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Microbiomes, comprised of diverse microbial species and viruses, play

pivotal roles in human health, environmental processes, and biotechnological

applications and interact with each other, their environment, and hosts via

ecological interactions. Our understanding of microbiomes is still limited and

hampered by their complexity. A concept improving this understanding is

systems biology, which focuses on the holistic description of biological systems

utilizing experimental and computational methods. An important set of such

experimental methods are metaomics methods which analyze microbiomes

and output lists of molecular features. These lists of data are integrated,

interpreted, and compiled into computational microbiome models, to predict,

optimize, and control microbiome behavior. There exists a gap in understanding

betweenmicrobiologists and modelers/bioinformaticians, stemming from a lack

of interdisciplinary knowledge. This knowledge gap hinders the establishment

of computational models in microbiome analysis. This review aims to bridge this

gap and is tailored formicrobiologists, researchers new tomicrobiomemodeling,

and bioinformaticians. To achieve this goal, it provides an interdisciplinary

overview of microbiome modeling, starting with fundamental knowledge

of microbiomes, metaomics methods, common modeling formalisms, and

how models facilitate microbiome control. It concludes with guidelines and

repositories for modeling. Each section provides entry-level information,

example applications, and important references, serving as a valuable resource

for comprehending and navigating the complex landscape of microbiome

research and modeling.

KEYWORDS

systems microbiology, microbial ecology, omics data integration, human microbiome,
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1 Introduction

Most habitats on earth are populated by microbiomes consisting of various microbial

species and viruses.1 Due to their ubiquity and versatility, microbiomes are essential

for human life, development, and health (Cani, 2018; Gilbert et al., 2018). The human

microbiome can, for instance, increase cancer risk and progression by promoting local

1 With the term “microbiomes,” we include the terms “microbial community,” or “microbiota” and refer

to any community of microorganisms living with or without a eukaryotic host.
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chronic inflammation, the release of free radicals, or the induction

of pro-inflammatory cytokines (Helmink et al., 2019). The

intestinal microbiomes of livestock ferment feed that is indigestible

for humans. Products from livestock such as meat or milk are

valuable protein sources but cause 30% of the global anthropogenic

methane emission at the same time (Jackson et al., 2020).

Similar microbiomes as in livestock degrade organic waste and

renewables in anaerobic digesters to biogas, which can be used

for the production of renewable electric energy. In Germany,

electricity from biogas covered about 5.8% of the electricity

demand2 and contributed 10% to the prevented greenhouse gas

emissions in 2022.3 Lastly, microbiomes play a major role in

nutrient cycling and are important for soil fertility and plant

2 https://www.destatis.de/DE/Presse/Pressemitteilungen/2023/03/

PD23_090_43312.html (accessed December 13, 2023).

3 https://www.umweltbundesamt.de/daten/energie/erneuerbare-

energien-vermiedene-treibhausgase#stromerzeugung, (accessed

December 13, 2023).

growth (Naylor et al., 2020). These examples demonstrate how

important microbiomes are for human health, biotechnology, and

the environment.

Despite their importance, member species of most natural

microbiomes are unknown (Amann et al., 1995; Wade,

2002) and their behavior is not fully understood (Gilbert

et al., 2018). The reason for the lack of knowledge is the

complexity of ecological interactions between microbiome

members and their environment/hosts. Parts of the missing

knowledge on microbiomes can be uncovered by metaomics

methods. These analytical methods identify and quantify

genes, transcripts, proteins, and metabolites in microbiomes

(Qin et al., 2010; Aguiar-Pulido et al., 2016; Heyer et al.,

2017) analyzing many samples and molecules in a relatively

short time, thus branded as high throughput. Making

sense of the high throughput of metaomics data requires

bioinformatics for automated data integration and analysis

(Henry et al., 2010; Heyer et al., 2017; Jünemann et al.,

2017).

Metaomics data analysis results in mechanistic knowledge,

which can be used to construct mathematical models of

microbiomes (Faust and Raes, 2012; Tobalina et al., 2015;

Machado et al., 2018; Aden et al., 2019; Marcelino et al.,

2023). Model predictions can support or falsify hypotheses

or complement data, advancing the understanding of

microbiomes. Furthermore, model predictions can guide

strategies to optimize and control the processes performed

by microbiomes. For example, models can determine optimal

conditions for producing chemical compounds (García-Jiménez

et al., 2021), drug targets for growth inhibition of pathogens

(Curran et al., 2020), or control the production of chemical

compounds or biogas on-line (Xue et al., 2015; Espinel-Ríos et al.,

2023a,b).

Although many reviews on microbiome modeling exist (Biggs

et al., 2015; Kumar et al., 2019; García-Jiménez et al., 2021; van den

Berg et al., 2022; Garza et al., 2023; Liu, 2023), they usually

require background knowledge or do not mention the tools to

get started with microbiome modeling. This review is intended

to close this gap and explicitly targets beginners in microbiome

modeling, offering a starting point for further exploration of the

field. Therefore, the manuscript addresses the following aspects:

• First, the manuscript provides a concise background on the

characteristics of microbiomes (Section 3) and metaomics

methods to analyze them (Section 4).

• Second, general aspects of modeling (Section 5) and the

most common modeling frameworks are explained (Sections

6 to 10). Each model section explains theoretical basics,

important methods for model analysis, and provides examples

of applications to microbiomes. Furthermore, references to

important articles or reviews are provided, as well as lists of

software to apply the corresponding model framework.

• Third, an introduction to strategies for controlling

microbiomes and the contribution of microbiome models is

given (Section 11).

• Fourth, important guidelines facilitating reusability and

reproducibility of microbiome modeling are introduced

(Section 12).
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2 Methods

This review addresses microbiome characteristics, metaomics

methods, microbiome modeling, and guidelines for improving

the reuse of microbiome models. A Python script was used to

retrieve an initial collection of papers from the respective fields.

The script queries the PubMed API (Sayers, 2009), obtains

a list of articles, and determines the most cited references

across these articles (the used queries are listed in Table 1).

The script was inspired by an available project (https://github.

com/paulamartingonzalez/Targeted_Literature_Reviews_via_

webscraping) and is available on our GitHub repository (https://

github.com/voidsailor/targeted_literature_search, https://zenodo.

org/doi/10.5281/zenodo.10402352).

The parameter for the initial number of papers was always set

to 100. The most cited papers were extracted from the references

of these initial 100 and ordered by node degree of the reference

network. The best-fitting articles were selected for the respective

topics, starting with the highest-ranked articles. The generated

output files are in the Supplementary Table S1.

Further references were discovered from these primary articles

or by subjecting interesting articles to the Connected-Papers

web application.4

3 What are microbiomes?

Microbiomes are biological systems of heterogeneous

communities of microorganisms living in the same habitat or

host, engaging in non-linear and dynamic interactions (Figure 1).

Microorganisms and host cells are driven by cellular metabolism,

involving the uptake, conversion, and excretion of chemical

compounds through networks of enzymatic reactions. These

reactions generate energy and building blocks for cellular

maintenance and growth (Berg et al., 2013a). Cellular signaling

detects and processes external stimuli (e.g., pH, osmolarity,

temperature, or signaling molecules). Cells receive these signals via

membrane-bound or intracellular receptor proteins, which detect

stimuli and transduce signals through cascades of sequentially

activated proteins and small molecules (2nd messengers) (Berg

et al., 2013a). Terminal molecular signals induce cellular responses,

such as changes in cellular shape (Huang et al., 2021), or activate

gene expression through transcription factors (Berg et al., 2013d).

Activated genes regulate metabolism and signaling by expressing

regulatory RNAs, enzymes, and signaling proteins. Additionally,

genes regulate other genes by expressing transcription factors

forming gene regulatory networks. These networks encode

biological programs that correspond to behaviors or phenotypes

(Davidson and Levin, 2005; Berg et al., 2013b,c). The connection

of molecular interactions forms feed-forward and feed-back loops

determining dynamic system behaviors such as signal amplification

or oscillation (Samaga and Klamt, 2013).

Ecological interactions between microbiome members and

their hosts can be broadly categorized as mutualistic, neutral,

or negative interactions (Berg et al., 2020) [for an overview on

4 https://www.connectedpapers.com/

ecological interaction types see Fassarella et al. (2020) or García-

Jiménez et al. (2021)]. For example, cross-feeding represents

a positive (mutualistic) mechanism wherein organisms produce

substrates for each other. Conversely, competition is a negative

interaction wherein organisms compete for the same resource

(García-Jiménez et al., 2021). The exchange of signaling molecules

represents another type of interaction mediating processes such

as quorum sensing. In quorum sensing, microorganisms respond

with biofilm formation if the concentration of a signaling molecule

exceeds a threshold, thereby enhancing the population’s resilience

to the environment (Solano et al., 2014). Other types of interactions

are mediated by antimicrobial peptides or attractants (Quiza et al.,

2015; Ma et al., 2022), phages (Federici et al., 2020), predation

(Thakur and Geisen, 2019), or abiotic factors (Abdul Rahman et al.,

2021). Microbial interactions can be pairwise, occurring between

two species, but pairwise interactions can also be modulated by

higher-order interactions with third species (Ludington, 2022).

Microbiomes contain hundreds to thousands of species

spanning all domains of life (i.e., Archaea, Bacteria, Eukaryotes,

and Viruses) and their taxonomic composition is usually

unique to sample sites or hosts (Lozupone et al., 2012; Liu,

2023). Determining the taxonomic composition is of interest

to identify the microbiome members that perform ecological

interactions. Certain species can indicate specific biological

processes; for instance, Clostridium thermocellum is capable

of cellulose degradation in the biogas process (Heyer et al.,

2015). However, while taxonomic profiles may vary considerably,

functional profiles can remain similar (Lozupone et al., 2012).

Therefore it is also informative to determine the functional

repertoire encoded in genes and expressed in proteins.

Ultimately, the interactions connect members of the

microbiome into an ecological network and determine its

dynamics of species abundances (i.e., taxonomic composition)

and concentrations of exchanged molecules (Liu, 2023). Like

regulatory and signaling networks, feed-forward and feed-back

loops can be found in microbiomes. For instance, cross-feeding

results in coupling or positive feedback loops, while competitive

interactions introduce negative feedback (Coyte et al., 2015). Such

loops determine steady states of microbiomes, which correspond

to equilibria between all interactions. Multiple steady states

can exist for the same process, as observed for the taxonomic

composition in lab-scale biogas plants (Kohrs et al., 2017).

Ecological interactions also determine whether the steady states

are resilient to perturbations (stable steady states) or not (unstable

steady states) (Fassarella et al., 2020). For example, a high ratio

of negative to positive interactions has been linked to increased

resilience through negative feedback (Coyte et al., 2015) and

resistance toward invasion of new species (Machado et al., 2021),

while positive interactions such as cross-feeding may lead to

more efficient substrate utilization through division of labor but

lower resilience due to growth coupling (Coyte et al., 2015; Roell

et al., 2019; Machado et al., 2021). Another aspect is functional

redundancy, which is generally associated with higher resilience

(Liu, 2023). The environment also has an impact on microbiome

interactions and dynamics. For example, human microbiomes

from different body sites differ in composition due to various

physical conditions (e.g., the pH value) (The Human Microbiome
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TABLE 1 Pubmed queries.

Script query Date Number of hits Topics

(microbiome) AND (microbial community) November 7, 2023 4,465 Role and properties of microbiomes

(metaproteomics) OR (metagenomics) OR

(metaomics)

November 7, 2023 4,200 Metaomics methods, metaproteomics,

bioinformatic challenges

(computational model) AND [(metabolism) OR

(regulation) OR (signaling)]

November 7, 2023 3,163 model types, modeling approaches applicable

to metabolism and signaling

(biological network reconstruction) AND

[(microbiome) OR (microbial community)]

November 7, 2023 6,531 Reconstruction of metabolic and signaling

networks

(computational model) AND [(parameter

estimation) OR (contextualization) OR

(reduction)]

November 7, 2023 1,035 parameter estimation, context-specific

models, reduction of model size

(computational modeling) AND [(microbiome)

OR (microbial community)]

November 7, 2023 1,035 examples of prediction, optimization

(control algorithm) AND [(microbiome) OR

(microbial community)]

November 7, 2023 4,313 microbiome control

(network modeling) AND (guidelines OR software

OR repository)

November 7, 2023 1,671 FAIR, initiatives, standards, languages,

software, repositories

Project Consortium, 2012). These conditions can exhibit their

own dynamics, influenced by factors such as meal intake or the

menstrual cycle (Liu, 2023).

Environmental conditions do not only vary macroscopically

but also microscopically due to the spatial organization of cells.

Microorganisms can live free-floating, as aggregates, or attached

to surfaces in biofilms (Cai, 2020). Consequently, cellular density

varies considerably depending on the environment (e.g., 106 cells

in 1 m3 air or 1011-1012 per mL in the colon) (Blum et al., 2019).

The type of organization influences the mass transfer of molecules

across the microbial population. Microorganisms at the surface of a

biofilm can, for example, consume available oxygen completely and

create anaerobic conditions inside the biofilm (Rani et al., 2007).

Additionally, inter-individual variations can exist within the same

population, giving rise to macroscopic effects (Kreft et al., 2017).

4 Collecting information on
microbiome members

Cultivating and characterizing microbiome members is

required to disentangle their roles within microbiomes. Moreover,

cultivation experiments yield valuable data for microbiome

modeling. Nonetheless, many species andmicrobiomes are difficult

to grow in the lab, necessitating the analysis of microbiomes in

situ. The following sections provide an overview of the challenges

associated with cultivating individual species and microbiomes

(Section 4.1), as well as metaomics methods for characterizing

taxonomic and functional compositions of native microbiomes

and their molecular repertoires (Section 4.2).

4.1 Cultivation and characterization of
microorganisms

Most microbial species are still uncharacterized (Amann et al.,

1995; Wade, 2002; Almeida et al., 2019; Pasolli et al., 2019).

Out of the estimated 0.8–1.6 million prokaryotic species (based

on operational taxonomic units) (Louca et al., 2019), about 0.7

million have sequenced genomes [NCBI, https://www.ncbi.nlm.

nih.gov/genome/browse#!/prokaryotes/ (accessed April 24, 2024)],

but less than 10% are available as isolates from the German

Collection of Microorganisms and Cell Cultures [https://www.

dsmz.de/ (accessed April 24, 2024), 26,766 bacterial and 634

archaeal strains].

Characterizing unknown microorganisms requires cultivation-

based studies to determine the functions of their genes (Overmann

et al., 2017). However, many species are difficult to grow in enriched

or axenic cultures (i.e., single-species cultures), due to unknown

nutritional requirements, or because they can only survive in

synthrophies (Wade, 2002). Ongoing efforts optimize media and

culture conditions for axenic cultures (Overmann et al., 2017).

Furthermore, synthrophic species have been successfully grown

and characterized in co-cultures with their interaction partners

(Overmann et al., 2017). The resulting resources on characterized

prokaryotic species are collected in databases such as BacDive

(Reimer et al., 2021).

