means of the attention mechanism. Among them, we need 
to clarify the attention vector: in graph neural networks, each node 
has a vector representing the features of that node. Attention vectors 
are computed on these feature vectors, which indicates how much 
attention each node pays to its neighboring nodes. Based on the 
calculated attention vector, the state of the node can be updated.

Then, after above operations, we can evidently obtain a new 
feature matrix E∈R N N Fd m+( )* , where each row in E represents the 
newly obtained deep features of nodes in the heterogeneous 
network Y , and F is the dimension of Embedding obtained by 
the LCAT.

Through analyses, it is easy to know that the above equation (6) 
can enable the LCAT to learn to interpolate between the GCN, the 
GAT and the CAT. For instance, when l1 is set to 0, node vi  and its 
neighboring nodes will have the same rv vi j

, and then the LCAT will 
turn to be a GCN. Additionally, when l1=1 and l2=0, then the LCAT 
will be a GAT. Moreover, when l1and l2 are both set to 1, the LCAT 
will be a CAT. In this manuscript, as shown in Figure 3, we have also 
proved that LCAT is able to integrate the advantages of all these 
three kinds of GCNs and can achieve the best performance in 
different datasets.
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2.4 Selection of negative samples for 
training the MLP classifier

2.4.1 The MLP classifier
MLP is a powerful tool for classification tasks, and its superiority has 

been proven in common binary classification tasks. In LCASPMDA, 
we will adopt the MLP classifier as the final decoder in the following way: 
firstly, the embedding of microorganisms and drugs obtained by LCAT 
will be taken as inputs of the MLP classifier. And then, the MLP classifier 
will implement the element-wise multiplication operation on these 
embeddings. Finally, the predicted score matrix of potential associations 
between microorganisms and drugs will be obtained after the processing 
of the activation function. For any given microorganism mi and drug d j , 
the final predicted score of potential association between them will 
be calculated according to the following equation (8):

 
Score Sigmoid W Rule W E Eij m di j

= ( )( )( )( )2 1 

 
(8)

Where Score RN Nd mÎ ´  is the final predicted score matrix. Emiand 
Ed j are embedding of mi and d j  obtained by LCAT respectively, W1 

and W2 are trainable matrices, and the ⨀ operation is the element-
wise multiplication. Let F be the dimension of Embedding obtained 
by the LCAT, then there is E Rm

F
i
Î , E Rd

F
j
Î , W RF F

1Î
´  and 

W R F
2

1Î ´ . In addition, Rule and Sigmoid are activation functions 
adopted in the MLP classifier.

2.4.2 Self-paced iterative sampling ensemble
Studies have demonstrated that the model performance decreases 

on datasets with imbalanced positive and negative samples (Liu et al., 
2020). The imbalance of positive and negative samples poses a 

FIGURE 2

A new perspective on understanding the LCAT principle.
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considerable challenge to the training of classifiers. In simple terms, 
the unbalance of samples can cause serious deviations in the 
classification model, but it cannot be  seen from some common 
metrics, for example, in the case where the number of positive samples 
is much larger than the number of negative samples, the trained model 
may already have a very high accuracy, but we can classify all the 
negative samples as false positive in such a case to also have a very high 
accuracy. In two well-known microbe-drug association databases such 
as the MDAD and the aBiofilm, all microbe-drug pairs with known 
associations are viewed as positive samples, while the remaining 
microbe-drug pairs are regarded as candidate negative samples. In all 
these two well-known databases, the number of candidate negative 
samples far exceeds the number of positive samples. In previous 
studies, many researchers have found this point, so they always choose 
the under-sampling method to balance the samples in order to ensure 
the balance of the dataset, and the commonly used method is the 
random under-sampling method. In this method, researchers will 
randomly draw the same number of negative samples as positive 
samples in the candidate negative sample set, thus ensuring that the 
ratio of positive to negative samples is 1:1. In this method, since the 
negative samples are selected randomly, the specificity of the negative 
samples is not fully considered, it may result in the loss of informative 
negative samples and introduction of meaningless samples at the same 
time. Selecting informative samples from the candidate negative 
samples is a challenging task, and in LCASPMDA, we will introduce 
the Self-Paced Iterative Sampling Ensemble strategy to pick out the 
informative negative samples (Liu et al., 2020).

