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Climate change related warming is a serious environmental problem attributed

to anthropogenic activities, causing ocean water temperatures to rise in the

coastal marine ecosystem since the last century. This particularly affects

benthic microbial communities, which are crucial for biogeochemical cycles.

While bacterial communities have received considerable scientific attention, the

benthic eukaryotic community response to climate change remains relatively

overlooked. In this study, sediments were sampled from a heated (average 5◦C

increase over the whole year for over 50 years) and a control (contemporary

conditions) Baltic Sea bay during four different seasons across a year. RNA

transcript counts were then used to investigate eukaryotic community changes

under long-term warming. The composition of active species in the heated

and control bay sediment eukaryotic communities differed, which was mainly

attributed to salinity and temperature. The family level RNA transcript alpha

diversity in the heated bay was higher during May but lower in November,

compared with the control bay, suggesting altered seasonal activity patterns

and dynamics. In addition, structures of the active eukaryotic communities

varied between the two bays during the same season. Hence, this study

revealed that long-term warming can change seasonality in eukaryotic diversity

patterns. Relative abundances and transcript expression comparisons between

bays suggested that some taxa that now have lower mRNA transcripts numbers

could be favored by future warming. Furthermore, long-term warming can lead

to a more active metabolism in these communities throughout the year, such

as higher transcript numbers associated with diatom energy production and

protein synthesis in the heated bay during winter. In all, these data can help

predict how future global warming will affect the ecology and metabolism of

eukaryotic community in coastal sediments.
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Introduction

Climate change is a world-wide environmental problem caused
by anthropogenic greenhouse gas emissions that results in an
increase in average surface temperature (IPCC et al., 2008). As the
largest ecosystem on Earth with an important role in geochemical
cycling of key elements such as Fe, S, and Mn, the marine ecosystem
is influenced by climate change with associated effects such as an
increased ocean surface temperature of 1◦C in the last century
(IPCC et al., 2008; Abraham et al., 2013; Garcia-Soto et al.,
2021) and higher dissolved carbon dioxide (CO2) concentrations
(Connell et al., 2013). This leads to further problems such as
acidification, salinity changes, water stratification, deoxygenation,
and sea level rise (Connell et al., 2013; Breitburg et al., 2018;
Malhi et al., 2020). In addition, mounting evidence indicates that
climate change alters the biodiversity and community compositions
of marine ecosystems. These include tropical regions experiencing
species loss while temperate regions might experience increasing
diversity as species migrate to the poles (Alabia et al., 2020) that
has potentially far reaching implications for ecosystem services
(Staniczenko et al., 2017).

Despite only consisting of 4% of the earth’s total area and
11% of the world’s oceans, coastal zones contain more than a
third of the world’s human population and contribute with 90%
of the catch from marine fisheries (Barbier, 2017). Coastal areas
also provide many additional ecosystem services including carbon
storage in estuaries and sediments, contaminant removal, and
storm plus flooding buffering (Canuel et al., 2012). The coastal
areas are also responsible for the majority of atmospheric methane
emission from the marine environment (Borges et al., 2016; Weber
et al., 2019). Eukaryotes are abundant in coastal systems and play
important ecological roles by serving as both primary producers
and consumers (Nagarkar et al., 2018). For example, they graze
on prokaryotes (Massana et al., 2004) and deliver energy to higher
trophic levels through the food web. Moreover, eukaryotes are
also involved in the benthic–pelagic exchange process between
the sediment and open water (Marcus and Boero, 1998) with
the transfer of individual organisms as well as elements such as
phosphorous and nitrogen (Fanning et al., 1982). One important
habitat for eukaryotes is the benthic sediment, although it has
received less attention compared to the pelagic environment
(Salonen et al., 2019). The eukaryotic communities in sediments
are complex and diverse, including various benthic macrofauna
(e.g., Bivalvia), meiofauna (e.g., nematodes, protists), and algae
(e.g., diatoms) (Bik et al., 2012; Broman et al., 2019b). Moreover,
sediment acts as a reservoir for resting stages of phytoplankton
and zooplankton (Brendonck and De Meester, 2003; Suikkanen
et al., 2010) and harbors larvae of semi-aquatic insects for some
time before they emerge to the terrestrial phase (Mason et al.,
2022). The coastal biodiversity is threated by climate change
and anthropogenic activities (Holon et al., 2018), resulting in
many species disappearing (Pan et al., 2013), and such that it
may correspondingly affect ecosystem processes. For example,
low sediment biodiversity can decrease the coastal ecosystem’s
stability and resistance, making it vulnerable to invasive species
or other forms of disturbance (Levin et al., 2001). Therefore, it
is essential to better understand how the structure and activity

of coastal benthic eukaryotic communities is influenced by global
warming.