Growth experiments in axenic lab cultures are required to

parameterize microbiome models (Section 5). Such cultures can

provide enough material to determine cellular dry weight, macro-

molecular biomass composition, ATP-maintenance coefficients,

metabolic fluxes (Zamboni et al., 2009; Vos et al., 2016; Beck et al.,

2018; Lachance et al., 2019) or analyze biomolecules by omics

methods (Palazzotto and Weber, 2018). It is beneficial to plan

experiments with modeling assumptions in mind. For example,

constraint-based modeling (Section 9) assumes constant cellular

metabolite concentrations and growth rates. Therefore, cultivation

in continuously stirred tank processes is suitable to determine

parameters for metabolic modeling, because process parameters

remain constant (Winter and Krömer, 2013).

Lab cultures of reduced microbiomes (i.e., two to ten species)

allow investigation of species interactions under controlled

conditions. Reduced cultures are used to mimic the functional

composition of more complex microbiomes, for example,
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FIGURE 1

Characteristics of microbiomes with relevance for their general understanding and modeling.

biogas-producing microbiomes (Koch et al., 2016, 2019), or the

human gut microbiome (Venturelli et al., 2018; Schäpe et al., 2019).

It is also possible to inoculate lab cultures with samples from native

microbiomes (Hanreich et al., 2013).

In many instances, microbiomes need to be analyzed in their

native environments because native and lab-cultured microbiomes

may differ in their phenotypes. Mesocosm experiments are a

compromise between the native environment and controlled

conditions. In such experiments, organisms are subjected to

environments similar to their native environment, but specific

conditions can be controlled (Lui et al., 2021; Petersen et al., 2023).

Microbiomes can furthermore be investigated using flow

cytometry. Flow cytometry sorts and counts cells according to

cellular features or chemical labels. Sorted cells can also be

subjected to further (omics) analyses or cultivation (Props et al.,

2016; Hatzenpichler et al., 2020). Lastly, microscopic observation

gives clues about present species and is necessary to determine

cellular morphology (e.g., shape, cell sizes, and spatial organization)

(Xavier et al., 2007; Cesar and Huang, 2017).

4.2 Metaomics create inventory lists of
microbiomes

Metaomics methods identify and quantify genes

(metagenomics), transcripts (metatranscriptomics), proteins

(metaproteomics), and metabolites (metabolomics) from complex

or native microbiomes. The metaomics workflow generally

begins with the extraction of molecules of interest which can be

challenging due to complex sample matrices. Samples such as soil,

sludge from wastewater treatment plants, or biogas plants, contain

large amounts of impurities (e.g., minerals, humic substances)

(Heyer et al., 2015; Starke et al., 2019). These impurities must

be removed during sample preparation since they can disturb

following workflow steps. Depending on the localization of

molecules, cells need to be disrupted and any cellular processes

that might alter the molecular profiles should be inhibited

(Mashego et al., 2006; Bag et al., 2016; Bashiardes et al., 2016;

Heyer et al., 2017). Subsequent purification steps aim to remove

unwanted molecules (Thomas et al., 2012; Heyer et al., 2017).

In metagenomics and metatranscriptomics, microbial RNA or

DNA is sequenced, yielding sequence reads (Thomas et al., 2012;

Bashiardes et al., 2016). In metaproteomics, proteins are denatured

after purification, digested to peptides using trypsin, and subjected

to liquid chromatography coupled to tandem mass spectrometry

(LC-MS/MS), producing mass spectra (Heyer et al., 2017). In

metabolomics, metabolites undergo analysis via mass spectrometry

or nuclear magnetic resonance (NMR) analysis, resulting in mass

or NMR spectra, respectively (Zhang et al., 2012). Finally, the raw

data from each method undergo bioinformatic analyses (Thomas

et al., 2012; Bashiardes et al., 2016; Heyer et al., 2017; Jünemann

et al., 2017; Bauermeister et al., 2021), which extract information on

the underlying ecological networks by identifying and quantifying

measured molecules.

Important metagenomics methods are whole metagenome

shotgun sequencing (WGS) and amplicon sequencing. WGS

processes snippets of sequenced DNA (i.e., reads) to discern

present taxonomies or functions along with their quantities (i.e.,

taxonomic and functional profiling). Reads can also be used for the

de novo reconstruction of genomes (i.e., metagenome-assembled

genomes, MAGs) of unknown organisms (Jünemann et al., 2017;

Yang et al., 2021). However, MAGs can be incomplete or contain

genes from different organisms. Taxonomy can be determined

by marker genes or searches against databases containing known

reference sequences (Jünemann et al., 2017), usually following the

taxonomies assigned by the GTDB database (Parks et al., 2021).

Functional annotations of genes can be obtained from reference

databases or through homology searches against databases for

functional ontologies or protein families, such as KEGG or InterPro

(Jünemann et al., 2017; Kanehisa et al., 2022; Paysan-Lafosse
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et al., 2022). Amplicon sequencing is a method that quantifies

strain-specific 16s ribosomal RNA (rRNA) marker genes and is

a widespread method for taxonomic profiling (Jünemann et al.,

2017).

Metatranscriptomics and metaproteomics give information

on the transcribed genes hinting at potentially active microbial

functions (Bashiardes et al., 2016; Heyer et al., 2017). Reads

of transcripts are processed similarly to reads of genes in

metagenomics (Bashiardes et al., 2016). In metaproteomics, the raw

data consists of mass spectra of peptides, which are matched against

spectral libraries or reference databases, often derived from sources

like UniProt or metagenomic sequences (Heyer et al., 2017). A

particular challenge inmetaproteomics is mapping peptides to taxa,

because different taxa may possess homologous protein domains.

Therefore, peptides are either grouped, or unique peptides are

considered in subsequent analyses (Schallert et al., 2022). The

functional annotation of protein groups or unique peptides is then

retrieved from the underlying reference database.

Metabolomics quantifies molecules below 1,500 Da, providing

insights into metabolic activity (Bauermeister et al., 2021).

Metabolites are identified frommass spectra using spectra libraries,

while molecules can be inferred from their structural features

based on NMR spectra (Liu and Locasale, 2017; Bauermeister

et al., 2021). While it is feasible to quantify metabolites for the

entire microbiome or its medium, linking detected metabolites

to the producing species poses a challenge (Bauermeister et al.,

2021). Determining metabolite pools of individual cells necessitates

single-cell methods. Alternatively, chemically or isotopically

labeled substrates can be added to the medium to measure

the incorporation of metabolites into biomass, which indicates

metabolic activity (Jehmlich et al., 2010; Hatzenpichler et al., 2020).

The primary output of metaomics methods typically comprises

lists of genes or molecules alongside their respective quantities.

Statistical methods aid data interpretation by revealing group

differences, patterns, and correlations (Bartel et al., 2013; Yamada

et al., 2020; Arıkan and Muth, 2023). Other statistical methods

such as network analyses and pathway enrichment additionally

provide biological contexts for metaomics data (Jiang et al., 2019;

Reimand et al., 2019; Salvato et al., 2021). Data visualization

facilitates comprehension of metaomics data and communication

of analysis results (Gehlenborg et al., 2010; Yamada et al., 2020).

Furthermore, it is possible to integrate data from two or more

parallel metaomics experiments termed multiomics. Multiomics

provide a holistic insight into the analyzed system rather than

just one omics layer but are more expensive, and require specific

experimental considerations and analysis methods (see Arıkan and

Muth (2023) for a comprehensive and recent review).

The mentioned technologies allow for top-down analyses

of microbiomes and their expressed and active metabolic

functions. Mechanistic models with molecular resolution

(Section 5) can be reconstructed, refined, validated, and

integrated with metaomics data. Microbiome modeling is not

limited to these data types and can exploit other omics and

experimental methods depending on the utilized modeling

framework. A (non-exhaustive) list of data types/methods useful

for microbiome modeling and corresponding references is

provided (Table 2).

TABLE 2 List of references to other (metaomics) methods that can be

used in microbiome modeling.

Data type/Method References

WGS/amplicon Segata et al., 2013; Bragg and Tyson,

2014; Jünemann et al., 2017; Frioux

et al., 2020; Zorrilla et al., 2021

metatranscriptomics Gifford et al., 2010; Gosalbes et al., 2011;

Bashiardes et al., 2016

metabolomics Mashego et al., 2006; Zhang et al., 2012;

Liu and Locasale, 2017; Bauermeister

et al., 2021

enzyme activity assays Bisswanger, 2011; Stitt and Gibon, 2014

C13-metabolic flux analysis Wiechert, 2001; Zamboni et al., 2009;

Winter and Krömer, 2013

single-cell omics Wang and Bodovitz, 2010; Duncan et al.,

2019

protein interaction data Zhou et al., 2016

growth screenings Oh et al., 2007; Maier and Pepper, 2015

knock out screenings and

gene essentiality data

Oh et al., 2007

biomass composition Beck et al., 2018; Lachance et al., 2019

total protein content Noble et al., 2007; Noble and Bailey,

2009

maintenance coefficients Stouthamer and Bettenhaussen, 1973;

Vos et al., 2016

microscopy Cesar and Huang, 2017

flow cytometry Props et al., 2016; Hatzenpichler et al.,

2020

5 Mathematical models are
formalisms to describe biological
mechanisms

Models aim to capture real-world phenomena by mathematical

expressions and can be used to describe biological systems in time

and space. Mathematical modeling plays a vital role in systems

biology, which collects data by experimental methods, integrates,

and analyzes data to obtain a holistic view of biological systems

(Veenstra, 2021). Models offer significant value by integrating

and compiling knowledge and complementing newly generated

experimental data. They possess the capacity to make predictions,

generate, and validate hypotheses. Making predictions is often

cheaper than conducting experiments, and simultaneously, these

predictions can inform and refine the design of experiments,

making them more targeted. Additionally, modeling is essential

for developing an understanding of how to control microbiomes

effectively (Liu, 2023).

The explained characteristics of microbiomes (Section 3) are

closely related to the questions targeted by models, such as

• What are the structures of ecological networks formed by

microbiome interactions?

• Who are the important actors in these networks?
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• What kinds of interactions are prevalent?

• What are the dynamics of taxonomic microbial composition

and exchanged molecules?

• How do interactions influence microbiome dynamics

including steady states and stability?

• What is the role of population heterogeneity and

spatial organization?

• Which system inputs can be used to control the dynamics?

Apart from a research question, the choice of a modeling

framework depends on the available data, the required mechanistic

resolution, and available knowledge. This review mostly covers

mechanistic models, but Section 5.1 aims to introduce the

concept of statistical or machine learning-based models briefly

and differentiates both paradigms. The following Sections 6 to 11

provide an overview of the most common modeling frameworks

applied to understand and control microbiomes. The sections

progress from simple to sophisticated frameworks also presented in

the overview Figure 2. More information on modeling of biological

systems and formalisms that were not considered can be found in

references by Machado et al. (2011), Motta and Pappalardo (2012),

and Novère (2015).

5.1 Statistical models and mechanistic
models

Statistical models comprise a heterogeneous group of model

frameworks (including machine learning models) applied to

detect patterns in data, classification, or regression. These models

generally capture relations between one or more input and output

variables of a biological system from data (Bruggeman and

Westerhoff, 2007). Assumptions on the structure (i.e., distribution,

dependencies) of input and output data determine the chosen

model framework (Baker et al., 2018). Adjusting model parameters

to data is termed model training. The lack of mechanistic

information is a disadvantage of statistical models because no

information on the causal connection between input and output

variables is given, models can be biased toward the structure of

training data, and their range of validity is often limited (Baker

et al., 2018). Statistical modeling is, for example, applied in

metaproteomics to improve protein identification (Bouwmeester

et al., 2020), predict disease states frommetagenomes (Pasolli et al.,

2016), or for the detection of potential disease biomarkers (Tang

et al., 2020) and biomarker panels (Sydor et al., 2022). A simple

example of statistical modeling is fitting a calibration curve to data

from a colorimetric protein assay by linear regression (Ninfa et al.,

2009). Reviews by Pasolli et al. (2016) and Hernández Medina et al.

(2022) are recommended to obtain an overview on the application

of statistical models to microbiomes.

Contrary to statistical models, mechanistic models can

represent physiological processes in (more or less resolved) detail

(Baker et al., 2018). Mechanistic modeling typically requires less

data than statistical models but demands a thorough understanding

of the components of a biological system. The great advantage

of mechanistic models is their display of causality. Additionally,

model entities and model parameters can be integrated with

(meta)omics measurements. However, mechanistic models rely

on simplifying assumptions (e.g., metabolic steady state or the

homogeneity of cell populations), limiting their applicability.

Moreover, the process of building models can be laborious,

involving iterative cycles of validating model predictions against

experimental data and model refinement (Novère, 2015).

6 Graphs can represent ecological
and molecular interactions

Biological systems consist of interacting parts and thus

inherit a network structure. Such networks can be represented

mathematically by graphs that embed biological entities or

environmental factors (e.g., molecules, species, pH, temperature)

as nodes and their interactions as edges (Layeghifard et al., 2017;

Koutrouli et al., 2020). Edges can be undirected to represent

associations (e.g., molecule A binds with molecule B, species A

occurs with increased pH value) or directed to indicate a flow of

mass (e.g., metabolite A is catalyzed by reaction Y to metabolite

B), (in)activation (e.g., protein A activates/inhibits protein B), or

whether interactions are dynamic (e.g., species A grows with a

delayed response to the increase in pH) (Layeghifard et al., 2017;

Koutrouli et al., 2020). Graphs are qualitative models because they

only explain relationships between biological entities.

Graphs can be expressed as adjacency matrices containing a

row and column for each node, with matrix entries representing the

occurrence and the type of an interaction (Samaga and Klamt, 2013;

Koutrouli et al., 2020). The analysis of graphs provides information

on the organization of biological networks, for example, whether

the network has a modular organization (Koutrouli et al., 2020).

Metrics such as node degree (number of edges connected to a

node) and betweenness centrality (number of paths going through

a node/edge) can respectively highlight molecular hubs or potential

metabolic bottlenecks (Koutrouli et al., 2020). Furthermore, for

networks representing signal flow, paths (routes between input and

output) and feed-forward or feed-back loops can be uncovered to

obtain hints on the dynamic behaviors of networks (Samaga and

Klamt, 2013; Koutrouli et al., 2020).

Subsequently, co-occurrence networks and inter-species

protein-protein interaction networks are given as application

examples for graph analysis of microbiomes. However, methods

for graph analysis can be applied to any model that incorporates a

network structure (e.g., generalized Lotka-Volterra models, Section

8.1 or genome-scale metabolic reconstructions, Section 9). The

flexible structure of graphs also allows for storage and analysis of

data in graph databases and knowledge graphs (Santos et al., 2022;

Walke et al., 2023).

Recently, a comprehensive review on the application of graphs

to microbiomes has been published (Liu et al., 2020). Readers

interested in graph theory applied to biological networks in general

are referred to reviews by Pavlopoulos et al. (2011) and Koutrouli

et al. (2020). Multiple software packages are available for general

purpose or biological graph analysis (Table 3 and review by Liu

et al., 2020).
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FIGURE 2

Overview of discussed microbiome modeling frameworks.

6.1 Co-occurence networks

Co-occurrence networks are coarse-grained representations

of species (or operational taxonomic units, OTUs) as nodes,

and their associations as undirected edges (Layeghifard et al.,

2017; Liu, 2023). These networks can be reconstructed from

microbiome composition data (e.g., tables of 16s rDNA gene

counts across multiple samples) (Faust and Raes, 2016). After

preprocessing steps, such as normalization to total counts in

a sample (Layeghifard et al., 2017), the input data undergo

inference algorithms to predict associations between species.