The Self-Paced Iterative Sampling Ensemble strategy proposed the 
concept of hardness function H, according to which the candidate 
negative samples were categorized into three categories such as the trivial 
samples, the noise samples and the edge samples, respectively. Among 
them, the noise samples have larger values of H, which means it may be a 
false negative sample. The trivial samples have smaller H values, which 
means it can be well classified by the prediction model. In LCASPMDA, 
we only need to keep a small portion of the trivial samples because they 
have been well learned. The remaining edge samples are the most 
informative samples in our training process, which symbolize the 
decision boundary of the prediction model. Obviously, expanding the 
proportion of edge samples on the dataset will benefit to improve the 
performance of the prediction model. In LCASPMDA, we will adopt the 
Self-Paced Iterative Sampling Ensemble strategy to pick out the 
informative negative samples according to the following steps:

Step  1: In LCASPMDA, the predicted values of all associations 
between microbes and drugs will be obtained by using the MLP classifier.

Step 2: the hardness function in the Self-Paced Iterative Sampling 
Ensemble strategy is defined by the following equation (9):

 
H x y F F x y, ,( ) = ( ) -( )2  (9)

Here, F x( ) represents the predicted score value obtained by the 
MLP classifier for the sample x, and y is the original label value of the 
sample x.

Step 3: All candidate negative samples are classified into k buckets 
based on the hardness function according to the following 
equation (10):
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Here, k is the number of buckets and is a hyperparameter. Bl
represents the negative sample of the lth bucket.

Step 4: Adopting the Self-Paced Iterative Sampling Ensemble 
strategy to select different numbers of negative samples from k 
buckets to form the negative sample set for the next iteration of 
training. Let NBl  is the number of negative samples selected in 
the Bl  bucket, then NBl  can be  calculated according to the 
following equation (11):
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Here, hl represents the average hardness value of the lth bucket, 
n is the number of epochs for which the model is ready to be trained 
and i is the current number of iterations, b  is the self-paced factor, Wl  
denotes the normalized sampling weight of the lth bucket, P  is the 
number of positive samples, and l k=1,·· , .

Step 5: Randomly selecting NBl negative samples from the lth 
bucket, and gathering all the selected negative samples to form a new 
negative sample set. The set of negative samples selected by the Self-
Paced Iterative Sampling Ensemble and all the positive samples are 
combined into a new training set to train the MLP classifier and 
proceed to the next iteration.

While implementing above strategy, we will update the hardness 
value at each iteration in order to generate the most informative 
samples. The self-paced factor β is the focus of the above strategy. 
The role of the self-paced factor β has been demonstrated 
experimentally in SPE (Liu et al., 2020). Considering that as the 
training iterates, the number of trivial samples grows, then we need 
to reduce the weight value of the bucket with a large number of 
samples so that we can focus more on samples with higher hardness 
values. Therefore, in LCASPMDA, we will introduce a self-paced 
factor β growing from zero to infinity, and the growth of the self-
paced factor β will be controlled by using a logarithmic function at 
the same time.

2.4.3 Loss function
Since the association prediction problem belongs to the binary 

classification problem, in which the binary cross entropy has shown 
excellent performance, then in LCASPMDA, we will as well adopt the 
binary cross entropy function as the loss function of the MLP classifier, 
which is defined as follows:
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In LCASPMDA, we will consider each microbe-drug pair (i, j) 
as an independent microbe-drug sample. Besides, in above 
equation (12), z+ denotes a subset of positive samples in the training 
sample and z-  represents a subset of negative samples, and for any 
given microbe-drug pair (i, j) belonging to z+ , we will set its base 
truth value zij to 1, while for any given microbe-drug pair (i, j) 
belonging to z- , we will set its base truth value zij to 0. Moreover, 
Scoreij represents the predicted score of the association between the 
ith microbe and the jth drug in the final score matrix obtained by 
the MLP classifier.