The Baltic Sea is one of the largest brackish water areas in the
world that it is relatively isolated due to a narrow connection to the
North Sea (Stigebrandt, 2001). This sea has suffered from a high
level of eutrophication over an extended time due to anthropogenic
nutrient loading and atmospheric deposition of primarily nitrogen
and phosphorus (Knuuttila et al., 2011). This eutrophication
contributes to increased biomass production and elevated oxygen
consumption (Reusch et al., 2018). In the last century, the area of
year-round hypoxic “dead zones” in the Baltic Sea has expanded
ten-fold (Carstensen et al., 2014). Correspondingly, the dead zone
eukaryotic community structure has also been modified with an
increased abundance of species tolerating low oxygen conditions
such as nematodes (Broman et al., 2020) and lower hatching of
zooplankton resting stages (Broman et al., 2015). While higher
global warming-related oxygen consumption (Schmidtko et al.,
2017) will likely magnify the influence of eutrophication and
algae blooms (Reusch et al., 2018), it is not well known how the
benthic eukaryotic community and especially the active groups will
respond.

This research was conducted in a Baltic Sea bay that has been
used as a discharge recipient of warm water from a nuclear power
plant for more than 50 years, which has raised the average water
temperature by approximately 5.1◦C above a nearby, unaffected,
control bay. This temperature difference is within the same order
of magnitude of the expected temperature increase for the Baltic
Sea (Andersson et al., 2015). Therefore, this bay can be regarded
as a natural laboratory to study the influence of long-term climate
change in a Baltic Sea coastal ecosystem (Seidel et al., 2022a).
Previous studies of this model system have uncovered that the
sediment prokaryote communities in the heated versus the control
bay show a weakened resilience with microbial RNA transcripts for
stress in the heated bay despite exposure to > 50 years of warming
(Seidel et al., 2022a). In addition, the sediment surface microbial
community (< 2 cm of depth) in the warmed conditions exhibited
a higher diversity due to shallowing of geochemical layers (Seidel
et al., 2022b).

In this study, a metatranscriptomic dataset from the heated
and control Baltic Sea bay sediments at four seasonal time
points over a year was interrogated to investigate whether and
how the eukaryotic community composition and their active
functions differed between the two bays and change over time.
It was hypothesized that heating of coastal marine system leads
to a difference in the species composition of sediment-bound
eukaryotic communities as well as different seasonal dynamics
in their transcriptome signatures, such as overall increased
activities in the winter.

Materials and methods

Sampling sites and sediment cores

The sediment sample cores were collected using a kajak gravity
corer from three sites in each of the heated (B: N 057◦ 25.259′ E
016◦ 40.130′, D: N 057◦ 25.387′ E 016◦ 40.104′, and F: N 057◦

25.220′ E 016◦ 39.895′) and control (K: N 057◦ 26.011′ E 016◦
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FIGURE 1

Map of the general sampling are near Oskarshamn, Sweden (A) and a zoomed in image of the heated and control bays with specific sampling points
(B). Image generated and adapted in OpenStreetMap, licensed under CC BY-SA 2.0.

41.022′, L: N 057◦ 25.964′ E 016◦ 40.914′, and M: N 057◦ 25.907′

E 016◦ 40.992′) Baltic Sea bays (Figure 1). The water depths for the
sites were: B- 3 m, D- 1.2 m, F- 2.4 m, K- 2.8 m, L- 1.6 m, M- 4.9
m. Samples were collected in May, June, and November 2018 plus
March in 2019 as previously described (Broman et al., 2019a; Seidel
et al., 2022b). Briefly, sediments were collected with a 50 cm-long
kayak-type gravity corer, immediately sliced in the field, and the
0–1 cm sediment surface was aseptically retained for nucleic acid
extractions along with chemical analyses (Broman et al., 2019a).
All nucleic acid samples were flash frozen in liquid nitrogen before
being returned to the laboratory on the same day and stored in a
−80◦C freezer.