Simple inference algorithms use correlation (e.g., Pearson or

Spearman correlation) to infer associations between species

(Layeghifard et al., 2017). Consequently, network edges represent

pairwise correlations between two nodes. Weak associations in

the network can be filtered out by setting a threshold for the

used association metric (Faust and Raes, 2016). Additionally,

environmental factors such as pH, temperature, and oxygen

concentration can be included as individual nodes in the network

(Faust and Raes, 2016). The accuracy of predicted interactions

depends on the chosen inference algorithm, as shown by Hirano

and Takemoto (2019).

Edges of the resulting network can be the sum of several

ecological interactions (e.g., cross-feeding, antimicrobial peptides,

etc.) or higher order interactions [i.e., interactions of more than

two species (Ludington, 2022)] making it difficult to infer the
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TABLE 3 List of graph analysis software. Many other tools are listed in the

review by Liu et al. (2020).

Software
(implementation)

Application References

NetworkX (Python) General-purpose

graph analysis

Hagberg et al., 2008

Gephi (desktop

application)

General-purpose

graph analysis

Bastian et al., 2009

GraphViz (command

line)

Graph layout

calculation

Ellson et al., 2002

Cytoscape (desktop

application)

General-purpose

graph analysis

Shannon et al., 2003

CoNet (Cytoscape

plugin)

Reconstruction of

co-occurence

networks

Faust and Raes,

2016

iNAP (web application) Reconstruction and

analysis of

co-occurence

networks

Feng et al., 2022

MicrobioLink (Python) Inter-species

pathway inference

from PPI and

signaling networks

Andrighetti et al.,

2020

TieDIE (Python) Pathway inference

from PPI and

signaling networks

Paull et al., 2013

exact interaction mechanism. Furthermore, edges can be caused by

indirect associations, for example, due to preference for the same

ecological niche (Heyer et al., 2016), emphasizing the principle

that “correlation is not causation” (Hirano and Takemoto, 2019;

Liu, 2023). Despite these limitations, graph theoretical analysis of

co-occurrence networks can provide insight into microbiomes as

reviewed by Layeghifard et al. (2017) and Kumar et al. (2019).

For instance, cluster analysis can identify co-associated species by

finding densely connected nodes within their cluster but with fewer

links to nodes outside their cluster (Layeghifard et al., 2017). The

importance of individual species nodes can be predicted from their

centralities (e.g., degree, or betweenness centrality), node influence,

or link analysis (Layeghifard et al., 2017).

Reviews by Layeghifard et al. (2017), Röttjers and

Faust (2018), and Kumar et al. (2019) are recommended

for in-depth information on the inference and analysis of

co-occurrence networks.

6.2 Inter-species protein-protein
interaction networks

Edges in co-occurrence networks may represent convoluted

molecular interactions, such as metabolic interactions (covered in

Section 9), and inter-species protein-protein interactions (PPIs),

exemplified in this section. Other molecular network types, like

regulatory networks, are not explicitly addressed because, to our

knowledge, network analysis has not been applied to these network

types within the context of microbiomes. Other (molecular)

network types and their analysis are reviewed by Winterbach et al.

(2013) and Koutrouli et al. (2020). An interactive introduction to

graph theory for PPIs is available at (https://doi.org/10.6019/tol.

networks_t.2016.00001.1).

Microbiome-derived proteins can modulate host signaling and

are implicated in health and diseases such as inflammatory bowel

disease (IBD) and colorectal cancer (CRC) (Fischbach and Segre,

2016; Andrighetti et al., 2020; Zhou et al., 2022). Information on

interacting proteins is obtained experimentally (Zhou et al., 2016)

and can be predicted from sequence or structural similarity, or

molecular simulations (Skrabanek et al., 2007; Zhou et al., 2022).

Public databases like String (Szklarczyk et al., 2020) or IntAct (del

Toro et al., 2021) offer access to protein interactions or molecular

interactions, respectively. PPI data are used to reconstruct signaling

networks, archived in databases such as OmniPath (Türei et al.,

2016), Reactome (Gillespie et al., 2021), or WikiPathways (Martens

et al., 2020).

Andrighetti et al. (2020) leveraged inter-species PPI networks

to identify potential signaling pathways in hosts modulated by

microbiome-derived proteins. Their MicrobioLink pipeline allows

users to input metaproteins and target proteins or genes in hosts

putatively influenced by the microbiome. Predicted microbiome-

host protein interactions (source set) and putative targets (target

set) are subjected to the TieDIE method, which utilizes network

diffusion (Paull et al., 2013). The additional input of network

diffusion is a directed network (e.g., a signaling network),

containing relevant and non-relevant pathways. The network

diffusion algorithm propagates a relevance score across the network

from the source and target sets, expanding them to include new

nodes. Nodes present in both sets are potential contributors to

pathways of interest, which can be further filtered to extract

condition-specific pathways (Paull et al., 2013; Andrighetti et al.,

2020). Using MicrobioLink, Andrighetti et al. (2020) identified

metaproteins potentially interacting with pathways regulating

autophagy in Crohn’s disease (CD), a form of IBD.

6.3 Benefits and limitations of graph
models

The examples above illustrate the versatility of graphs in

representing systems with interacting components. Graphs can

incorporate multiple node and edge types, and even weighted

edges (Koutrouli et al., 2020). They can be constructed from

experimental data or inferred from abundance data obtained

through (meta)omics methods. Despite requiring relatively little

information, graphs can reveal insightful properties of biological

systems. While many graph methods are limited to data

interpretation, some, like link prediction and perturbation analysis,

can forecast future behaviors or system properties (Koutrouli et al.,

2020). Link prediction anticipates future edges or missing links,

and could potentially predict emerging interactions in ecological

networks. Perturbation analysis assesses the impact of disturbances

on network behavior, offering insights into the effects of species

removal in ecological networks (Koutrouli et al., 2020). Moreover,

as graphs are universally applicable, algorithms developed for

other domains, like social networks, could be leveraged for

biological graphs.
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However, graphs have limitations. They are qualitative and

cannot predict molecular or species abundances. Additionally,

as graphs are static, they cannot simulate the time evolution of

dynamic systems. Nevertheless, time-series data could be analyzed

by creating separate networks for each time-point and investigating

changes in network properties over time.

7 Boolean modeling in microbial
ecology

Edges in signaling networks typically represent the activation or

inhibition of molecules. Similarly, edges in ecological networks can

represent the inhibition or promotion of one species by another. A

corresponding expression could be: “Species A is present if species

B is present.” Such expressions are compiled in Boolean models,

commonly applied to cellular signaling and gene regulation (Wang

et al., 2012; Barbuti et al., 2020) but have also been used in one

instance for microbiome modeling (Steinway et al., 2015). Boolean

models are based on variables with binary activation states (e.g.,

zero or one) corresponding to genes, signaling molecules, or the

presence of species in a microbiome. Activation states are updated

by Boolean expressions linking all activating/inhibiting interactions

from other variables, enabling dynamic simulations of biological

systems (Wang et al., 2012; Barbuti et al., 2020).

Boolean models are qualitative because they represent relations

of state variables and activation states while omitting molecular

quantities. They are useful when kinetic parameters for models

based on differential equations are difficult to determine (Section

8) (Machado et al., 2011). Typical analyses of Boolean models

explore dynamic behaviors or steady states (Samaga and Klamt,

2013). Dynamic simulations require a time-scale separation of fast

and slow processes due to the discrete updating scheme of state

variables. For further information on Boolean models, see articles

by Karlebach and Shamir (2008), Wang et al. (2012), Samaga

and Klamt (2013), or Barbuti et al. (2020). Software for Boolean

modeling is listed in Table 4.

To our knowledge, Steinway et al. (2015) are the only

researchers who developed a Boolean model for microbial ecology

to date. They explored the population dynamics of a mouse

gut microbiome infected with Clostridium difficile after antibiotic

treatment as well as therapeutic interventions. Using 16s rRNA

gene abundance time-series data from a mouse study, a Boolean

network was inferred, where each node represents a genus, its

state indicating presence (one) or absence (zero), and edges

representing inhibitory or promoting relationships. Additionally,

an abiotic node representing the presence or absence of the

antibiotic was introduced.

Attractor analysis was employed to explore the steady states of

the system. To this end, a vector of initial state variables is defined,

and then the model is updated until all state variables stabilize (i.e.,

a steady state is reached) or oscillate. This is repeated for all possible

initial states to identify attractors, i.e., steady states attracting a

given set of initial conditions. Attractors are interesting because

they correspond to known phenotypes of a biological system

(Barbuti et al., 2020). Steinway et al. (2015) identified 21 attractors,

including six consistent with experimentally inferred microbiome

TABLE 4 List of software for Boolean modeling.

Software
(implementation)

Application Reference

BoolNet (R) Reconstruction

from time-series

data and simulation

of Boolean

networks

Müssel et al., 2010

BooleanNet (Python) Simulation of

Boolean networks Albert et al., 2008

PyBoolNet (Python) Simulation of

Boolean networks Klarner et al., 2016

The Cell Collective (web

application)

Exchange and

simulation of

Boolean networks
Helikar et al., 2012

CoLoMoTo Interactive

Notebook (Python)

Containerized

collection of

Boolean modeling

software

Naldi et al., 2018

compositions, i.e., the healthy microbiome, the microbiome after

treatment, and the infected microbiome after treatment.

To identify potential treatments for C. difficile infection,

perturbation analysis was conducted. Initially, the steady states of

attractors representing the microbiome after antibiotic treatment

and the C. difficile infected microbiome after treatment were used

as new initial states. Subsequently, an evaluation was performed to

determine which state variables needed to be activated or knocked

out to restore the healthy state. From this analysis, Lachnospiraceae

and Barnesiella were identified as candidates needing activation to

inhibit C. difficile, corresponding to probiotic treatment with these

genera (Steinway et al., 2015).

Furthermore, the authors created genome-scale

reconstructions of metabolism (Section 9) for representative

species to investigate whether metabolic interactions contribute

to inhibition or promotion of C. difficile growth. These

reconstructions enabled the identification of metabolic “inputs”

and “outputs” used to evaluate scores for pairwise competition or

mutualism. C. difficile and Barnesiella exhibited low competition

and high mutualism scores, indicating non-metabolic mechanisms

for the inhibition of C. difficile by Barnesiella, a finding supported

by co-culture experiments.

7.1 Benefits and limitations of Boolean
models

Being qualitative but capable of dynamic simulations is a benefit

and limitation of Boolean models. The ecological model presented

enables dynamic analyses without necessitating many parameters,

which can be challenging to infer. In contrast, quantitative dynamic

models like the generalized Lotka-Volterra model rely on such

parameters, which can be difficult to extract from data (Section 8.1).

Additionally, Boolean models can be constructed with minimal

qualitative data, and their analysis is computationally less complex

compared to differential equation-based models (Barbuti et al.,

2020). These characteristics were also key factors in the decision
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of Steinway et al. (2015) to adopt this framework. Hence, Boolean

models are viable for reconstructing larger ecological networks of

microbiomes. They can also serve as starting points for dynamic

modeling, as their predictions often align with those of differential

equation models and can be extended to such quantitative models

(Albert and Thakar, 2014). Moreover, they could become the

preferred framework for simulating genome-scale networks of

signaling and regulation (Romers et al., 2020), or hybrid models

that integrate metabolism, signaling, and regulation (Section 10).

The qualitative nature of Boolean models poses several

challenges. Continuous time-series data used for modeling have

to be discretized, for example, through thresholding or clustering

methods (Albert and Thakar, 2014; Steinway et al., 2015).

Molecular processes, such as in signaling and regulation, may span

several time scales, which requires a separation of fast and slow

processes or specific updating schemes (Saez-Rodriguez et al., 2007;

Albert and Thakar, 2014; Münzner et al., 2019).

8 Di�erential equations—Quantitative
and dynamic models of biological
systems

Differential equations can model dynamic systems at any

scale and complexity. Ordinary differential equations (ODEs)

express quantitative changes in biological entities (e.g., metabolites,

biomass) over time. Spatially resolved models require partial

differential equations (PDEs).

The kinetics of a metabolic network is a prime example

to explain the structure of ODE models (Figure 3). Metabolic

networks consist of enzyme-catalyzed biochemical reactions that

transform (and transport) metabolites (Figure 3A). Each reaction

operates at a rate vi defining the molecular turnover of that reaction

(Figure 3B). ODEs describe changes in metabolite concentrations

by these reactions and represent mass balances. Thereby, model

equations include terms for the reaction rates of metabolite

production and consumption, multiplied by their respective

stoichiometric coefficients (Mendes et al., 2009) (Figure 3C).

The resulting ODE system can be written as a matrix expression

(Figure 3D), wherein the stoichiometric matrix S decodes the

network topology. In this matrix, metabolites are represented as

rows, reactions as columns, and the stoichiometric coefficients

of a metabolite in each reaction as entries. Multiplying the

stoichiometric matrix by the vector of reaction rates v yields the

original system of ODEs (Novère, 2015; Gottstein et al., 2016).

The rate of enzymatic reactions, v, depends on factors like

temperature, pH, and metabolite and enzyme concentrations.

However, metabolic models typically simplify this dependency by

utilizing the Michaelis-Menten equation. This equation accounts

only for the influence of substrate and enzyme concentration on

reaction rate and models how enzyme saturation increases with

rising substrate concentration, shown for the example reaction R3

fwd (Equation 1, vmax - maximal reaction rate of forward reaction

R3, Km - Michaelis constant, [E] - concentration of substrate E, kcat
- enzyme turnover number, e - enzyme concentration) (Chen et al.,

2010).

v3,fwd =
vmax

KM + [E]
[E] =

kcat · e

KM + [E]
[E] (1)

Metabolite concentrations (Figures 3C, D) are continuous

variables describing the system’s state (i.e., state variables), whereas

vmax and KM denote system-specific kinetic parameters that can

be retrieved from databases such as BRENDA or Sabio-RK (Wittig

et al., 2017; Chang et al., 2020). Additionally, the experimenter

can define parameters related to the experimental setup, such as

the dilution rate in continuous bioreactor cultivation (see Garza

et al., 2023 for an example model). In many cases, parameter

values are not readily available in databases. In that case, dedicated

experiments such as enzyme assays can be performed to obtain

biological parameters such as vmax and KM values (Bisswanger,

2011). Alternatively, the model itself can be used to estimate

parameters directly from available experimental data.

The input for parameter estimation is experimental data [e.g.,

time-series or steady state data (Ashyraliyev et al., 2009; Villaverde

et al., 2018)] and a model with an initial set of (random) parameters

and initial values for state variables. The model is then used

to predict the experimental data, and the disagreement between

prediction and data is quantified (Ashyraliyev et al., 2009; Mendes

et al., 2009; Villaverde et al., 2018). Optimization methods are

then employed to adjust parameter values (and initial values) to

minimize these discrepancies. For large and non-linear model

equations, multiple sets of parameters may exist that achieve

minimal disagreement (i.e., parameter sets fulfilling local optima

exist) (Ashyraliyev et al., 2009; Villaverde et al., 2018). The linear

least squares algorithm employed in linear regression is an example

of parameter estimation. Parameter estimation, also known as

parameter fitting or model training, is similar to techniques used in

statistical modeling. The uncertainty of parameters can be assessed

by statistical methods, which are reviewed by Marino et al. (2008).