Finally, we will put the new features extracted by LCAT into the 
MLP classifier trained by the self-paced iterative sampling ensemble 
strategy to obtain the final output of our prediction model. Obviously, 
the MLP classifier will generate the predicted score of potential 
association between each pair of microbe and drug, which can help us 
discover the criticality of hidden microbe-drug associations.

3 Experiments and results

In this section, we  verified the prediction performance of 
LCASPMDA based on the framework of 5-fold cross-validation. In 
experiment, for any given newly-downloaded microbe-drug dataset, 
we will divide all microbe-drug pairs equally into five parts, and used 
one part at each time as the test set and the rest as the training set. 
Moreover, we will introduce the AUPR and the AUC values as the 
evaluation metrics to measure the performance of the model. In this 
section, to demonstrate the superiority of the LCASPMDA model, 
we will Comparison with baseline methods. Additionally, in order to 
improve the performance of LCASPMDA, we will first study the role 
of various parameters inside the model, and then, we will do ablation 
experiments to examine the contribution of the Self-Paced Iterative 
Sampling Ensemble strategy and the LCAT to the model. Finally, to 
prove the validity of our model, we will select some drugs from inside 
the database of MDAD to do case studies.

3.1 Comparison with baseline methods

In order to verify the prediction performance of LCASPMDA, in 
this section, we will compare it with the following five representative 
competing methods based on the databases of MDAD and 
aBiofilm respectively:

 • GCNMDA (Long et al., 2020a): in which, a graph convolutional 
network framework integrated with conditional random fields 
was proposed to infer potential associations between microbes 
and drugs.

 • GSAMDA (Tan et  al., 2022): which utilized graph attention 
networks and sparse auto-encoders to capture topological 
features and attribute features of nodes in a newly-constructed 
microbe-drug heterogeneous network first, and then, computed 
the likelihood of potential associations between microbe-drug 
pairs by leveraging these newly-captured features of microbes 
and drugs.

 • MDASAEA (Fan et al., 2023): which predicted latent microbe-
drug associations by combining the self-sparse encoders and the 
multi-head attention networks.

 • LRLSHMDA (Wang et al., 2017): which employed the Laplace-
regularized least squares classifier, a semi-supervised computational 
model, for predicting possible microbe-disease associations.

 • NTSHMDA (Luo and Long, 2020): in which, an improved 
randomized wandering algorithm was used to infer potential 
microbe-disease associations by integrating topological 
similarities of nodes in a newly-constructed microbe-drug 
heterogeneous network.

The comparison results are shown in Tables 2, 3. And in addition, 
we  illustrate the optimal ROC curves and PR curves of these six 
competing methods, based on the databases of MDAD and aBiofilm 
respectively, in Figure  4 to highlight the superiority of 
LCASPMDA. Finally, in order to better show the prediction performance 
of LCASPMDA, we  further conducted intensive comparison 
experiments based on multiple metrics, in addition to the commonly 
used metrics such as the AUC and the AUPR, under the MDAD database 
and the aBiofilm database, respectively. And the comparison results were 
shown in Table  4. Besides, we  provided the experimental results of 
LCASPMDA based on the DrugVirus database in Figure 5 as well.

From above two tables, it can be  seen that LCASPMDA can 
achieve the best prediction performance among these six competing 
methods. And the AUC and AUPR values of LCASPMDA on MDAD 
are 0.97030.0109 and 0.96740.0117, respectively.