Temperature measurements and
physiochemical analyses

Surface water temperature (1 m below the sea surface) was
monitored in the two bays by using data loggers (HOBOware,
Onset Computer Corporation, USA) at each of the sampling
sites from December 2017 until November 2019. In addition,
the bottom water temperature was measured in situ (MultilineTM

sensor, WTWTM) during each sampling time point (Seidel et al.,
2022b). The chemical analyses of pore water including oxygen,
pH, salinity, organic matter, nitrate, nitrite, ferrous iron, total iron,
and sulfate on sediment were conducted as previously described
(Broman et al., 2019a).

RNA extractions and sequencing

RNA was extracted from the sediment 0–1 cm depth fractions
using the RNeasy R© PowerSoil Total RNA Kit (QIAGEN) and
the phenol/chloroform/isoamyl alcohol method as previously
described (Seidel et al., 2022b). Total RNA samples were sent to
the DOE Joint Genome Institute (JGI) at the Lawrence Berkeley
National Laboratory, Berkeley, USA where they performed
sequencing on the Illumina NovaSeq600 platform to produce

sequences with 2 × 151 bp read length. Quality control was
conducted to eliminate contaminants and ribosomal RNA reads by
using BBDuk (v. 38.75) and BBMap (Bushnell, 2023) that resulted
in an average of 64.83 % of the reads being retained [as previously
reported (Seidel et al., 2022b)].

Bioinformatics and statistical analyses

The filtered mRNA reads provided by JGI were co-assembled by
Megahit v.1.2.9 (Li et al., 2015) with default settings. TransDecoder
v.5.5.0 (Haas, 2023) with default settings (first LongOrfs function
then Predict function) was used to identify candidate coding
regions within the transcript sequences, which generated open
reading frames (ORFs) from the assembled contigs. After that,
Bowtie2 with default settings v.2.3.5.1 (Langmead and Salzberg,
2012) was used align the sequencing reads. The Bowtie2 output was
used to generate a counts table using FeatureCounts v.2.0.3 (Liao
et al., 2014) with standard settings. Taxonomic annotation was
performed using the software Eukulele v.2.0.2 (Krinos et al., 2023)
in default settings against the reference PhyloDB v.1.075 database
(Allen, 2020). Since the focus of this paper was on eukaryotes, only
contigs annotated as within the Eukaryote domain were retained
for further analyses. Functional annotation used the automatic
annotation servers GhostKOALA in KEGG (Kyoto Encyclopedia
of Genes and Genomes) website, which is an internal annotation
tool for KEGG Orthology assignment (Kanehisa et al., 2016).

The Alpha Diversity indices (Shannon’s H and evenness) were
normalized by scaling with ranked subsampling in package “SRS”
(v.0.2.3), and then calculated by the package “vegan” (v.2.6-4)
(Oksanen, 2010) in R (v.4.3.1). A linear regression model was used
to test for significant differences between the bays and among the
different sampling months. The model was created by the “stats”
package (v.4.1.2) (R Core Team, 2018) and followed by additional
pairwise comparison of bays on each sampling month using the
package “emmeans” (v.1.8.5) (Lenth, 2023) in R. PerMANOVA
with 999 permutations was used to test for statistical differences
on eukaryotic RNA transcript community comparing both bays,
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using the “adonis()” function from the package “vegan” (v.2.6-
4) (Oksanen, 2010) and the canonical correspondence analysis
was also done by package “vegan” (v.2.6-4) (Oksanen, 2010) with
“cca()” function. The variance inflation factor (VIF) based on
the canonical correspondence analysis from the “vegan” package
was used to determine if the measured environmental variables
added new information to the differences between the two groups.
Permutations ANOVA (n = 999 permutations) was used for testing
the statistical significance of each environmental variable. Package
“ANCOM-BC2” (v.3.16) (Lin and Peddada, 2020) was used for
differential RNA transcript abundance analysis at phylum level
between the bays in each sampling month.