The analysis of ODE systems originates from systems theory.

Common methods relevant to microbiome analysis include time-

course simulation, steady state analysis, bifurcation, and sensitivity

analysis. Similar to Boolean models, time-course simulations

necessitate initial values for state variables (e.g., initial metabolite

concentrations) and a time horizon. Instead of Boolean rules, the

evolution of state variables is calculated by numerical integration

of the ODE system over the time horizon (Mendes et al., 2009).

In short, numerical integration is an iterative process that divides

the time horizon into small time steps. Integration algorithms such

as the Runge-Kutta method start at the beginning of the time

horizon and utilize state variables in the current step to estimate

their values in the next step using the differential equation system

(Butcher, 2000). Alternatively, probabilistic algorithms like the

Gillespie algorithm can address stochastic events for simulating few

molecules (Mendes et al., 2009).

Steady state analysis involves determining stable or unstable

steady states (Mendes et al., 2009; Layek, 2015). A dynamic system

is in a steady state when its state variables remain constant over

time, i.e., the differentials in the ODE system become zero, yielding

Equation (2) for the metabolic network.

dc

dt
= 0 = S · v (2)
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FIGURE 3

Example for representing a metabolic network mathematically. (A) Representation of a metabolic network as a hypergraph (i.e., edges can connect

more than two nodes). The stoichiometric coe�cients are denoted in front of the metabolite name. Reversible reactions are indicated by a

double-headed arrow (R3). (B) The network is represented through reaction equations, with the reversible reaction R3 separated into forward and

reverse reactions. (C) An Ordinary Di�erential Equation (ODE) system is formulated describing mass balances for each metabolite. Square brackets

denote metabolite concentrations. (D) The ODE system is then represented as a stoichiometric matrix S, where rows correspond to metabolites and

columns to reactions. Matrix entries reflect the stoichiometries of metabolites involved in respective reactions.

Multiple steady states can exist, meaning there could be several

values for v satisfying the Equation (2). Software tools like Copasi

(Mendes et al., 2009) numerically determine these values. Equation

(2) is also the core of flux balance analysis, a method from

constraint-based modeling, which will be explained in Section 9.

Bifurcation analysis examines how steady states (and

trajectories) change with variations in system parameters and

identifies the parameter values where these changes occur (Layek,

2015). This analysis is interesting for optimizing biological

processes such as biogas production or describing signaling and

regulatory network "switching" between states (Aldridge et al.,

2006b; Bornhöft et al., 2013).

Sensitivity analysis assesses the system’s susceptibility to

parameter values and initial conditions (Aldridge et al., 2006a;

Mendes et al., 2009). It can be performed by varying individual

parameter values and quantifying the relative change of a model

output or objective function (Aldridge et al., 2006a; Zi, 2011).

Sensitivity analysis helps determine required parameter accuracies,

identifies relevant parameters for achieving objectives (e.g., product

maximization), and evaluates the biological system’s robustness

(Mendes et al., 2009). Parameter scanning is a similar procedure

in which the model output is determined over a range of parameter

values (Mendes et al., 2009).

Next, dynamic model examples relevant to microbiomes are

presented, including dynamic population models and process

models. Dynamic analyses based on constraint-based models such

as dynamic flux balance analysis are discussed in Section 9.2.2. For

further reading on dynamical systems theory, readers can explore

books by Layek (2015) and Hirsch et al. (2012). Software for

dynamic modeling is listed in Table 5.

8.1 Population models based on
di�erential equations

ODE-based population models of microbiomes focus on the

dynamics of species abundances. In the review by Liu (2023),

TABLE 5 List of software for dynamic modeling.

Software
(implementation)

Application References

Matlab Programming

language with

integrated

numerical methods

The MathWorks

Inc., 2024

Tellurium (Python) Dynamical

modeling of

biological systems

Choi et al., 2018

Copasi (desktop

application)

Dynamical

modeling of

biological systems

Mendes et al., 2009

PySCeS (Python) Dynamical

modeling of

biological systems

Olivier et al., 2004

MDSINE (Matlab) Inference of gLV

interaction

parameters from

time-series data

Bucci et al., 2016

BEEM-static (Python) Inference of gLV

interaction

parameters from

steady-state data

Li et al., 2021

miaSim (R) Dynamic modeling

of microbiomes

Gao et al., 2023

Web-gLV (web

application)

Inference of gLV

interaction

parameters from

time-series data and

simulation

Kuntal et al., 2019

dynamic population models were categorized into species-only

models andmediator-explicit models. Species-only models account

for direct interactions among species but do not consider the mode

of action (e.g., interactions via metabolites or signaling molecules).

Thus, species-onlymodels share a similar level of mechanistic detail
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with co-association networks and the previously discussed Boolean

population model.

The biggest drawback of species-only models is their limitation

to pairwise interactions with linear effect on species abundances,

the lack of information on interaction mechanisms, and no

incorporation of host organisms (Liu, 2023). Furthermore, they are

effective, meaning that they are specific to the dataset they were

built on Liu (2023). Mediator-explicit models, such as consumer-

resource models, not only incorporate species abundances but also

consider the concentration of mediator molecules (e.g., metabolites

and signalingmolecules) and their impact on growth. Thesemodels

provide a deeper mechanistic resolution but are challenging to

parameterize and therefore difficult to apply in practice (Liu, 2023).

The generalized Lotka-Volterra (gLV) model is species-only

and among the most popular model types for microbiomes

(Gonze et al., 2018). It accounts for changes in species abundance

by balancing growth and pairwise stimulative or inhibitory

interactions (Gonze et al., 2018; Liu, 2023) (Equation 3, adapted

from Liu, 2023, [Xi], [Xj] - species abundances, ri - intrinsic growth

rate, aij - pairwise interaction factor).

d[Xi]

dt
= [Xi](ri +

N∑

j=1

aij[Xj]) (3)

The parameters of gLV models have been determined in a

bottom-up manner from laboratory experiments for communities

of up to 12 species (Venturelli et al., 2018; Liu, 2023). Alternative

data-driven approaches are suited for larger microbiomes and

can infer parameters from time-series or steady state abundance

data from different formulation: microbiomes (i.e., 16s rRNA gene

counts) (Bucci et al., 2016; Xiao et al., 2017; Liu, 2023). Liu (2023)

extensively discusses the advantages and caveats of both data types

as well as algorithms for parameter inference.

Venturelli et al. (2018) applied gLVmodels to explore prevalent

interaction types in microbiomes and their influence on human

gut microbiome assembly. They conducted mono-, pairwise, and

multi-species cultivation experiments to determine gLV parameters

for a synthetic microbiome comprising 12 representative species.

Utilizing a least squares algorithm, they fitted their model to

training sets of time-series data. By training theirmodel on different

datasets, such as mono-culture only or mono-culture and pairwise

culture, they assessed the informational content of the datasets.

Parameters trained on pairwise data effectively explained data

from the full 12-species microbiome, suggesting that pairwise

interactions govern most microbiome interactions. Utilizing the

trained interaction factors aij, the authors reconstructed the

ecological network, revealing mostly negative and few positive

microbial interactions. The authors identified species with

similar interaction patterns, important hub species, and species

whose fitness depended on the microbiome. Additionally, they

investigated the dependence of microbiome composition on initial

species compositions (i.e., history-dependence). To this end,

they performed time-course simulations for interacting species,

varying initial biomass abundances and interaction strengths.

They discovered that history dependence for pairwise negative

interactions frequently arises due to slow system relaxation into a

steady state.

Other studies, such as that by Coyte et al. (2015), investigate the

effect of interactions on microbiome properties, such as stability.

Coyte et al. (2015) developed a framework based on the gLVmodel,

enabling them to sample interaction parameters for any number of

species and connectivity. They assessed the stability of an arbitrary

steady state of the model microbiome using a systems-theoretic

approach, utilizing Eigenvalues of the system’s Jacobian matrix

(see supplementary of Coyte et al. (2015) or Layek (2015), p. 194,

for a simpler example). The authors found that many cooperative

interactions destabilize microbiomes due to the coupling of species

growth, while competitive interactions could introduce stability

by dampening this effect. This was also in line with results from

Venturelli et al. (2018). It was also found, that increased species

diversity generally decreases stability but can be counteracted by

competitive interactions.

For further insights into ecological modeling, interested readers

are directed to reviews by Gonze et al. (2018), van den Berg et al.

(2022), and Liu (2023).

8.2 Dynamic process models

While population models focus on the molecular-scale

interactions within microbiomes, process models examine the

effects of microbiomes on the scale of production systems or

ecosystems (Muñoz Tamayo et al., 2010; Hauduc et al., 2013;

Sulman et al., 2014; Wieder et al., 2015; Santos et al., 2020).

These models are manually constructed and intended to be used

in process design, optimization, and control (Batstone et al.,

2002), resulting in reduced mechanistic resolution. Process models

have been utilized to simulate carbohydrate degradation in the

human colon (Muñoz Tamayo et al., 2010), nutrient removal from

wastewater by activated sludge (ASM model) (Hauduc et al., 2013;

Santos et al., 2020), and model nutrient cycling in the environment

(Wieder et al., 2015).

Process modeling and analysis are explained using the

anaerobic digestion model 1 (ADM1) as an example. ADM1 is a

macroscopic process model developed specifically for the anaerobic

production of biogas. It describes the step-wise degradation of

complex organic matter to biogas (CO2 and methane) by microbial

processes using differential and algebraic equations (Batstone

et al., 2002). The model incorporates biochemical reactions for

the degradation of organic matter and physicochemical processes

(e.g., ion association/dissociation and gas-liquid transfer). Seven

biochemical reactions modeling the degradation of key compounds

are linked to the accumulation and death of microbial biomass.

State variables of the model describe the concentration of resolved

and gaseous chemical compounds (e.g., monosaccharides and

methane gas) and biomass of functional microbial groups (e.g.,

sugar and amino acid degraders) (Copp et al., 2003).

ADM1 was originally intended for application in biogas plant

design and operation, process optimization, and control, as well as

serving as a foundation for further model development (Batstone

et al., 2002). For example, Ozgun (2019) trained ADM1 to data

from a biogas plant using municipal wastewater sludge, aiming for

future process optimization. Additionally, Waszkielis et al. (2022)

extended ADM1 to a biogas process utilizing maize silage and
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manure as substrates, identifying influential parameters for the

process and variables for process monitoring. Further applications

are discussed by Batstone et al. (2006).

Several simulation studies have been conducted using ADM1.

Bornhöft et al. (2013) performed simulation studies to investigate

process stability through bifurcation analysis. They identified

steady states corresponding to desired process operation and

explored the influence of varying parameters such as substrate

inlet concentrations and dilution rates. Parameter ranges were

determined where the system could maintain its steady state,

predicting regions suitable for safe plant operation. Additionally,

using ADM1, they could elucidate mechanisms destabilizing the

process beyond safe parameter regions.

Dynamic models are also employed to guide process control,

such as in model predictive control (Section 11). The original

ADM1 is deemed to be impractical for this purpose due to its

complexity, necessitating simpler and more robust models for

simulations with fewer parameters to calibrate (Weinrich and

Nelles, 2021; Weinrich et al., 2021). In a recent study, Weinrich

and Nelles (2021) developed a model simplification strategy, which

combines multiple degradation reactions from the original ADM1

into simplified reaction equations. This resulted in four models

of varying complexity, which were validated in a parallel study

using data from lab biogas reactors, showing similar accuracy to

the original ADM1 (Weinrich et al., 2021).

Another way to reduce computational demand is to learn

the behavior of mechanistic models with machine-learning-based

surrogate models (Gherman et al., 2023). A surrogate model is a

black box model which only considers inputs and outputs of a

biological system, while omittingmechanistic information.Wagner

and Schlüter (2020), for example, applied a deep neural network

to learn the ADM1. To this end, they trained the neural network

on simulation data of the original model and could predict steady

states and methane production time courses with accuracies above

96%. The resulting surrogate model was then used with model

predictive control to control methane production. Due to the

flexibility of machine learning, surrogate modeling could also be

applied to other mechanistic model types.

8.3 Benefits and limitations of dynamic
models

Differential equations offer high flexibility and can be applied

to model dynamical systems of varying scale, with the capacity to

resolve models spatially. They can constitute simple but powerful

models such as the gLV model but can be extended to arbitrary

complexity. State variables are continuous but can be simulated

stochastically by the Gillespie algorithm. Even if parameters are

unavailable, ODE models can be used to sample the parameter

space and investigate general system properties (Coyte et al.,

2015; Liu, 2023). Systems theory provides comprehensive analysis

methods characterizing system dynamics. Furthermore, dynamic

models are not limited to predictive studies but can be used for

process design, optimization, and control as exemplified by the

ADM1 model.

Differential equations are among the most complex model

types. Building and analyzing such models demands knowledge of

system theory and may not be as intuitive for beginners compared

to other frameworks. However, scientific communities established

standard models such as gLV models or ADM1. Differential

equations depend on the availability and accuracy of parameters.

While parameters can be fitted to experimental data, it can be

challenging to determine the required information content and

amount of data (Liu, 2023). Models with many parameters (over-

parametrization), as well as scarce and erroneous data, are further

challenges for parameter estimation (Gábor and Banga, 2015).

Moreover, optimization algorithms for parameter estimation may

not find the most optimal parameter set (Gábor and Banga, 2015).

Lastly, the analysis and simulation of differential equations depend

on numerical methods that can run into instabilities and are

computationally expensive (Butcher, 2000).

9 Constraint-based modeling of
microbiomes

Metabolic networks can be reconstructed from the annotated

genome of an organism (Section 9.1) resulting in genome-

scale metabolic reconstructions containing thousands of metabolic

reactions (Heinken et al., 2023). Theoretically, such networks

could be transferred into dynamic models as described (Figure 3).

However, the availability and accuracy of kinetic parameters

such as kcat or Km are limited. For instance, the BRENDA

database contains approximately 180,000 Km values (date of

access April 9, 2024, https://www.brenda-enzymes.org/statistics.

php) while NCBI lists over 700,000 sequenced prokaryotic genomes

(date of access April 9, 2024, https://www.ncbi.nlm.nih.gov/

genome/browse#!/prokaryotes/), each potentially containing a few

thousand enzymatic reactions per organism. Determining these

parameters involves laborious enzyme assays performed on isolated

enzymes, which can be challenging to obtain for species found

only within microbiomes (Wright et al., 1992; Bisswanger, 2011;

Thornbury et al., 2019). Moreover, enzyme parameters may deviate

from in vivo values (Wright et al., 1992) or are often not

reached in vivo (Bekiaris and Klamt, 2020). Furthermore, it can be

challenging to identify parameters unambiguously from available

data (Berthoumieux et al., 2012). Constraint-based modeling offers

a solution to these challenges by omitting kinetic parameters. The

subsequent sections explain the reconstruction process of genome-

scale metabolic reconstructions for microbiome members (Section

9.1) as well as constraint-based modeling of microbiomes (Section

9.2).

Genome-scale reconstructions and constraint-based models

are widely utilized in microbial ecology, (environmental)

biotechnology, and life sciences. They are used to investigate

ecological interactions in microbiomes (Machado et al., 2021;

van Leeuwen et al., 2023), optimize the production of chemicals,

design stable synthetic microbiomes (García-Jiménez et al., 2021),

investigate the degradation of pollutants (Xu et al., 2018), design

microbiomes for optimal immune system modulation (Stein et al.,

2018), and drug discovery (Curran et al., 2020). Constraint-based

modeling and its applications have been discussed in many

comprehensive reviews and only a few examples are covered
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TABLE 6 List of software for genome-scale metabolic reconstruction and

constraint-based modeling.