From observing Figure  4, we  can clearly see the superiority of 
LCASPMDA. Among these six competing methods, MDASAEA is only 
method that can achieve better performance than LCASPMDA in terms 
of ROC curve, but in terms of PR curve, the PR values of the GSAMDA 
on MDAD and aBiofilm are only 0.45130.0008 and 0.46490.0022, 
respectively, which are quite lower than that of LCASPMDA. Through 
analysis, the reason that why GSAMDA can only achieve such a lower 
PR value is that the extreme imbalance in the proportion of positive and 
negative samples causes the model to be  biased toward making 
predictions with the majority class, i.e., the negative examples, resulting 
in lower precision and recall for positive examples. However, 
LCASPMDA selects information-rich negative samples by the Self-
Paced Iterative Sampling Ensemble method while balancing the ratio of 
positive and negative samples, which ensures that satisfactory PR values 
can be obtained. Besides, the PR curve achieved by NTSHMDA is the 
strangest one, first of all, it seems to be relatively coarse, after analysis, 
we find the reason is that the model floats a lot in a time period and the 
time gap is very short. Secondly, the AUPR values achieved by 
NTSHMDA are only 0.15420.0115 and 0.16020.0204 on MDAD and 
aBiofilm separately, after analysis, we find the reason is that it does not 
have a regularization operation to prevent the model from over-fitting, 

TABLE 2 Performance comparison between baseline methods and 
LCASPMDA on MDAD under the framework of 5-fold cross-validation.

Methods AUC AUPR

GCNMDA 0.93900.0014 0.93460.0105

GSAMDA 0.94560.0007 0.45130.0008

MDASAEA 0.95470.0015 0.94060.0032

LRLSHMDA 0.93970.0031 0.63470.0016

NTSHMDA 0.86830.0021 0.15420.0115

LCASPMDA 0.97030.0109 0.96740.0117

The bold values are predicted scores achieved by LCASPMDA.
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and at the same time, it does not use a deep learning algorithm with a 
loss function to point out a correct direction of learning. However, 
LCASPMDA uses the dropout method to prevent the model from over-
fitting during model training, and at the same time, chooses the cross-
entropy function, which is most suitable for binary classification tasks, 
as the loss function. Meanwhile, we also find that NTSHMDA achieved 
the lowest AUC and AUPR values compared to other models using deep 
learning algorithms. From observing Table  4, it is easy to see that 
LCASPMDA significantly outperformed all these baseline models as a 
whole. Through analysis, we found that the main reason is due to the 
extreme imbalance in the proportion of positive and negative samples 
of other models (Except for GCNMDA and MDASAEA) as well as the 
excellent model architecture adopted by LCASPMDA. Moreover, it is 

well known that the metrics of AUC and ACC are insensitive to the 
proportions of positive and negative samples, however the rest of the 
metrics are very sensitive to their proportions, and in addition, MCC is 
a more comprehensive performance metric that only scores high when 
good results are obtained for these four metrics (True Positive, True 
Negative, False Positive, False Negative), that is the reason why 
NTSHMDA and LRLSHMDA performed well in the ACC metric but 
poorly in the rest of the metrics. Besides, LCASPMDA achieved better 
performance than GCNMDA, the reason is that although these two 
models can maintain the balance of positive and negative sample ratios, 
but LCASPMDA utilizes an innovative model LCAT to extract node 
features, which is more effective than the GCN adopted by GCNMDA.

3.2 Parameter analysis

In this section, we  will evaluate the effect of two important 
parameters, including the parameters IR and Out-dimension that 
denote the learning rate of our model and the number of embedding 
dimension of the LCAT separately, on LCASPMDA, based on the 
MDAD database. Through observing Figure 3, we can clearly know 
that LCASPMDA performs best when the learning rate IR is set to 
0.0005. When we explore the impact of the parameter Out-dimension, 
we set the Out-dimension to {64, 128, 256, 512} respectively, and show 
the experimental results in Figure 6. It is obvious that the AUC value 
of LCASPMDA peaks when Out-dimension is set to 256, and the AUC 

TABLE 3 Performance comparison between baseline methods and 
LCASPMDA on aBiofilm under the framework of 5-fold cross-validation.