Differential RNA transcript expression analysis was performed
using the “edgeR” package (v. 3.36.0) in R (Robinson et al., 2010).
The two bays (n = 12 per bay) were first modeled as contrast
factors to give differentially expressed genes over the year. Then
both bays and months were modeled together as contrast factors,
with the different sampling sites as replicates (n = 3 per bay per
month) to give differentially expressed genes among each month.
To ensure the downstream statistical analysis would not be affected
by low counts, a cutoff (> 113 counts and at least in three sample
libraries) was set to filter out low count transcripts. The choice for
this cutoff was based on 10/L where L was the minimum library
size (88795 RNA transcripts) and at least for three libraries as each
bay-month group contained three replicates (Chen et al., 2016).
Then the differential expression analysis relative to fold change
threshold was performed by “glmTreat()” function inside the edgeR
package. This function is analogous to the TREAT method for
microarrays and modifies the statistical test to detect expression
changes greater than a specified threshold. The threshold used in
this study was log2(1.5) as a standard value (Chen et al., 2016)
to remove transcripts with fold changes below this threshold. The
Benjamini–Hochberg method was used as p-adjustment type and
the p-value setting was 0.05.

Results

RNA sequencing

The RNA sequencing generated a total of 1,437,330,588 reads
in 24 sediment core samples (min. 28,035,392 and max. 68,172,798
reads) giving on average 64.83% mRNA reads after rRNA filtering.
Assembly of the filtered RNA reads generated 4,214,024 contigs
with 55.47% (2,337,566) assigned a taxonomy of which 12.72%
(297,242) belonged to the Eukaryota (Supplementary Figure 1 and
Supplementary Table 1). A rarefaction curve evaluation was done
on the filtered eukaryotic RNA reads (Supplementary Figure 5).

RNA transcript based eukaryotic diversity

A canonical correspondence analysis of RNA transcript-based
eukaryote beta diversity (Figure 2B) showed significantly different
eukaryotic RNA transcript community compositions between the
two bays (PERMANOVA, df = 1, F = 3.85, p = 0.001). Among the
physiochemical parameters separating the eukaryotic communities,
salinity and water depth were two significant variables from the

permutation ANOVA test (Supplementary Tables 3, 4). Salinity
and bottom water temperature best fitted the separation between
the heated and control bay while water depth, bottom water oxygen
concentrations, and other geochemical parameters contributed
more to the site variation, especially site D in the heated bay (left
top part in Figure 2B).

Seasonal patterns of eukaryotic community Shannon’s H index
were observed between the two bays at the family level (ANOVA:
Bay, df = 1, F = 0.84, p = 0.37; Month, df = 3, F = 1.87, p = 0.18; Bay-
month interaction, df = 3, F = 3.84, p = 0.03; Figure 2A). Therefore,
single effects were insignificant but there was an interactive effect of
month and bay on Shannon’s H index. More specifically in May, the
heated bay had a significantly higher Shannon’s H index diversity
compared to the control bay (pairwise comparison, 2.80 ± 0.3 and
1.96 ± 0.3, p = 0.01) while the control bay had higher diversity
in November (pairwise comparison, 2.96 ± 0.3 and 2.38 ± 0.3,
p = 0.08). In June and March, there were no statistical differences
between the heated and control bays (pairwise comparison, June:
2.92 ± 0.3 and 2.64 ± 0.2, p = 0.37, March: 2.85 ± 0.3 and
2.85 ± 0.3, p = 0.98). The Shannon’s evenness followed the same
pattern as for the H index (Supplementary Figure 2).