Software
(implementation)

Application References

COBRA (Matlab) Genome-scale

reconstruction and

constraint-based

modeling

Heirendt et al., 2019

RAVEN (Matlab) Genome-scale

reconstruction and

constraint-based

modeling

Wang et al., 2018

CarveME (Python) Genome-scale

reconstruction

Machado et al., 2018

gapseq (R) Genome-scale

reconstruction

Zimmermann et al.,

2021

CarveME (Python) Genome-scale

reconstruction

Machado et al., 2018

KBase (web application) Genome-scale

reconstruction and

constraint-based

modeling

Machado et al., 2018

COBRApy (Python) Constraint-based

modeling

Ebrahim et al., 2013

CellNetAnalyzer

(Matlab)

Constraint-based

modeling

von Kamp et al.,

2017

SteadyCom (Matlab) Microbiome FBA Chan et al., 2017

MICOM (Python) Microbiome FBA Diener et al., 2020

µBialSim (Matlab) Microbiome dFBA Popp and Centler,

2020

SMETANA (command

line)

Potential for cooperative

and competitive

interactions

Zelezniak et al.,

2015

GECKO (Matlab) Enzyme-constrained

modeling

Domenzain et al.,

2022

AutoPACMEN (Python,

Matlab)

Enzyme-constrained

modeling

Bekiaris and Klamt,

2020

tINIT/ftINIT (Matlab) Contextualization of

genome-scale

reconstructions

Gustafsson et al.,

2023,Agren et al.,

2014

MEMOTE (command

line)

Quality testing of

constraint-based models

Lieven et al., 2020

CobraMod (Python) Curation of

constraint-based models

Camborda et al.,

2022

here. Reviews by Biggs et al. (2015) and Heinken et al. (2021)

are recommended for overviews and history of constraint-based

microbiome modeling, Kumar et al. (2019) and Garza et al.

(2023) focus on modeling of the human gut, García-Jiménez et al.

(2021) provide a deep overview focused on biotechnological and

engineering methods, and Gottstein et al. (2016) provide a great

theoretical background. Scott et al. (2023) provide an overview and

benchmarking of software utilizing genome-scale reconstructions.

A list of software for creating genome-scale reconstructions, and

qualitative and quantitative analyses is provided in Table 6.

9.1 Reconstructing microbiome
metabolism

Genome-scale metabolic reconstructions provide detailed

resolution of metabolism at the level of individual metabolites

and enzymatic reactions. The reconstruction process uses an

annotated whole genome sequence of one organism as input and

typically follows the procedure proposed by Thiele and Palsson

(2010). The first step is usually automated and retrieves for

each gene reactions and associated metabolites from biochemical

or dedicated databases for modeling such as KEGG (Kanehisa

et al., 2022), ModelSEED (Seaver et al., 2020), or BiGG (King

et al., 2015). The resulting draft reconstruction contains lists

of metabolic genes, reactions, and metabolites and is manually

curated and converted into a constraint-based model (Section

9.2). Such models can be used to predict growth phenotypes,

substrate utilization, production of metabolites, and growth rates,

which can be validated with corresponding data from experiments

or databases such as BacDive (Reimer et al., 2021). If model

predictions are insufficient, the process is re-iterated starting with

manual curation. Several software packages provide automated

pipelines for genome-scale reconstruction (Mendoza et al., 2019;

Zimmermann et al., 2021).

The described procedure was developed for isolated and

characterized species with sequenced genomes but it can

also be applied to MAGs and other metagenomic assemblies

(Zimmermann et al., 2021; Zorrilla et al., 2021). The quality

of the input genome ultimately determines the quality of the

genome-scale reconstruction and it should be noted that MAGs

may contain errors or be incomplete (Segata et al., 2013; Frioux

et al., 2020). Thereby, reconstructed metabolic networks may

contain gaps where certain reactions are missing. Automated

gap-filling algorithms are a part of pipelines such as CarveMe

and gapseq (Machado et al., 2018; Zimmermann et al., 2021)

which generate simulatable reconstructions and have both been

applied to build reconstructions from metagenomic sequences

(Zimmermann et al., 2021; Zorrilla et al., 2021). Both pipelines

utilize a universal metabolic network and extract subnetworks

by “carving out” reactions not supported by genomic data.

The metaGEM pipeline by Zorrilla et al. (2021) provides a

complete workflow to build models from raw metagenomic reads.

MetaGEM uses CarveMe and can additionally estimate taxonomic

microbiome composition and growth rates. An advantage of

using metagenomic sequences is that they represent the current

genome of a microbiome member which can be subject to dynamic

exchange of genes, for example, by horizontal gene transfer

(Zorrilla et al., 2021).

The lack of available data challenges the reconstruction

process for microbiome members. During the process, species-

specific features such as cofactor usage are included (Thiele

and Palsson, 2010) and this information might not be available

for uncharacterized species. Another feature added during

reconstruction is the biomass reaction which represents biomass

synthesis from precursor molecules such as nucleic acids,

carbohydrates, lipids, and protein. The stoichiometry of each

macromolecule in the biomass reaction is derived experimentally

from the macromolecular composition of biomass (Beck et al.,
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2018; Lachance et al., 2019). Because such data are usually

unavailable for microbiome members, biomass reactions from

other organisms are adopted (Tobalina et al., 2015; Machado et al.,

2018; Zimmermann et al., 2021). However, biomass compositions

can differ significantly between organisms and can even depend

on growth conditions (Lachance et al., 2019; Sakarika et al.,

2023). At the same time, the accuracy of quantitative model

predictions depends on the biomass reaction (Gottstein et al.,

2016; Lachance et al., 2019). Single-cell and flow cytometry-

based techniques could be useful to isolate individual species

and determine their macromolecular composition subsequently

to create biomass reactions (Cermak et al., 2016; Hatzenpichler

et al., 2020). In conclusion, due to the lack of available

data, genome-scale reconstructions and resulting constraint-

based models of microbiome members are usually not as

accurate as models of well-characterized model species such as

Escherichia coli.

The validation of genome-scale reconstructions is usually

done using constraint-based modeling. Model validation can be

qualitative [e.g., the model correctly predicts known fermentation

products (Zimmermann et al., 2021)] or quantitative [e.g., the

model correctly predicts the growth rate on a substrate (Thiele

and Palsson, 2010)]. Obtaining suitable data for validation can

be challenging for uncharacterized species. Therefore, models of

individual species can be assembled into microbiome models

(Section 9.2.1) allowing for validation through comparisons

between predicted microbiome composition, growth rates, product

formation, and substrate utilization, and corresponding data from

metaomics. Metabolomics data, for example, can quantify enzyme

activities, substrate utilization, fermentation products, and nutrient

requirements and can be retrieved in situ (Geier et al., 2020).

Metaproteomics data could also be utilized for model validation

by comparing the occurrence of a metaprotein with the predicted

activity of related model reactions or by comparing pathway

mappings (Walke et al., 2021) with predicted pathway activities (Li

and Figeys, 2020; Rosario et al., 2020).

Instead of using metagenomic sequences for genome

reconstruction, it is also possible to map identified species

to related available reference reconstructions (Aden et al.,

2019; Zorrilla et al., 2021). This can be beneficial to obtain

reconstructions of higher quality but might not be representative

of the investigated microbiome (Zorrilla et al., 2021). Reference

reconstructions are for example available through large-scale

reconstruction efforts such as AGORA for species from the human

gut microbiome (Magnúsdóttir et al., 2016; Heinken et al., 2023),

or from studies like Bernstein et al. (2019), focusing on the human

oral microbiome.

The Reconstruction pipelines utilize one (meta)genome to

generate a single species genome-scale reconstruction. Microbiome

models are typically assembled by treating single-species models

as individual compartments connected by a shared medium

compartment (Gottstein et al., 2016; Chan et al., 2017; Koch

et al., 2019; Diener et al., 2020). The alternative “enzyme-

soup” approach merges all reactions and metabolites of different

species into one metabolic network. “Enzyme-soup” models have

been created from metagenomic and metaproteomic data and

used to investigate topological shifts in metabolic networks,

active metabolic pathways, and species contributions to metabolic

functions (Greenblum et al., 2011; Tobalina et al., 2015). However,

these models can only investigate interactions between the

microbiome and the environment. Hereafter, analysis methods

applied to compartmentalized models are explained.

9.2 Constraint-based microbiome
modeling

Kinetic parameters for dynamic models of metabolism are

difficult to acquire, therefore a steady state is assumed for

metabolism, simplifying the system of differential equations into a

system of linear algebraic equations (Equation 2) (Gottstein et al.,

2016). The steady state assumption applies duringmicrobial growth

in continuous cultivation and the exponential phase of batch

cultivation (Gottstein et al., 2016). In the steady state, metabolite

concentrations are constant over time and thereby only metabolic

fluxes can be calculated from the equation system (Equation 2). The

unit for reaction rates of biochemical reactions is mmol/(gDWh)

(millimole per gram dry weight per hour) and 1/h for the rate

of the biomass reaction, i.e., the specific growth rate. A solution

of the system is termed flux distribution. For larger networks, the

system is under-determined, meaning multiple possible solutions

solve Equation (2) creating a solution space (Gottstein et al., 2016).

Flux balance analysis (FBA) is a method, which determines a

flux distribution fulfilling an objective and additional constraints.

To this end, upper and lower limits for reaction rates are set

as constraints (e.g., restriction of oxygen uptake in anaerobic

systems) and an objective function is defined. The objective

function usually represents a biological objective, for example,

biomass growth which is the reaction rate of the biomass function.

This is equivalent to maximizing growth yield on the limiting

nutrient (Gottstein et al., 2016). The resulting optimization

problem can be solved by linear optimization, which determines

a global optimum for the objective function (Gottstein et al.,

2016). Flux variability analysis (FVA) can be used to explore

the limits of the solution space, by performing FBA for each

reaction to find its minimal and maximal values (Gudmundsson

and Thiele, 2010). The optimization method used in FBA has been

extended to determine static and dynamic flux distributions for

microbiomes explained in Section 9.2.2. For a complete deviation

of the optimization problem from the system of differential

equations and further discussion of the limitations of FBA,

interested readers are referred to the article by Gottstein et al.

(2016).

9.2.1 Simulating steady state metabolic fluxes in
microbiomes

Common methods for microbiome FBA utilize

compartmentalized microbiome models where each species

is treated as an individual compartment and placed in an

exchange compartment corresponding to the microbiome

medium. Metabolites can be consumed and produced by
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microbiome members implemented by transport reactions for

metabolite transport between medium and species compartments.

Additionally, the contribution of biomasses from microbiome

members to a total microbiome biomass reaction is implemented to

account for microbiome growth. An additional assumption can be

introduced stating that in microbiomes with stable compositions,

no species can outgrow others, i.e., that growth is balanced. For

microbiome FBA, the optimization problem becomes non-linear

but can be linearized by fixing either microbiome composition or

community growth rate (Khandelwal et al., 2013) (See Khandelwal

et al., 2013, Chan et al., 2017, or Koch et al., 2019 for a derivation

of the optimization problem).

The optimization problem in microbiome FBA has been

addressed by several methods, aiming to identify metabolic

fluxes, a microbiome composition, and a microbiome growth

rate. The method by Khandelwal et al. (2013), for example,

iteratively calculates the maximal microbiome growth rate for

different microbiome compositions, until a global maximum

for microbiome growth rate is identified. Chan et al. (2017)

developed the SteadyCommethod, which iteratively maximizes the

production of biomass for fixed microbiome growth rates until

a maximal microbiome growth rate is determined. The method

by Koch et al. (2016) fixes microbiome growth and minimizes

a weighted sum of substrate uptakes, which is equivalent to

maximizing growth yield.

The advantage of microbiome FBA is that it can be integrated

with data. For example, relative abundance data can be directly

inserted as microbiome composition, or for microbiomes grown

in chemostats, the dilution rate can be set as microbiome growth

rate (Gottstein et al., 2016; Koch et al., 2019). Essential metabolic

uptakes at maximal microbiome growth can be determined from

FVA, indicated by minimal and maximal fluxes having the same

sign (Gottstein et al., 2016). Notably, microbiome FBA is subject to

the metabolic steady state and balanced growth assumptions, which

may only apply in environments with constant conditions such as

chemostats (Gottstein et al., 2016). However, with the argument

that species abundances in the gut microbiome are on average

stable over time, FBA has been applied to gut microbiomes (Chan

et al., 2017). Additionally, the assumption of growth maximization

may only apply to microbiomes in lab cultures that have evolved

toward this objective. Thereby maximal growth rates from FBA

should be interpreted as the organism’s or microbiome’s potential

for growth (Gottstein et al., 2016). Furthermore, no regulatory

effects are included, no absolute metabolite concentrations can

be determined, and model predictions depend on reaction rate

constraints (Gottstein et al., 2016).

An exemplary study by De Bernardini et al. (2022) investigated

interactions of microbiomes involved in biogas upgrading. The

exhaust digestate of biogas fermenters can be fed to bioreactors

containing biofilms that fix hydrogen and CO2 into methane,

thus upgrading biogas quality. The authors generated MAGs

from biofilms in such bioreactors and created genome-scale

reconstruction using gapseq. From the five most dominant MAGs,

they created microbiome models and performed microbiome FBA.

This gave insight into cross-feedingmechanisms of themicrobiome

whereby the authors found that most CO2 is converted to methane

via intermediate electron donors such as acetate and found a

potential syntrophy based on amino acid exchange.

9.2.2 Simulating dynamic metabolic fluxes in
microbiomes

An apparent downside of microbiome FBA is its limitation to

steady state predictions. Dynamic FBA (dFBA) inserts FBA into

the numerical integration of differential equations for biomass

and substrate concentrations, enabling time-course simulations

of single and multiple species (Gottstein et al., 2016). This is

implemented by calculating the maximal substrate uptake rate in

the current time step of one or multiple constraint-based models by

Michaelis-Menten kinetics (Equation 1). FBA calculates the growth

rates for each model for each numerical integration step, which

is then used to determine biomass and substrate concentrations

for each following time step (Popp and Centler, 2020). The main

assumption of dFBA is that metabolic processes are faster than

changes in external concentrations, resulting in cells being in a

quasi-steady state before concentration changes occur (Gottstein

et al., 2016). Regulatory processes, occurring at slower time scales

than metabolic reactions are not considered. Another advantage

of dFBA over microbiome FBA is that no community objective is

required and simulation of large microbiomes is possible. However,

kinetic parameters for substrate uptake need to be provided

(Gottstein et al., 2016; Popp and Centler, 2020).

dFBA has been used to simulate growth dynamics and

engineering of synthetic communities (Gottstein et al., 2016; Popp

and Centler, 2020; García-Jiménez et al., 2021). Lecomte et al.

(2024) recently used dFBA to simulate a three-species community

for cheese production. They extended the standard version of dFBA

by regulation mechanisms for population growth, pH, and selected

metabolite exports. The model was calibrated with data from

single-species cultures and could be used successfully to predict

the dynamics over the seven weeks of the cheese manufacturing

process. However, the authors pointed out the necessity of model

curation to obtain accurate predictions.