Methods AUC AUPR

GCNMDA 0.95370.0022 0.93760.0123

GSAMDA 0.92510.0101 0.46490.0022

MDASAEA 0.96040.0007 0.95340.0032

LRLSHMDA 0.95100.0007 0.67470.0049

NTSHMDA 0.88110.0022 0.16020.0204

LCASPMDA 0.97420.0121 0.97200.0120

The bold values are predicted scores achieved by LCASPMDA.

FIGURE 4

ROC and PR curves achieved by LCASPMDA and state-of-the-art methods based on MDAD and aBiofilm separately. (A) ROC curves based on MDAD,  
(B) PR curves based on MDAD, (C) ROC curves based on aBiofilm, (D) PR curves based on aBiofilm.
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value tends to decrease when it exceeds 256. Based on above analysis, 
we  will finally set the parameter IR to 0.0005 and the parameter 
Out-dimension to 256 in experiments.

3.3 Ablation study

The Self-Paced Iterative Sampling Ensemble strategy (hereinafter 
referred to as SPISE) is the core part of LCASPMDA, which focuses 
on how to obtain a balanced dataset in an unbalanced set of positive 
and negative samples through a special negative sampling method 
while ensuring that the negative samples have a large amount of 
information. In order to evaluate the impact of SPISE on the 
performance of LCASPMDA, we first conducted an ablation study in 
this section. And then, considering that SPISE is a pivotal component 
of the LCASPMDA framework, to fully ascertain the effectiveness of 
SPISE, we further conducted an additional evaluation by varying the 
proportions of negative samples selected by SPISE, and in the 
experiment, part of the negative samples were selected by SPIE, and 
the rest were selected by random. In addition, we also conducted 
experiments by replacing the LCAT in LCASPMDA with the GAT and 
the GCN, respectively. As shown in Figures 7–9, it is easy to see that 
adopting the SPISE can improve the prediction performance of 
LCASPMDA observably, and simultaneously, adopting the LCAT can 
achieve better performance than adopting the GAT and the GCN in 
LCASPMDA as well.

3.4 Case study

To further validate the ability of LCASPMDA in predicting 
unknown associations between microorganisms and drugs, 
we conducted case studies, respectively, based on two drugs, including 
the Ciprofloxacin and the Pefloxacin, which are commonly used in 
MDAD. We  trained the models based on the MDAD database. 
Specifically, for each selected target drug, all known microbe-drug 
associations were set to be unknown, and then all candidate microbes 
were ranked in the descending order based on predicted scores obtained 
by LCASPMDA. In experiment, for any given drug, we would choose 
the top  20 related microorganisms predicted by LCASPMDA, and 
verified that whether these predicted microbes had already been 
reported to be associated with the given drug in the PubMed literatures.

As for the Ciprofloxacin, it is a fluoroquinolone-containing drug 
with a high potential for antibacterial activity, and commonly used in 
the treatment of joint infections, respiratory infections and other 
treatments. Ciprofloxacin has broad-spectrum antimicrobial activity, 
with strong bactericidal effect against Pseudomonas aeruginosa, 
Staphylococcus aureus and other common pathogenic bacteria. 
Numerous experiments have also confirmed the close relationship 
between Ciprofloxacin and human microorganisms. For example, 
Hacioglu et al. (2019) discovered and validated Ciprofloxacin as an 
active drug against Candida albicans. Besides, Trinh et  al. (2017) 
demonstrated that the combination of ceftriaxone and Ciprofloxacin 
was the most effective treatment for foodborne Vibrio traumaticus. 

TABLE 4 Performance comparison between baseline methods and LCASPMDA base on the MDAD and the aBiofilm databases.