Community composition on phylum and
family level

The most abundant RNA transcript-based phylum was
the diverse and often single-celled Stramenopiles (58% in
total; Figure 3) encompassing both photosynthetic and non-
photosynthetic members (Dorrell et al., 2017) that consisted
of > 50% average relative abundance of all samples in both
the heated plus control bays and all sampling months. The
dominant family within the Stramenopiles was Bacillariophyta
(combined unclassified Bacillariophyta and Bacillariophyta_X, i.e.,
diatoms), especially in the control bay during spring-summer
(May and June). Alveolata was the second most abundant
RNA transcript-based phylum (10%). However, the Alveolata
displayed a different pattern with a tendency to higher relative
abundance in the heated bay, especially during spring-summer
(May and June). The dominant family within the Alveolata was the
dinoflagellates Dinophyceae (combined unclassified Dinophyceae
and Dinophyceae_X). Alveolata was followed in dominance by the
Opisthokonta phylum (8%) that lacked a clear pattern between the
two bays or among seasons but had a high relative abundance in
site F in the heated bay compared to the other sites (especially in
November with the Arthropoda family). The dominant families
within the Opisthokonta were the aforementioned Arthropoda
along with the marine gelatinous animals Ctenophora (Ctenophora
unclassified and Ctenophora_X). However, the disparities in the
community composition between the bays in each sampling month
were small based on differential abundance analysis, and only
the phyla Stramenopiles, Opisthokonta, and some rare taxa were
statistically different in March (Supplementary Table 2).

mRNA transcript based activity

After filtering out genes with insufficient counts for statistical
analysis, eukaryotic RNA transcripts encoding 1,319 genes had a
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FIGURE 2

Shannon ìs H index in family level (A) along with canonical correspondence analysis based on mRNA transcripts with relevant physiochemical
parameters (B) for the heated (orange) and control (blue) bays for each sampling month. The asterisk denotes statistically significant (p < 0.05), and
the dot denotes a p-value between 0.05 and 0.1.

differential count between the two bays (lfc = log2 1.5, p < 0.05).
In total for all sampling occasions, 147 genes had significantly
higher transcript counts in the control bay compared to the heated
bay and 213 were higher in the heated bay (Supplementary
Figure 3). Disregarding effects of sampling month, common
taxa such as Pelagophyceae, Bacillariophyta, and Dinophyta
had significantly different RNA transcript counts in both bays
that encoded diverse functions in cell metabolism. Many of
the taxa displaying differential transcript counts were diatoms,
dinoflagellates, and other algae that are typically primary producers
containing chlorophyll with a pelagic or benthic lifestyle [e.g.,
in biofilms or as resting stages with some mRNA to maintain
viability (Coyne and Craig Cary, 2005)]. Among the less common
taxa, there were some bay-specific genes with differential transcript
counts. For example, Spirotrichea (e.g., ciliates), the Ctenophora
(gelatinous zooplankton with benthic stage), and Archaeplastida
(Mamiellophyceae/Zygnemophyceae/Trebouxiophyceae) only had
significantly more transcript counts in the heated bay. In contrast,
a few Euglenozoa RNA transcripts were only significantly increased
in the control bay.

Month-specific RNA transcript
differences

The seasonal dynamics in significantly different RNA
transcripts [lfc = log2(1.5), p = 0.05] was studied by considering
sampling months separately (Figure 4). There were overall more
significant increased transcript numbers in May (n = 87) in
the heated bay compared to the control bay (n = 20; Figure 4),
which was in line with the patterns in the community diversity
(Figure 2A) whereby the alpha diversity was higher in the heated
bay at that time point.

A greater number of statistically significant Bacillariophyta
(diatom) gene transcripts were identified in the heated versus
control bay sediments at all sampling times (Figure 5 and
Supplementary Figure 4). This trend was stronger with more
significant Bacillariophyta transcripts in May and June compared
with the March and November sampling times. The RNA transcript
signature in the heated bay was highly similar in the November and
March samplings with transcripts encoding for the genes COX1-
2, CYTB, and petB. These genes indicated growth (Rouzer and
Marnett, 2009), metabolism (Shan et al., 1990; Rouzer and Marnett,
2009), or other energy demanding activities in the heated bay
during winter whereas only one transcript encoding a heat shock
gene [HSP20; (Liu et al., 2012)] had differentially significant RNA
transcripts in the control bay for the November and March samples.
Transcripts during the May and June sampling occasions were
more diverse when comparing the two bays with the genes CPS1,
COX1, clpC, and LSS/ERG7 having higher transcript numbers in
the heated bay in May compared to the control bay. These related
to various functions including maintaining the cell membrane (Ku
et al., 1991), nitrogen homeostasis (Yougo et al., 1991), and energy
production (Ku et al., 1991; Corey et al., 1994). In contrast, higher
transcripts numbers were identified in the control bay for the genes
CRYAB, COX2, ALDO, RIT2/RIN, and pps/ppsA that have various
functions in e.g., energy production (Rahman et al., 1999) and
carbohydrate metabolism (Hutchins et al., 2001; Chiba et al., 2015).
Finally, differential Bacillariophyta transcript numbers higher in
the heated bay in June included genes related to photosynthesis
[psbV, psbC, and psaB (Ikeuchi et al., 1987; Smart and
McIntosh, 1991)] and energy production [e.g., ALDO and COX1
(Ku et al., 1991)].