9.2.3 Investigating microbial ecology using
genome-scale reconstructions

The availability of reconstruction pipelines and reference

reconstructions such as AGORA, facilitate large-scale studies

characterizing ecological interactions in microbiomes based

on metabolism. Typically, such studies investigate functional

redundancy or the prevalent ecological interaction types.

Aden et al. (2019) investigated the microbiome of IBD

and rheumatic disease patients during treatment with anti-

inflammatory anti-TNF. They acquired taxonomic microbiome

profiles from 16s rRNA gene abundance data of fecal samples

and collected AGORA reconstructions for detected taxa. For

each disease and disease state, they characterized potential

types of ecological interactions. This was done by simulating

whether growth in pairwise constellations would be higher or

lower compared to single-species growth. The authors found no

difference in mutualistic interactions compared to controls but

noted a reduction of antagonistic interactions at the beginning

of therapy in IBD patients. This reduction was restored toward

the end of therapy. Furthermore, the authors found increased

resource competition in IBD patients which they linked to reduced

stability of IBD microbiomes. Furthermore, they simulated the
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complete microbiome for each sample and found that IBD

microbiomes with fewer predicted metabolic interactions might

reduce therapeutic success.

Machado et al. (2021) systematically investigated the ratio

of cross-feeding and resource competition in thousands of

microbiomes across different habitats. They utilized “species

metabolic interaction analysis” (SMETANA) (Zelezniak et al.,

2015), a method that determines potentials for metabolic

interactions and the ratio of overlapping resources as measures for

cross-feeding and competition, respectively. The authors found a

polarization of cooperative and competitive microbiomes, where

cooperative microbiomes showed many auxotrophies, had smaller

genomes, and were more often free-living or host-associated.

Competitive microbiomes on the other hand had larger genomes

with overlapping gene functions, contained many genes related

to antimicrobial activity, and were mostly located in soils.

Simulations of perturbations showed for cooperative microbiomes

a higher susceptibility to species invasion but resilience to nutrient

shifts, while the opposite trend was observed for competitive

microbiomes. Thereby this study could demonstrate a trade-off

between competition and cooperation.

Similarly, Marcelino et al. (2023) performed a meta-study

evaluating metabolic interactions in diseased human gut

microbiomes. They aimed to identify disease-specific disruptions

of metabolite exchanges. The authors reconstructed microbiome

models from fecal metagenomes and simulated microbiome

growth. Based on microbiome FBA, they determined the capability

to exchange metabolites across species for healthy and disease

samples. They found important metabolites, such as thiamin and

short-chain fatty acid precursors, to be significantly altered between

healthy and diseased samples. Furthermore, they predicted

metabolites previously shown to be disease-related, including

known biomarkers for disease progression. In a case study for

Crohn’s disease, the authors investigated the causes of altered

metabolic exchanges of H2S, which can cause gut inflammation.

Resultingly, a disbalance in H2S-producing and consuming species

was identified as the origin of altered H2S exchanges.

9.3 Contextualized and
enzyme-constrained models

Genome-scale reconstructions contain all possible biochemical

processes encoded by the genome. However, most processes are

subject to gene or post-translational regulation and only active

in specific conditions (Feist et al., 2008; Orth et al., 2010).

Contextualization adjusts a model to experimental data so that it

reflects a specific biological scenario such as a growth condition

or a tissue type. Contextualizing a model for growth on a

specific substrate, for example, could be done by introducing

measured reaction rates and a biomass reaction for this scenario

or removing inactive metabolic reactions from the model. Thereby,

contextualized models are useful because they are less general and

may exclude implausible predictions.

The input for contextualization methods is a constraint-based

model, (meta)omics data, information from biochemical databases,

and mechanistic knowledge. (Meta)omics data are mapped to

model elements and used to knock out (switch-based) not-

supported metabolic reactions or constrain them (valve-based)

(Hyduke et al., 2013). Contextualization is (semi-)automated and

requires annotation of model elements with standard database

identifiers to facilitate data mapping.

An example of switch-based contextualization is tINIT (Agren

et al., 2014), which scores enzymes and metabolites according

to transcriptomic, proteomic, and metabolomics abundance data.

Afterwards, it extracts a sub-network that includes reactions

supported by the data and excludes reactions with low evidence.

Additionally, metabolic functions that should be included in the

output model can be specified. The output model contains fewer

reactions than the original model.

Enzyme-constrained modeling methods such as GECKO

(Domenzain et al., 2022) and sMOMENT (Bekiaris and

Klamt, 2020) impose protein allocation constraints on the

input model by adding reactions describing the availability

of enzymes. Total protein content, absolute proteomic

abundances of enzymes, and kcat values are used to constrain

the limits for enzyme usage. In addition to metabolic fluxes,

enzyme-constrained models can also predict enzyme usage.

Generated output models contain more reactions than

the input.

The exemplified methods generate output models in

standard formats, that can perform standard analyses, which

does not apply to all methods (e.g., Yizhak et al., 2010; Tian

and Reed, 2018). More information on contextualization

and enzyme-constrained modeling is available in reviews

by Opdam et al. (2017), Kerkhoven (2022). The introduced

methods are tailored to single-species models and have, to

our knowledge, not been applied in microbiome modeling.

However, they could be applied to constraint-based models

of individual species before assembling them into the

microbiome model.

Metatranscriptomic and –proteomic data could be applied to

exclude non-expressed metabolic reactions from microbiome

member reconstructions. Relatively quantified molecular

abundances could be applicable in tINIT-like methods and

usable to compare microbiomes across conditions. Creating

enzyme-constrained models from metaproteomic data poses

some difficulties because the absolute quantification of

metaproteins is not reliable. Furthermore, a strategy to handle

metaproteins/protein groups that cannot be classified on the

species level would be required. Optionally, uniquely identifiable

proteins could be used to impose at least some protein constraints.

Another problem is the availability of kcat values. Innovations in

machine-learning based kcat prediction from protein sequences

could alleviate this issue (Li et al., 2022). Lastly, model size

needs to be considered because microbiomes may contain

several hundreds of species. Microbiome models can thus

become very large, which can cause long calculation times for

analyses (Hädicke and Klamt, 2017; Koch et al., 2019). Enzyme

constraints bloat the number of model elements (Bekiaris and

Klamt, 2020) and could be less preferential in contrast to tINIT-

like methods, which reduce model sizes (Agren et al., 2012,

2014).

Frontiers inMicrobiology 18 frontiersin.org

https://doi.org/10.3389/fmicb.2024.1368377
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Lange et al. 10.3389/fmicb.2024.1368377

9.4 Model reduction

A step beyond contextualization is the reduction of

genome-scale models to a minimal size while preserving key

qualities of the input model (Hädicke and Klamt, 2017). Potential

applications of reduced models are, for example, education, tool

benchmarking (Orth et al., 2010), kinetic modeling (Hädicke

and Klamt, 2017), hybrid modeling (Section 10), construction of

microbiome models containing many species (Koch et al., 2019)

and model predictive control (Section 11.2).

Erdrich et al. (2015) developed an algorithm that uses a

template model, mandatory reactions, metabolites, and phenotypes

as input. It removes unprotected model elements in the

first step and subsequently compresses the pruned model

by lumping together reactions while preserving phenotypes

of the template. Another approach by Koch et al. (2019)

reduces compartmentalized community models. The authors first

determined conversions of microbial substrates to products (net

conversions) for single species models and reduced these models to

exclusively represent these conversions. The reduced models were

then assembled into a microbiome model and can be utilized to

analyze species interactions and microbiome composition.

9.5 Benefits and limitations of
constraint-based microbiome models

Genome-scale metabolic reconstructions are highly valuable

because they serve as knowledgebases that can be refined, extended,

and integrated with (meta)omics data, with only an annotated

genome required as minimal input (Robinson et al., 2020). Even

if the resulting constraint-based models are not refined, they

can still be utilized for qualitative predictions. However, with

refinement, these models have the potential to provide accurate

quantitative predictions. Furthermore, modelers can benefit from

available high-quality reconstructions or large-scale collections

such as AGORA. Constraint-based models can predict metabolic

fluxes in microbiomes without requiring kinetic parameters. Many

resources and methods for model analysis are available resulting in

a large variety of model applications.

Generating high-quality reconstructions demands significant

effort and data, often taking months to years until useful models

for quantitative predictions become available (Orth et al., 2010).

Compiling a microbiome model can be difficult due to the use

of different namespaces for model elements and integration of

omics data is impeded by lacking model annotations (Section 12).

Furthermore, microbiome FBA is subject to several assumptions

such as the metabolic steady state, balanced growth, and an

objective, whichmay not apply to every biological system. Dynamic

FBA is independent of a microbiome objective but requires kinetic

parameters. Furthermore, the accuracy of FBA predictions depends

on reaction rate constraints, which can be set according to

maximal uptake rates or ATP maintenance parameters determined

experimentally. When such data are unavailable for microbiome

members, predictions of microbiome models may be less accurate.

Moreover, no regulatory effects are incorporated in standard

constraint-based models.

TABLE 7 List of software for agent-based and multi-scale modeling.

Software
(implementation)

Application References

BacArena (R) Agent-based

modeling utilizing

constraint-based

metabolic modeling

Bauer et al., 2017

COMETS (desktop

application/ Python/

MATLAB/ command

line)

Agent-based

modeling utilizing

constraint-based

metabolic modeling

Dukovski et al.,

2021

IndiMESH (MATLAB) Agent-based

modeling

specialized to soil

ecosystems

Borer et al., 2019

Morpheus (desktop

application)

Modeling and

simulation of

multi-cellular and

multi-scale systems

Starruß et al., 2014

10 Combined model frameworks and
agent-based modeling

Every modeling framework introduced so far assumes

homogeneous populations of organisms or well-mixed systems and

is dedicated to modeling one particular biological system. Thereby,

to model the interaction of different systems or different scales, a

connection of model formalisms is required, also known as hybrid

models (Bardini et al., 2017). Essentially, the previously mentioned

dFBA is a type of hybrid model as it connects differential equations

with constraint-based modeling.

Agent-based modeling (ABM) is a distinct modeling

framework that can account for population and spatial

heterogeneity. However, it is also included in this section

because agent-based models often combine frameworks such

as dynamic models for biomass and molecule transport with

constraint-based metabolic models. Hereafter some examples for

combined modeling frameworks and ABM are shown but further

explanations and examples can be found in reviews by Qu et al.

(2011), Kreft et al. (2017), Kumar et al. (2019), García-Jiménez

et al. (2021), and Liu (2023). A list of software for multi-scale and

agent-based modeling is provided in Table 7.

10.1 Combining model frameworks
connects di�erent cellular systems and
spatial scales

Models such as ecological models can represent interactions,

but they lack the capability to dissect the mechanisms underlying

these interactions. In contrast, constraint-based metabolic models

can describe metabolic interactions but typically do not account

for signaling and regulation. Therefore, there is a need for models

that integrate these mechanisms to fully understand microbiomes,

as well as interactions with their hosts.

Genome-scale metabolic reconstructions can implement

transcriptional regulation through gene-protein-reaction
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rules, which are Boolean expressions encoding the genes

required for a metabolic reaction to occur. This feature

facilitates knock-out studies or the integration of proteomics

data with models (Orth et al., 2010; Bekiaris and Klamt,

2020; Filippo et al., 2021; Domenzain et al., 2022). Whole-

cell models aim to capture every cellular process but

have only been realized for Mycoplasma genitalium and

E. coli (Sun et al., 2021). The E. coli whole-cell model,

for example, integrates differential equations, constraint-

based modeling, and stochastic simulations (Sun et al.,

2021).

Another motivation to combine modeling frameworks is

the integration of experimental data from different scales (Qu

et al., 2011; Lui et al., 2021) and dissecting the influence of

molecular mechanisms on dynamics at higher spatial scales.

Thiele et al. (2017), for example, discussed the connection of

metabolic models with physiologically based pharmacokinetic

(PBPK) models. PBPK models are ordinary differential equation

models employed to evaluate the dynamics of drug concentration

in the human body. These models can be connected with

constraint-based models of individual organ and microbiome

metabolism. This integration enables the investigation of the

involved molecular mechanisms and allows for the incorporation

of data on diet and patient-specific information, thereby

facilitating personalized drug development (Thiele et al.,

2017).

Multi-scale modeling has also been applied to the biogas

process. Weinrich et al. (2019) extended the ADM1 model

with genome-scale metabolic models of methanogenic (i.e.,

biogas-producing) microorganisms. The resulting model

reproduced simulations of the standard AMD1 model and

predicted cellular metabolic fluxes. Weinrich et al. (2019)

proposed that such models will facilitate the integration and

interpretation of time-resolved metaomics data from biogas

plants, estimate process yields, determine interventions

for process optimization, and identify signals indicating

reactor breakdowns.

The development of multi-scale models is context-specific

and thereby modelers usually need to assemble such models by

themselves. Lui et al. (2021) developed a conceptual framework

for the development of microbiome models spanning scales

from genes to ecosystems. Their framework accounts for

biotic and abiotic processes such as the transport of strains,

growth, direct microbial interactions, mutations, and dynamics

of available chemical compounds. It is designed to uncover

knowledge gaps, can be streamlined to focus on specific terms of

interest, aids in experiment design, and is intended to undergo

iterative cycles of parameterization through experimentation across

different scales.

10.2 Agent-based modeling

Agent-based models, also known as individual-based models,

explicitly represent individuals and their behavior in space and

time, allowing for the consideration of individuality and resulting

heterogeneity within microbial populations (Kreft et al., 2017).

The general principle of implementation involves assigning each

individual a model representing metabolism (or other processes),

along with defined rules for microbial behavior such as cellular

motion, division, or death rates (Dukovski et al., 2021). Typically,

space is discretely implemented as a two-dimensional grid, with

each individual placed in a designated grid cell (Bauer et al., 2017;

Dukovski et al., 2021). Additionally, ambient concentrations of

compounds are included, including their transport or fluctuation

(Bauer et al., 2017; Dukovski et al., 2021).

Agent-based modeling software such as COMETS (Dukovski

et al., 2021), is capable of simulating evolutionary processes,

growth at soil air interfaces, or the morphology of bacterial

colonies. Borer et al. (2022) recently used agent-based modeling

to simulate microbial growth in pore networks of soil around

carbon source hot spots. They found that growth near the hot spot

reduces available oxygen, thereby generating niches occupied by

different species.

10.3 Benefits and limitations of combined
model formalisms

Hybrid and multi-scale models can connect mechanisms

and data from different biological systems and spatial scales.

Moreover, they are not confined to any specific model framework.

Agent-based models stand out for their ability to account

for cellular heterogeneity, a feature not inferred from other

model types.

A higher mechanistic model resolution results in more

kinetic parameters that need to be estimated. Parameter

estimation can become more complex because individual

model types may need to be calibrated individually or in

combination. This makes hybrid and agent-based models

computationally more expensive. To reduce the computational

burden, agent-based models often utilize coarse-grained models

for processes in individual cells (Kreft et al., 2017; Borer et al.,

2019).