Datadabse Performance 
Metrics

LCASPMDA GCNMDA GSAMDA MDASAEA NTSHMDA LRLSHMDA

MDAD ACC 0.91460 0231. 0.79140.0149 0.57660.0156 0.90450 0107. 0.96570 0317. 0.97000 0227.

F1-SCORE 0.91440 0159. 0.75000.0218 0.77070.0233 0.92700.0158 0.32050.0247 0.30090.0177

MCC 0.84260.0478 0 6101. 0.0359 0.28810.0558 0.84150.0287 0.39180.0256 0.33440.0258

aBiofilm ACC 0.89320 0257. 0.81980 0186. 0.52140.0378 0.88980 0145. 0.95920.0309 0.96930.0108

F1-SCORE 0.89540.0186 0.76340.0274 0.75540.0246 0.88450 0203. 0.22620.0256 0.23670 0214.

MCC 0.79640 0254. 0.62750.0478 0.23820 0742. 0.73350.0288 0.33290 0312. 0.34270.0212

FIGURE 5

ROC and PR curves achieved by LCASPMDA based on the DrugVirus database. (A) ROC curves based on DrugVirus, (B) PR curves based on DrugVirus.
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Moreover, Cho et al. (2019) found that Mycobacterium avium was 
highly sensitive to Ciprofloxacin. Table 5 shows the predicted results 
of the top 20 microorganisms associated with Ciprofloxacin, 17 of 
which have been demonstrated in the PubMed literatures.

Pefloxacin is a broad-spectrum quinolone antibiotic with 
significant bactericidal effects against a wide range of Gram-
negative and Gram-positive bacteria. For instance, Wang et  al. 

(2021) studied the resistance of Escherichia coli strains to Pefloxacin 
and found that the resistance rate was as high as 68.8%, which 
provided new clues for the study of genetic and epidemiological 
characterization of urinary tract infections after renal 
transplantation. Moin et al. (2020) detected the susceptibility of 
Salmonella enterica thermophila to fluoroquinolones with the 
Pefloxacin disk diffusion test. Abdoulaye et al. (2018) isolated 126 
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FIGURE 6

Effects of different Out-dimension on LCASPMDA.

FIGURE 7

SPISE can improve the prediction performance of LCASPMDA. (A) ROC curves based on MDAD, (B) PR curves based on MDAD, (C) ROC curves based 
on aBiofilm, (D) PR curves based on aBiofilm.
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bacterial strains from patients with surgical site infections (ISO) at 
the National Hospital of Niamey and found them to be resistant to 
different fluoroquinolones (e.g., Pefloxacin and nalidixic acid) to 
varying degrees. Table  6 illustrates the predicted results for the 
top  20 Pefloxacin-associated microorganisms, 14 of which have 
been proved in the PubMed literatures.

4 Conclusion

We are committed to discovering more potential microbe-drug 
associations and making our contribution to the protection of human 
health. In this paper we have proposed a novel prediction model called 
LCASPMDA by combining a learnable graph convolution attention 

FIGURE 9

LCAT can improve the prediction performance of LCASPMDA. (A) ROC curves based on MDAD, (B) PR curves based on MDAD, (C) ROC curves based 
on aBiofilm, (D) PR curves based on aBiofilm.

FIGURE 8

SPIE has an important effect on the overall model performance of LCASPMDA. (A) ROC curves, (B) PR curves.
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network, a Self-Paced Iterative Sampling Ensemble strategy and a 
multi-layer perceptron. Comparative experiments and case studies 
show that LCASPMDA can achieve excellent prediction performance. 
And at the same time, there are still areas where it can be improved, 
for example, LCASPMDA does not collect or use any actual negative 
samples. Secondly, using MLP to generate new microbe-drug 
association matrices may provide useless association information. 
Thirdly, the parameters used in MLP and LCAT may not be optimal 
and may even be  biased, and the lack of negative samples may 
significantly affect the predictive performance of 
LCASPMDA. Therefore, on the one hand, it is crucial to obtain 
negative samples from biomedical databases and literature. On the 
other hand, developing computational methods to generate high-
quality negative samples is another option to address this issue. In 
addition, it is noted that selected negative samples can achieve 
significant performance improvements in the area of protein-RNA 
interaction identification as well. Meanwhile, we can introduce some 
new mechanisms such as the attention mechanism, spatial convolution 
mechanism and so on to improve the performance of the model.