Genes assigned to the Ctenophora only had increased transcript
counts in the heated bay in May, June, and November, which
included aprA (Figure 5 and Supplementary Figure 4) and
transcripts encoding acsB and qmoB were increased in May
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FIGURE 3

Relative abundance of eukaryotic mRNA transcripts at the level of phylum in the control and heated bays over the four sampling months (top). The
Stramenopiles, Alevolata, and Opisthokonta phyla were further split into their respective relative abundance of families.

and November. Furthermore, RNA transcripts assigned to the
Spirotrichea were only increased in the heated bay and included
PSAT1 for all sampling points. In May, PAPSS, and EEF1A also had
increased transcript counts.

Dinophyceae (Dinoflagellate) transcripts were generally less
common without major differences between the bays (Figure 5 and
Supplementary Figure 4). However, there were e.g., higher EXTL3

gene transcript counts in the heated bay at all sampling times. In
contrast, a gene with significantly increased transcript counts in
the control bay during May and November encodes histone H1/5
(H1_5). Pelagophyceae is a subclass of Stramenopiles, commonly
called brown algae (Bringloe et al., 2020). Genes with transcripts
assigned to the Pelagophyceae had higher transcript counts in both
bays including rfcS in the control bay and PAPSS in the heated bay.
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FIGURE 4

Mean-difference plot of transcript counts per million (CPM) between heated bay and control bay in the separate months. Genes with fold-changes
significantly greater than 1.5 (p < 0.05) are highlighted for the heated (orange) and control (blue) bays for each sampling month. NS signifies genes
with no significant difference between the two bays.

Finally, transcripts for Euglenozoa genes also had higher counts
in the control bay including gapA (glyceraldehyde 3-phosphate
dehydrogenase).

Discussion

This study demonstrated that more than 50 years of heating
of a coastal marine system has led to changes in the sediment-
bound eukaryotic community structure and activity. Overall, the
results showed that long-term warming increased the diversity of
the eukaryotic community during spring and triggered changes
in the seasonal activity patterns of common sediment eukaryotes.
The likely main driver for these changes was temperature with on
average 5.1◦C higher temperatures in the heated compared to the
control bay over an annual cycle (Seidel et al., 2022b). The canonical
correspondence analysis separated the eukaryotic communities
between the heated and control bay along the salinity differences
among sampling sites. Although temperature was not significant,

the direction of the temperature and salinity arrows were in
the same direction. Other factors such as oxygen concentration
is lowered in higher temperatures (Brewer and Peltzer, 2017)
such that a lack of oxygen likely limited nitrification in the
sediment (Liikanen et al., 2002). This resulted in less nitrite and
nitrate, potentially explaining a portion of the observed among-site
variation. This study complements and adds a layer of generality to
previous studies suggesting significant effects of climate change on
the more intensively studied prokaryotic communities (Seidel et al.,
2022a,b, 2023).

A highly diversified eukaryote community can act as a reservoir
of rare and dormant taxa, which provides ecosystems with a
biological buffering capacity to handle climate change and cope
with extreme weather events such as marine heat waves (Capo
et al., 2016). The Shannon H index was significantly higher in the
heated bay in May (Figure 2A). This was potentially explained by
an earlier onset of summer conditions in the heated bay, leading to a
more diverse active community in the warmer waters in the heated
bay compared to the control bay (Salonen et al., 2019). The alpha
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FIGURE 5