11 How modeling guides microbiome
control

Control refers to the regulation of a dynamic system to achieve

a desired dynamic behavior. Interventions to control a system are

termed control strategies and can be applied to steer the behavior of

microbiomes and leverage microbiome models. This section briefly

introduces the concept of closed-loop control, discusses elements

of closed-loop control concerning microbiomes, and emphasizes

model-based control strategies for microbiomes with examples

from biotechnology and the human gut. Further information on

this topic can be found in the reviews by Lee and Steel (2022) and

Liu (2023).
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11.1 The concept of closed-loop control

Control strategies can follow a feedback structure (Figure 4)

allowing it to affect a dynamic system, such as a microbiome.

The system has a measurable output that should be controlled, for

example, the concentration of a metabolite. The output response is

affected by the system input, for example, the concentration of a

specific nutrient. As the system is dynamic, the output may change

over time. To validate that the output has a desired value, it is

compared regularly to a reference value. The difference between

the measured output and the reference is the error. The error is fed

back into a controller, which computes a system input according to

a control algorithm. The controller tries to maintain a low error. If

the error increases, the controller steers the system input to reduce

the mismatch between output and reference. Because the controller

closes the loop to the system, this feedback structure is named

closed-loop control.

11.1.1 System inputs and system outputs of
microbiomes

Nutrient concentration was a previous example of an input

for a microbiome, but any environmental factor can be altered

to influence microbiome output. This includes pH, level of

oxygen, temperature, or salinity. Additionally, population sizes

of individual species can be targeted by the input (Liu, 2023).

Population size can be increased by the expression of growth-

inducing genes (Gutiérrez Mena et al., 2022) or by directly adding

a species to the microbiome (Aditya et al., 2021; Liu, 2023). On the

other hand, the population size can be decreased by introducing

bacteriostatics, antibiotics, or targeted bacteriophages (Lu and

Collins, 2007; Liu, 2023).

The control output is the response of the system to the input.

Several methods exist to measure the output depending on factors

such as the complexity of the community, the control goal, the

measurement frequency, the economic cost, or the duration of

measurements. Process parameters such as the pH value or oxygen

concentration are easy, cheap, and quick to measure but do not

give any insight into the microbiome. Other methods that are

applicable on-line (i.e., “during cultivation”) are flow cytometry

or metabolomics. Flow cytometry can distinguish different strains

using universal dyes, thereby giving an insight into microbiome

composition (Buysschaert et al., 2017). Gas chromatography-based

metabolomics can be applied to measure gaseous metabolites

during cultivation (Khesali Aghtaei et al., 2022). Metaproteomics in

contrast is less suited for on-linemeasurements due to the extensive

sample preparation but can resolve expressed enzymes.

11.2 Control algorithms and
model-predictive control

The control algorithm determines how the controller steers

the system inputs. The selection of the control algorithm

depends on the system and the control goals. One of the

most straightforward approaches is PID (proportional, integral,

and derivative) control. A PID controller consists of three

adjustable parameters for corrections based on the proportional,

the integral, and the derivative term of the error value. Due to

its simple structure, PID control is easy to implement without

much knowledge of the system. However, the performance of

the controller depends on the chosen parameters. Controller

parameters can be tuned using a mathematical model of

the system. This results in a more accurate parameter set

without the need for extensive experiments. Bensmann et al.

(2014), for example, performed a comprehensive simulation

study of biogas plants. They used an extended version of the

ADM1 model to propose and test a PI (i.e., PID without the

derivative term) feed-back control for the biological methanation

of hydrogen.

Model predictive control (MPC) is an advanced control

strategy for complex control goals or cases where multiple inputs

need to be controlled. MPC is an optimal control strategy and,

therefore, aims to optimize a given objective function, such as the

taxonomic microbiome composition (Liu, 2023). For optimization,

MPC uses a model of the system to predict the future system

behavior over a finite time horizon. Xue et al. (2015), for

example, used nonlinear MPC to control the anaerobic digestion

process in biogas plants, employing a reduced version of the

AMD1 model. Because many state variables of the anaerobic

digestion process are immeasurable, these values need to be

estimated. To this end, the authors applied an estimation algorithm

termed Unscented Kalman Filtering, which determines parameters

based on available measurements (Simon, 2001; Xue et al.,

2015).

MPC has also been applied in cybergenetic control.

Cybergenetics regulates gene activity in genetically engineered

microorganisms by external stimuli, such as light, to control

metabolic functions or growth. Espinel-Ríos et al. (2023a)

performed cybergenetic simulation studies in which they

optimized nianigrin production in a co-culture of engineered

E. coli and yeast. The same authors implemented cybergenetic

MPC for a lactate-producing E. coli culture in a bioreactor

(Espinel-Ríos et al., 2023b). Here, a dynamic constraint-based

model with protein resource allocation was used to control the

expression of ATPase by light. This approach could also be

extended to synthetic microbiomes, as stated by the authors.

Wagner and Schlüter (2020) applied a machine-learning based

surrogate model as MPC to control methane production

in the biogas process. The model was trained on simulated

data from the ADM1 model and could accomplish similar

precision as the ADM1 model. The authors applied this

procedure to circumvent numerical issues in simulating the

ADM1 model.

Recently, Angulo et al. (2019) developed an approach to

identify species that could be targeted by control inputs to

regulate native microbiomes, such as those in the human gut.

Such approaches could enable targeted interventions to guide

microbiomes toward a desired composition (Liu, 2023). The

approach employs graph theory to identify ”driver species” capable

of propagating control inputs throughout ecological networks

(Angulo et al., 2019; Liu, 2023). Angulo et al. (2019) applied this

concept in a simulation study to regulate the model output of

mouse gut and sea sponge microbiomes using linear MPC based
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FIGURE 4

Block diagram of a closed-loop control with feedback. The controller computes an action that a�ects the microbiome based on a control algorithm.

The action is applied to the microbiome, which reacts with a measurable output. The output is compared with the desired reference value. The

di�erence between both values is the error, which is fed back into the controller.

on the gLV model (Section 8.1). This approach could even be

implemented by applying pulsed inputs at discrete time points and

utilizing discontinuously measured data, promising therapeutic

potential (Liu, 2023).

12 Microbiome modeling requires
standards, software, and repositories

Standards facilitate the reuse of data, models, and simulation

results. This section describes the concept of FAIR (findable,

accessible, interoperable, and reusable) guidelines for research

data and expands to the standards of the modeling community.

Furthermore, repositories used in the modeling domain are

introduced. More information on standards in systems biology

is given in articles by Waltemath and Wolkenhauer (2016) and

Stanford et al. (2019).

12.1 FAIR data

Biological data are generated at a high pace and good data

management is required to facilitate the reuse and integration of

data. In 2016, the FAIR guidelines were published to improve

existing issues in research data management and stewardship

(Wilkinson et al., 2016). These principles apply to research data,

as well as algorithms, software, and workflows (Wilkinson et al.,

2016). Additionally, FAIR guidelines apply to metadata, which

is information associated with the “actual” data or software.

Metadata describes, for example, the subject of research, data

origin, or time of generation. Finding, retrieving, and integrating

big amounts of data, for example, to build genome-scale metabolic

models requires automation. Hence, another motivation for having

FAIR data and software is to provide minimal requirements

facilitating automation.

Four main principles are covered by FAIR (explanations are

taken from Boeckhout et al., 2018):

• Findability (“Datasets should be described, identified and

registered or indexed in a clear and unequivocal manner”).

• Accessibility (“Datasets should be accessible through a clearly

defined access procedure, ideally using automated means.

Metadata should always remain accessible”).

• Interoperability (“Data and metadata are conceptualized,

expressed and structured using common,

published standards”).

• Reusability (“Characteristics of data and their provenance are

described in detail according to domain-relevant community

standards, with clear and accessible conditions for use”).

FAIR is highly relevant for research, but factors such as

incomplete metadata and insufficient reporting of parameters

and initial conditions hamper the reusability of biological and

biomedical data (Hughes et al., 2023) or computational models

(Tiwari et al., 2021).

FAIRDOM (https://fair-dom.org/about) is a consortium

supporting scientific communities in implementing FAIR

guidelines. They provide FAIRDOMHub (Wolstencroft et al.,

2016), a web-based repository to publish scientific data, protocols,

and models, as well as FAIRsharing (https://fairsharing.org/), a web

tool for searching community guidelines and scientific databases.

12.2 Initiatives and community guidelines

While FAIRDOM is a more general consortium, the

COmputational Modeling in BIology Network (COMBINE)

is an initiative establishing standards on the level of the modeling

community (Hucka et al., 2015; Waltemath et al., 2020).

COMBINE coordinates standards for exchange formats and

modeling languages (e.g., systems biology markup language, see

below) and organizes regular community meetings (Hucka et al.,

2015). Another initiative cooperating with COMBINE is the

Consortium for Logical Models and Tools (CoLoMoTo) (Naldi

et al., 2015). CoLoMoTo has similar aims as COMBINE but

specializes in logical modeling (including Boolean modeling).

COMBINE supports guidelines for metadata on model

elements and simulation experiments. Model elements usually

represent biological entities or relations between them (e.g., in

chemical formulas) and their meaning can be described with

metadata. Metadata links model entities to unique identifiers for

biological entities. The association of model entities and metadata

is termed model annotation, which is important for omics data

integration (Novère et al., 2005; Tatka et al., 2023). MIRIAM

(Minimum information requested in the annotation of biochemical

models) provides guidelines for these annotations aiming to
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improve model reusability. It specifies model documentation,

correspondence between models and articles, utilization of

machine-readable exchange formats, and the quality of model

annotations (Novère et al., 2005).

MIASE (Minimum Information About a Simulation

Experiment) is complementary to MIRIAM and provides

guidelines facilitating the reproduction of simulation experiments

(Waltemath et al., 2011). MIASE-compliant reporting includes the

specification and definition of used models, precise descriptions

of simulation steps, and descriptions of the analysis of simulation

data (e.g., post-processing steps) (Waltemath et al., 2011).

12.3 Languages for modeling and
exchange formats

The interoperability principle in FAIR specifies the use of

formal languages to express knowledge (Wilkinson et al., 2016).

Systems biology has adopted this principle to describe model

structures and simulation experiments.

The systems biology markup language (SBML) is a widely

used standard in the metabolic modeling community (Carey

et al., 2020) and one of the languages maintained by COMBINE.

It builds on the extensible markup language (XML) and

describes model structures while being agnostic to any software

or analysis method (Hucka et al., 2019). A constraint-based

metabolic model, for example, is represented by semantic

elements describing biological entities (reactions, metabolites,

gene products, and compartments) and default parameters. These

semantic elements are organized hierarchically, and specific

information is assigned by element attributes. An important

aspect of SBML is the use of systems biology ontology

(SBO) terms to characterize model elements (e.g., mathematical

expressions, metadata, or physical entities) (Hucka et al.,

2019).

SBML is a modeling language and exchange file format at

the same time. Furthermore, it allows the implementation of

MIRIAM guidelines by providing means for model annotation,

fostering the reusability of models. For annotation, the resource

description framework (RDF) is utilized, supporting references to

multiple (biochemical) databases (Hucka et al., 2019). Additionally,

the current SBML version 3 is designed in a modular manner,

providing extensions to the core language for the representation

of constraint-based, ODE, and Boolean models, as well as

means to store network layout information (Keating et al.,

2020). A software package/application aiding the implementation

of MIRIAM guidelines in genome-scale metabolic models is

MEMOTE (Lieven et al., 2020). MEMOTE facilitates quality

control for annotations and model consistency and provides

a framework to set up version-controlled repositories for

model development.

SED-ML is another important XML-based format to describe

simulation experiments. SED-ML is maintained by COMBINE and

compliant with MIASE. More information can be found in articles

by Köhn and Novère (2008), Hucka et al. (2015).

12.4 Repositories

Repositories are platforms to store and share data or

models. They are accessible through websites or programmatically

via application programming interfaces (API). Repositories for

biochemical and experimental data are vital to annotate metaomics

data (Section 4.2) but also essential for network reconstruction,

validation, refinement, and contextualization of models. A list of

biochemical databases for model annotation can be found in the

supplementary material of Lieven et al. (2020). Other resources

can be found on the FAIRSharing platform, which indexes

domain-specific databases, for example, STRING for PPI networks

(Szklarczyk et al., 2020), BacDive for growth screenings (Reimer

et al., 2021), Sabio-RK (Wittig et al., 2017), and BRENDA (Chang

et al., 2020) for enzyme constants or MGnify for microbiome

sequence analysis and storage (Mitchell et al., 2019).

Models are published in dedicated repositories or on GitHub

(e.g., https://github.com/SysBioChalmers/Human-GEM), an

online platform for version-controlled projects commonly used in

software development. BioModels is one of the biggest dedicated

model repositories. It contains different model types, models

are partly curated and provides a version control system (Malik-

Sheriff et al., 2019). BiGG is a fully curated repository providing

constraint-based models and model elements (King et al., 2015).

Model elements are aligned to a common namespace (i.e., a naming

scheme) and contain cross-references to biochemical databases.

MetaNetX is another database for constraint-based models, which

collects its entries from various resources (including BiGG) and

aims to unify models under the MNXref namespace (Moretti et al.,

2020).

The list of explicit microbiome models in public repositories

is short. Except for BioModels, all mentioned model repositories

contain single-species models. Using the keywords “microbiome”

and “microbial community” in BioModels resulted in six models

representing more than one species (date of access: August 4,

2023, Supplementary Table S2). However, a common strategy for

metabolic models is to make models of individual species available

and share the code to assemble microbiome models, as done, for

example, by Ankrah et al. (2021) and Heinken et al. (2023).

12.5 Remarks on languages and software
for community modeling

Even though several initiatives and standards are set up,

modeling is not FAIR. A survey among 89 members of the

constraint-based modeling community showed that only 56% were

aware of MIRIAM (Carey et al., 2020), which is in accordance with

Lieven et al. (2020), who demonstrated that many constraint-based

models lack annotation or semantic SBO identifiers. MIASE was

familiar to less than 25% of constraint-based modelers, pointing

out potential issues in reporting simulation experiments. This

hypothesis applies at least to kinetic models, as shown by Tiwari

et al. (2021). They tried to reproduce 455 kinetic models from the

BioModels repository, which was possible for only 49% based on

information from respective publications. The main reasons for
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irreproducibility were inconsistencies in model structure, as well as

insufficient reporting of initial values and parameters.

Kim et al. (2018) showed that irreproducibility also occurs

for bioinformatics software: Conflicts of operating systems,

dependency issues, and poor documentation are common

examples researchers must face when using foreign code (Kim

et al., 2018). Additionally, researchers without advanced training

in programming or bioinformatics will quickly surrender, as

resolving these issues requires some debugging experience. A

resolution to this issue could be the use of lightweight software

containers (Boettiger, 2015). Such containers are isolated from the

hosting system and run their own operating system, preinstalled

dependencies, and configurations, allowing to share containerized

software (https://docs.docker.com/get-started/) (Boettiger, 2015).

Naldi et al. (2018), for example, implemented a containerized

environment for several software packages for Boolean modeling.

Reusability ultimately affects microbiome modeling, because

microbiome models can consist of individual sub-models (from

third parties) that need to be reusable. Even if sub-models are

annotated, identifiers for biological entities can be ambiguous

(Pham et al., 2019). Furthermore, there is no standard namespace

for model elements, and merging models from different sources

can be problematic if no common identifiers or annotations

are included (i.e., if the models use different namespaces)

(Chindelevitch et al., 2012). To alleviate this problem,MNXref aims

to provide a common namespace by connecting several database

references to unique identifiers usable for model annotation

(Moretti et al., 2020).