Data availability statement

The original contributions presented in the study are included in 
the article/Supplementary material, further inquiries can be directed 
to the corresponding authors.

Author contributions

ZY: Data curation, Methodology, Resources, Software, Writing 
– original draft, Writing – review & editing. LW: Conceptualization, 
Funding acquisition, Investigation, Methodology, Project 
administration, Supervision, Writing – original draft. XZ: Data 
curation, Formal analysis, Validation, Writing – original draft. BZ: 
Methodology, Supervision, Validation, Writing – review & editing. 
ZZ: Investigation, Methodology, Supervision, Visualization, 
Writing – review & editing. XL: Methodology, Software, 
Supervision, Validation, Writing – review & editing.

Funding

The author(s) declare financial support was received for the 
research, authorship, and/or publication of this article. This work was 
partly sponsored by the National Natural Science Foundation of China 
(no. 62272064), and the Natural Science Foundation of Hunan 
Province (no. 2023JJ60185).

Acknowledgments

The authors thank the referees for suggestions that helped improve 
the paper substantially.

TABLE 5 The top 20 predict Ciprofloxacin-associated microbes.

Microbe Rank Evidence Microbe Rank Evidence

Escherichia coli 1 PMID: 26607324 Stenotrophomonas maltophilia 11 PMID: 28488744

Pseudomonas aeruginosa 2 PMID: 30605076 Bacillus subtilis 12 PMID: 15194135

Staphylococcus aureus 3 PMID: 32488138 Candida spp. 13 Unconfirmed

Burkholderia cepacia 4 PMID: 10091030 Aeromonas hydrophila 14 PMID: 24242249

Klebsiella planticola 5 PMID: 25465871 Burkholderia multivorans 15 PMID:19633000

Burkholderia cenocepacia 6 PMID:27799222 Streptococcus pneumoniae 16 PMID: 15155208

Klebsiella pneumoniae 7 PMID:27257956 Micrococcus luteus 17 PMID:16340189

Listeria monocytogenes 8 PMID:28355096 Enteric bacteria and other eubacteria 18 PMID: 27436461

Vibrio harveyi 9 PMID:27247095 Streptococcus epidermidis 19 Unconfirmed

Acinetobacter baumannii 10 PMID:25147676 Kocuria rhizophila 20 Unconfirmed

TABLE 6 The top 20 predict Pefloxacin-associated microbes.

Microbe Rank Evidence Microbe Rank Evidence

Staphylococcus aureus 1 PMID: 2258345 Human Immunodeficiency Virus 1 11 PMID:9495677

Staphylococcus epidermis 2 PMID: 2640275 Clostridium perfringens 12 Unconfirmed

Vibrio harveyi 3 Unconfirmed Enteric bacteria and other eubacteria 13 Unconfirmed

Bacillus subtilis 4 PMID: 12024980 Pseudomonas aeruginosa 14 PMID: 1645509

Staphylococcus epidermidis 5 PMID: 26607324 Burkholderia cenocepacia 15 Unconfirmed

Burkholderia thailandensis 6 Unconfirmed Mycobacterium smegmatis 16 PMID: 25379514

Listeria monocytogenes 7 PMID: 2504545 Human immunodeficiency virus 17 PMID: 9495677

Enterococcus faecalis 8 PMID: 2258345 Micrococcus luteus 18 PMID:16340189

Burkholderia pseudomallei 9 PMID: 19121669 Actinoplanes missouriensis 19 Unconfirmed

Streptococcus pneumoniae 10 PMID: 20384283 Salmonella enterica 20 PMID: 28948961
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