Taxonomy and metabolic functional groups of differential RNA transcript numbers (logFC) for genes between heated bay and control bay in May (A)
and November (B) 2018. NA denotes genes that lacked an assigned function.
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diversity also varied in November with significantly higher family
level alpha diversities in the control bay (Figure 2A). However,
the number of statistically increased RNA transcript numbers was
still higher in the heated bay (Figures 4, 5). These two opposing
patterns may suggest the control bay entered cold winter conditions
earlier, which might have caused the community to have a low
number of transcripts from a wide range of taxa. While in the
heated bay, there were still certain taxa that were more active and
dominant while others had a low number of transcripts. In June
and March, the active sediment eukaryotic communities in both
heated bay and control bay were in summer and spring-bloom
conditions. These conditions tended to provide settings for a more
similar in alpha diversity. Recent climate change has already altered
the marine eukaryotic diversity globally, e.g., in temperate zones
and high latitude areas (Gao et al., 2018; Han et al., 2022) and
the impacts of climate change can either work directly on the
eukaryote’s life-cycle, or indirectly through food web interactions
(Przytulska et al., 2015). Eukaryotic diversity in the marine
ecosystem generally declines toward the poles, which is suggested to
be primarily driven by decreasing of ocean temperatures (Ibarbalz
et al., 2019). It is unknown how climate change will affect the
sediment-bound eukaryotic diversity, but this study suggested that
climate change will alter the community composition, but the
magnitude of those changes can vary among different seasons.
Other studies have also shown that temporal changes like year and
season affect the diversity of sediment eukaryotes (Guardiola et al.,
2016; Salonen et al., 2019; Broman et al., 2020; Lalzar et al., 2023).
The community composition of sediment eukaryotes also changes
in response to annual and seasonal abiotic fluctuations as well as to
clines and gradients in environmental variables such as turbidity,
nutrients, and human activities (Broman et al., 2015; Salonen et al.,
2019; Vause et al., 2019). In all, the data suggested that large scale
climate change induced shifts in seasonality that will have major
effects on eukaryotic sediment organisms and the overall ecosystem
structure and functioning.

Most previous marine sediment bound eukaryote research
focuses on spatial variability in community composition (Salonen
et al., 2019; Wang et al., 2022; Lalzar et al., 2023) or the temporal
variability in the same area (Salonen et al., 2019). This study
compared seasonal variability in community composition between
two bays in close spatial distance, but with significant differences in
water temperatures. This enabled inference of how environmental
variation, such as climate change, affects community composition
and transcriptomic activity without a significant spatial variance.
Furthermore, while most previous studies use 18S rRNA gene
data to determine eukaryotic community compositions, this study
added the aspect of studying the transcript-based active members.
The sediment-bound eukaryote community compositions in
this study were dominated by the functionally important
Bacillariophyta (diatoms) in both bays, followed by Dinophyceae
(dinoflagellates), Ctenophores, and other less abundant taxa.
Within these major groups there were both facultative sediment
dwellers as well as those organisms that only spend part of their
life cycle in the sediment, e.g., as resting stages (Fryxell, 1983; Lewis
et al., 1999; McQuoid et al., 2002; Ellegaard and Ribeiro, 2018).
This is in line with other studies demonstrating that eukaryotes
in sediments have diverse communities with different dominance
patterns, e.g., diatoms, maxillopods, or dinoflagellates (Salonen
et al., 2019; Iburg et al., 2021; Lalzar et al., 2023). The largest

phyla and family level community differences between the bays
were present in spring and summer with a tendency toward more
diatoms in the control bay (∼75% relative abundance), whereas
dinoflagellates contributed more to the relative abundance in the
heated bay, albeit not significantly. In contrast, during winter
the community compositions between the two bays were more
similar. Dinoflagellates are suggested to be favored (Vehmaa et al.,
2011) while diatoms have a tendency to decrease (Wasmund et al.,
1998) with mild winters. This shift in the relative abundances
of diatoms and dinoflagellates is projected to lead to differences
in the production of the system (Wei et al., 2004), which might
result in lower benthic production and higher pelagic secondary
production through energy transfer in the food web (Hjerne et al.,
2019). Likewise, differences in the sediment-bound eukaryotic
communities in terms of resting stages could lead to an altered
benthic-pelagic coupling in coastal systems.