Based on the recommendations for constraint-based model

annotation provided by Ravikrishnan and Raman (2015), the

identifiers tested by MEMOTE (Supplementary Table S3) (Lieven

et al., 2020), and own experience, the recommended set of

identifiers for minimal annotation includes:

• All model elements: SBO identifiers (Hucka et al., 2019).

• Reactions: EC numbers, MNXref.

• Metabolites: sum formula, key from a biochemical database

[e.g., InChI (Goodman et al., 2021), ChEBI (Hastings et al.,

2015), KEGG (Kanehisa et al., 2022)], MNXref.

• Genes: UniProt Accession (Bateman et al., 2022).

For each species included in a model or in models representing

individual species, the NCBI or GTDB taxonomy (Schoch et al.,

2020; Parks et al., 2021) should be included as well.

(Meta)omics data should include the respective identifiers

to facilitate data integration. Following the suggested set of

minimal annotations, metabolomic data should include InChI,

ChEBI, and MNXref identifiers, and genomic, transcriptomic, or

proteomic data should include EC numbers, MNXref identifiers,

and UniProt Accessions.

Carey et al. (2020) pointed out that community standards are

inherently lagging behind new analysis methods. This could also

be a reason that most available genome-scale community models

need to be assembled from their member species and require the

original code to assemble microbiome models. Nevertheless, SBML

can represent compartmentalized metabolic community models,

but there is still a lack of standards for othermodel types, e.g., agent-

based models (Vieira and Laubenbacher, 2022). A future solution

could be the addition of new SBML extensions to keep up (Carey

et al., 2020).

Prospectively, it will take further time and effort to assimilate

guidelines into the modeling community and minimize

reproducibility issues. Giving more incentives by rewarding

model annotation, stricter requirements by journals, providing

user-friendly annotation tools, peer-reviewing models and

software, and coordinating standardization efforts are examples of

potential large-scale solutions to the problem (Carey et al., 2020;

Papin et al., 2020; Tiwari et al., 2021; Hughes et al., 2023).

13 Discussion

The holistic approach of systems biology paves the way to

understanding microbiomes. Every aspect of systems biology,

i.e., measuring metaomics data, data integration, data analysis,

and modeling is linked with a vast amount of challenges and

options. Only specialists can overview the challenges and options

in their research area. At the same time, it is counterproductive

to study them in isolation from other areas. This review aims to

contribute to dissolving the barrier toward microbiome modeling

and provides directions for further self-education.

The isolation and characterization of new species play a crucial

role for microbiome modeling. Data on individual species, such

as growth phenotypes and genome sequences, are invaluable for

assessing the potential for ecological interactions of organisms.

Pure cultures are also essential for determining model parameters

for individual organisms, such as biomass composition or maximal

uptake rates. Such data are vital for building high-quality single-

species models, which can then be utilized to construct microbiome

models, as discussed in Section 9. Furthermore, time-course data

of individual strains can be utilized to estimate parameters in

microbiome models, as demonstrated by Venturelli et al. (2018).

Available strains can also be used to cultivate reduced or synthetic

microbiomes, which are essential for validating microbiome

models (García-Jiménez et al., 2021). While control strategies for

biotechnological processes, such as the biogas process, are widely

implemented, they are only now becoming available for human gut

microbiomes and will require model systems based on cultivated

microbiomes for testing before they can be realized in patients (Liu,

2023).

Improvements in metaomics methods and technology will

provide standardized workflows and more reliable data (Heyer

et al., 2017; Arıkan and Muth, 2023; Wolf et al., 2023), which

will also benefit microbiome modeling. For instance, higher-

quality MAGs could be provided for genome-scale metabolic

reconstructions, or better-resolved metaproteomics data could

be utilized to create contextualized or enzyme-constrained

microbiome models. Such microbiome models are suitable for

studies investigating microbiome ecology such as those presented

by Aden et al. (2019), Machado et al. (2021), and Marcelino

et al. (2023), as this would result in more realistic predictions of

ecological interactions. Other technologies, such as non-destructive

methods and methods based on flow cytometry could be applied

more frequently to probe active species and provide a better

separation of taxa for downstream omics analyses and isolated

cultivation (Hatzenpichler et al., 2020). These technologies can also
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resolve population heterogeneity which could be integrated into

agent-based models. Multiomics applied to microbiomes is also

promising, as it will provide multiple molecular layers for model

building and validation and could be integrated into hybrid or

whole-cell microbiome models.

New bioinformatics methods will also increase the

amount of information extractable from metaomics data. For

example, unknown enzymes can be uncovered and functionally

characterized from metaomics data (Jia et al., 2022). Previously

unknown enzymatic reactions can be introduced into microbiome

models, such as molecular interaction graphs or constraint-based

models, to evaluate the role of such previously unknown enzymes

in ecological interactions. A recent study by Li et al. (2022) utilized

machine learning to predict kcat values for enzymes from substrate

structures and protein sequences. They used these predicted values

to create enzyme-constrained metabolic models (Section 9.3) that

achieved better prediction results than enzyme-constrained models

created with previous pipelines. Potentially such approaches could

aid the parametrization of microbiome models even if included

enzyme parameters have not been characterized.

The most common microbiome modeling frameworks were

presented, yet none of them is perfect. Models are subject to

assumptions that may not always apply, mechanistic and spatial

resolution are limited, models can depend on many parameters,

and sometimes only qualitative predictions can be made. Such

disadvantages could be counteracted by combining different

modeling frameworks, as demonstrated by Steinway et al. (2015).

Another example is hybrid modeling using machine learning,

as employed by Espinel-Ríos et al. (2023a). Their hybrid model

consists of a dynamic mechanistic model coupled to a neural

network, which predicts uncertain variables of the mechanistic

model. Such approaches could be applied where parts of a

mechanism in a microbiome are unknown, but sufficient training

data are available.

Furthermore, other frameworks could be explored further for

microbiome modeling, such as Petri nets which have been utilized

for modeling the spread of antibiotic resistance in microbiomes

(Bardini et al., 2018). Rule-based modeling is another formalism

promising the genome-scale modeling of signaling and regulation

(Romers et al., 2020). Rule-based models could be used to create

models of host signaling and regulation coupled with microbiome

models to investigate the molecular interactions of microbiomes

and hosts. Efforts in this direction are underway as microbiome

models have already been coupled with dynamic models of human

organ systems (Thiele et al., 2017). The microbiome has also been

included in a metabolic whole-body model of humans containing

more than 80,000 metabolic reactions (Thiele et al., 2020). Model

reduction techniques (discussed in Section 8.2 and Section 9.4)

will become very useful in reducing the computation times of such

complex models.

Despite its utility in providing mechanistic understanding

and controlling microbiomes, microbiome modeling is not fully

established in the standard workflow of metaomics data analysis.

A potential reason for this could be the lack of accessibility

as microbiome modeling mostly relies on bioinformatics

experience. Furthermore, there is a lack of standardization even in

bioinformatics workflows for metaomics data analysis, which is

slowly counteracted by initiatives and ring trials such as CAMPI3

(https://metaproteomics.org/campi/campi3/). The cooperation

of lab experts and bioinformaticians/modelers is one solution

to establishing modeling and has already been realized by many

research groups. The second option is to provide user-friendly

software for microbiome modeling, such as KBase (Arkin et al.,

2018). A drawback of such software is that it takes time to

implement new features. For example, KBase is focused on

processing genomic data but has limited features for handling

metaproteomic data or for microbiome model analysis.

The realization of guidelines such as FAIR facilitates a

landscape of data and model repositories and available

software for microbiome modeling. Nevertheless, standards

are not fully established in modeling communities and many

are unaware of their existence. As a result, many models

are not reusable for data integration because of missing

or not unified annotations and simulation results are not

reproducible. In addition, standards naturally are behind

emerging analysis methods, whereby it is often the case that

original code from publications needs to be executed. However,

software is affected by irreproducibility as well. Containerizing

software for modeling or implementing web applications

are short-term perspectives to make microbiome modeling

accessible for researchers. In the long run, standards need

to be assimilated by scientific communities, which could be

facilitated by repositories and journals giving incentives for

the usage of standards, as well as peer-reviewing of models

and software.
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Dukovski, I., Bajić, D., Chacón, J. M., Quintin, M., Vila, J. C. C., Sulheim,
S., et al. (2021). A metabolic modeling platform for the computation of
microbial ecosystems in time and space (COMETS). Nat. Protocols 16, 5030–5082.
doi: 10.1038/s41596-021-00593-3

Duncan, K. D., Fyrestam, J., and Lanekoff, I. (2019). Advances in mass
spectrometry based single-cell metabolomics. Analyst 144, 782–793. doi: 10.1039/C8A
N01581C

Ebrahim, A., Lerman, J. A., Palsson, B. O., and Hyduke, D. R. (2013). COBRApy:
COnstraints-based reconstruction and analysis for python. BMC Systems Biol. 7, 1–6.
doi: 10.1186/1752-0509-7-74

Ellson, J., Gansner, E., Koutsofios, L., North, S. C., and Woodhull, G. (2002).
Graphviz- Open Source Graph Drawing Tools. Berlin Heidelberg: Springer, 483–484.
doi: 10.1007/3-540-45848-4_57

Erdrich, P., Steuer, R., and Klamt, S. (2015). An algorithm for the reduction of
genome-scale metabolic network models to meaningful core models. BMC Syst. Biol.
9, 1–12. doi: 10.1186/s12918-015-0191-x

Espinel-Ríos, S., Bettenbrock, K., Klamt, S., Avalos, J. L., and Findeisen, R. (2023a).
“Machine learning-supported cybergenetic modeling, optimization and control for
synthetic microbial communities,” in Computer Aided Chemical Engineering (Elsevier),
2601–2606. doi: 10.1016/B978-0-443-15274-0.50413-3

Espinel-Ríos, S., Morabito, B., Pohlodek, J., Bettenbrock, K., Klamt, S., and
Findeisen, R. (2023b). Toward a modeling, optimization, and predictive control
framework for fed-batch metabolic cybergenetics. Biotechnol. Bioeng. 121, 366–379.
doi: 10.1002/bit.28575

Fassarella, M., Blaak, E. E., Penders, J., Nauta, A., Smidt, H., and Zoetendal,
E. G. (2020). Gut microbiome stability and resilience: elucidating the
response to perturbations in order to modulate gut health. Gut 70, 595–605.
doi: 10.1136/gutjnl-2020-321747

Faust, K., and Raes, J. (2012). Microbial interactions: from networks to models.Nat.
Rev. Microbiol. 10, 538–550. doi: 10.1038/nrmicro2832

Faust, K., and Raes, J. (2016). CoNet app: inference of biological association
networks using Cytoscape. F1000Research 5:1519. doi: 10.12688/f1000research.9050.2

Frontiers inMicrobiology 27 frontiersin.org

https://doi.org/10.3389/fmicb.2024.1368377
https://doi.org/10.1186/s40168-020-00875-0
https://doi.org/10.1007/978-3-8274-2989-6_15
https://doi.org/10.1007/978-3-8274-2989-6_32
https://doi.org/10.1007/978-3-8274-2989-6_31
https://doi.org/10.1007/978-3-8274-2989-6_14
https://doi.org/10.7554/eLife.39733
https://doi.org/10.1007/s00285-012-0614-x
https://doi.org/10.1002/wsbm.1308
https://doi.org/10.1002/9783527659227
https://doi.org/10.3390/microorganisms7090287
https://doi.org/10.1038/s41431-018-0160-0
https://doi.org/10.1145/2723872.2723882
https://doi.org/10.1371/journal.pcbi.1007127
https://doi.org/10.1016/j.soilbio.2022.108620
https://doi.org/10.1007/s11071-013-0807-x
https://doi.org/10.1002/pmic.201900351
https://doi.org/10.1007/978-1-62703-712-9_15
https://doi.org/10.1016/j.tim.2006.11.003
https://doi.org/10.1186/s13059-016-0980-6
https://doi.org/10.1016/S0377-0427(00)00455-6
https://doi.org/10.1002/cyto.a.23302
https://doi.org/10.3389/fmicb.2020.557035
https://doi.org/10.1093/bioinformatics/btac119
https://doi.org/10.1136/gutjnl-2018-316723
https://doi.org/10.15252/msb.20199235
https://doi.org/10.1038/ismej.2016.161
https://doi.org/10.1093/femsre/fux026
https://doi.org/10.1371/journal.pcbi.1005539
https://doi.org/10.1093/nar/gkaa1025
https://doi.org/10.1101/gad.1945410
https://doi.org/10.1186/gb-2012-13-1-r6
https://doi.org/10.1016/j.biosystems.2018.07.006
https://doi.org/10.2175/193864703784641207
https://doi.org/10.1126/science.aad2602
https://doi.org/10.7554/eLife.51850
https://doi.org/10.1073/pnas.0502024102
https://doi.org/10.1186/s40168-022-01311-1
https://doi.org/10.1093/nar/gkab1006
https://doi.org/10.1128/mSystems.00606-19
https://doi.org/10.1038/s41467-022-31421-1
https://doi.org/10.1038/s41596-021-00593-3
https://doi.org/10.1039/C8AN01581C
https://doi.org/10.1186/1752-0509-7-74
https://doi.org/10.1007/3-540-45848-4_57
https://doi.org/10.1186/s12918-015-0191-x
https://doi.org/10.1016/B978-0-443-15274-0.50413-3
https://doi.org/10.1002/bit.28575
https://doi.org/10.1136/gutjnl-2020-321747
https://doi.org/10.1038/nrmicro2832
https://doi.org/10.12688/f1000research.9050.2
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Lange et al. 10.3389/fmicb.2024.1368377

Federici, S., Nobs, S. P., and Elinav, E. (2020). Phages and their potential
to modulate the microbiome and immunity. Cell. Molec. Immunol. 18, 889–904.
doi: 10.1038/s41423-020-00532-4

Feist, A. M., Herrgård, M. J., Thiele, I., Reed, J. L., and Palsson, B. Ø. (2008).
Reconstruction of biochemical networks in microorganisms. Nat. Rev. Microbiol. 7,
129–143. doi: 10.1038/nrmicro1949

Feng, K., Peng, X., Zhang, Z., Gu, S., He, Q., Shen, W., et al. (2022). inap:
An integrated network analysis pipeline for microbiome studies. iMeta 1:e13.
doi: 10.1002/imt2.13

Filippo, M. D., Damiani, C., and Pescini, D. (2021). GPRuler: Metabolic gene-
protein-reaction rules automatic reconstruction. PLoS Comput. Biol. 17:e1009550.
doi: 10.1371/journal.pcbi.1009550

Fischbach, M. A., and Segre, J. A. (2016). Signaling in host-associated microbial
communities. Cell 164, 1288–1300. doi: 10.1016/j.cell.2016.02.037

Frioux, C., Singh, D., Korcsmaros, T., and Hildebrand, F. (2020). From bag-
of-genes to bag-of-genomes: metabolic modelling of communities in the era of
metagenome-assembled genomes. Comput. Struct. Biotechnol. J. 18, 1722–1734.
doi: 10.1016/j.csbj.2020.06.028

Gábor, A., and Banga, J. R. (2015). Robust and efficient parameter
estimation in dynamic models of biological systems. BMC Syst. Biol. 9, 1–25.
doi: 10.1186/s12918-015-0219-2
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