The differential RNA transcript counts showed a similar
trend as the alpha diversity, with more increased transcripts in
May and November compared to March and June samplings.
The most common taxa among those differentially expressed
transcripts were the functionally important Bacillariophyta
(diatoms) and Dinophyceae (dinoflagellates) that are commonly
found in sediments (Broman et al., 2017; Salonen et al., 2019).
Bacillariophyta (diatoms) play a vital role in the marine ecosystem
(Nelson et al., 1995) and tend to dominate phytoplankton
communities in well-mixed coastal areas, where they can access
sufficient light and nutrient resources (Morel and Price, 2003).
The Bacillariophyta usually bloom in open waters during spring
and then sink to the sediment in response to nutrient depletion,
but there are also diatoms that solely live on surfaces and in the
sediment (Smetacek, 1985; Vyverman, 1992; Dela-Cruz et al.,
2006). A previous study found that diatoms dominate a Baltic Sea
sediment transcriptome (Broman et al., 2017) with RNA reads
associated with diatoms being linked to the thylakoid membrane in
the chloroplast and photosynthesis. Furthermore, a low abundance
of genes coding for the Calvin-Benson-Bassam cycle (to synthesize
Rubisco for photosynthesis) is suggested to indicate that many
of these diatoms were in resting stages (Thureborn et al., 2016;
Broman et al., 2017). Differential RNA transcripts assigned to
diatoms during winter in the heated bay were associated with
energy production and protein synthesis, which may indicate
an increased metabolism in the heated bay sediment-bound
community during winter. In general, the results showed a pattern
of early diatom activity in the heated bay suggesting future climate
change might decrease the dominance and activity of diatoms in
later spring development.

Dinoflagellates were another common component in the
sediment eukaryotic community, but only a few genes had
differential RNA transcripts that were predominantly in the heated
bay. Likewise, the Ctenophores, Spirotrichea, Mamiellophyceae,
Zygnemophyceae, and Trebouxiophyceae only had differential
transcript numbers in the heated compared to the control
bay. These transcripts were associated with various genes and
commonly occurring categories included “regulating energy
metabolism” and “protein families: metabolism,” which might
indicate that the sediment bound eukaryotic community in the
heated bay had a more active metabolism throughout the year. The
Ctenophores are functionally important gelatinous zooplankton in
marine food webs that predate other zooplankton and fish eggs
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(Gamble, 1994; Mills, 1995; Purcell, 1997). In agreement with this
study, they are often abundant during summer phytoplankton
blooms and are predicted to be favored by climate change (Mills,
2001; Javidpour et al., 2009). Spirotrichea is a diverse subgroup of
the class Ciliophora (commonly termed ciliates) (Gao et al., 2016)
that are important components of marine food webs, acting as
the food resource for large zooplankton and predators of bacteria
and phytoplankton (Weisse and Sonntag, 2016). Other taxa with
differential transcripts in the heated bay were Mamiellophyceae,
Zygnemophyceae, and Trebouxiophyceae that are phytoplanktonic
green algae (Gontcharov et al., 2003; Leliaert et al., 2012).
Transcripts from those taxa were mostly involved in photosynthesis
and significantly increased in the heated bay especially in May,
suggesting the photosynthesizing algal community activities were
different between the bays, or due to differences in cell numbers.
All these taxa had only differential transcript numbers in the heated
bay and their diverse functions suggested that future climate change
and warming can trigger more diverse community composition
involved in various metabolism pathways.

In summary, this study demonstrated that long-term
(> 50 years) heating of coastal waters (average 5◦C, i.e., comparable
to the expected temperature increase for the Baltic Sea by 2100)
altered the community composition, seasonal dynamics, and
the transcriptome of sediment-bound eukaryotes. Other studies
suggest that sediment eukaryotes show promise to become a tool
for environmental monitoring of coastal systems (Gielings et al.,
2021). Therefore, the results from this study can help predict
the influence of future global warming in sediment communities
and their overlaying pelagic systems, with this study suggesting
a generally more active metabolism during winter. However,
the methodology for characterizing sediment eukaryotes is still
under intense development (Reñé et al., 2020), and future work
can be extended both spatially and temporally to gain a more
comprehensive view of the sediment bound communities.
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