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Caves are ubiquitous subterranean voids, accounting for a still largely

unexplored surface of the Earth underground. Due to the absence of sunlight

and physical segregation, caves are naturally colonized by microorganisms that

have developed distinctive capabilities to thrive under extreme conditions of

darkness and oligotrophy. Here, the microbiomes colonizing three frequently

studied cave types, i.e., limestone, sulfuric acid speleogenetic (SAS), and lava

tubes among volcanic caves, have comparatively been reviewed. Geological

configurations, nutrient availability, and energy flows in caves are key ecological

drivers shaping cave microbiomes through photic, twilight, transient, and deep

cave zones. Chemoheterotrophic microbial communities, whose sustenance

depends on nutrients supplied from outside, are prevalent in limestone and

volcanic caves, while elevated inorganic chemical energy is available in SAS

caves, enabling primary production through chemolithoautotrophy. The 16S

rRNA-based metataxonomic profiles of cave microbiomes were retrieved from

previous studies employing the Illumina platform for sequencing the prokaryotic

V3-V4 hypervariable region to compare the microbial community structures

from different cave systems and environmental samples. Limestone caves

and lava tubes are colonized by largely overlapping bacterial phyla, with

the prevalence of Pseudomonadota and Actinomycetota, whereas the co-

dominance of Pseudomonadota and Campylobacterota members characterizes

SAS caves. Most of the metataxonomic profiling data have so far been

collected from the twilight and transient zones, while deep cave zones

remain elusive, deserving further exploration. Integrative approaches for future

geomicrobiology studies are suggested to gain comprehensive insights into the

different cave types and zones. This review also poses novel research questions

for unveiling the metabolic and genomic capabilities of cave microorganisms,

paving the way for their potential biotechnological applications.
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1 Introduction

Caves are defined as underground voids accessible to humans
(Morgan, 1991). They are present in various lands worldwide
(Ford and Williams, 2007) and represent a huge reservoir of still
unexplored biodiversity. Caves also provide a huge surface for
interaction with colonizing microorganisms, serving as a model
habitat to study the microbial communities living in the subsurface
(Gillieson, 2021). Therefore, cave microbiology has emerged
as a new field of geomicrobiology, continuously improving
thanks to scientific and technological advances in environmental
microbiome studies. The complexity of microbial life implicated
in key processes of cave ecosystems, such as nutritional and
biogeochemical cycles, has recently been highlighted (Zhu et al.,
2022). Microorganisms constitute the majority of rock-associated
biomass in caves, capable of colonizing any cave habitat, including
extremely oligotrophic environments (Reboleira et al., 2022). The
high microbial diversity in these habitats represents a unique
source of new genetic, metabolic, and physiological information,
with a potential impact on pharmaceutical and biotechnological
applications (Zada et al., 2022).

From a geochemical point of view, caves significantly differ
according to the type of rock substrate and the cave formation
processes (White and Culver, 2019; De Waele and Gutierrez, 2022).
The main mechanism is based on rock dissolution, and sedimentary
carbonate rocks constitute the prevalent fraction of soluble rocks on
the Earth. Karst is the name indicating a carbonate rock landscape
and karst terrains represent 15.2 % of the global ice-free continental
surface (Goldscheider et al., 2020).

Among carbonate rocks, those composed of calcite (CaCO3)
are the prevalent substrate for limestone cave formation (Biagioli
et al., 2023), as opposed to the less soluble dolomite [CaMg(CO3)2]
rock. Limestone caves are often epigenic since generated by the acid
rainwater actions that induce the dissolution of underlying calcite
rocks (Culver and Pipan, 2009), while SAS caves are hypogenic
since formed by hydrogen sulfide (H2S)-rich water rising from the
depths of the Earth (Engel et al., 2004b; D’Angeli et al., 2019a).
Other caves are formed by dissolution processes of different rock
types. They include evaporite rocks (gypsum, halite, anhydrite),
which are relatively young with very rapid morphological evolution
(D’Angeli et al., 2017), and silicate caves, which require a very long
formation time since they are embedded in rocks that are poorly
soluble in water, such as sandstone and quartzite (Sauro et al., 2018;
Ghezzi et al., 2022; Liu et al., 2022).

Pseudokarst caves comprise underground environments
generated by mechanisms other than dissolution. Among these,
volcanic caves (Kempe, 2019) including lava tubes are cavities
originating from lava flows and movements (Northup and Lavoie,
2015), glacial caves formed from the action of meltwater flowing
through or under the glaciers (Howarth, 2021), and man-made

Abbreviations: ASV, amplicon sequence variant; DOM, dissolved organic
matter; eDNA, environmental DNA; FISH, Fluorescence in situ hybridization;
FTIR, Fourier Transform Infrared; iHMP, Integrative Human Microbiome
Project; MAG, metagenome-assembled genome; NGS, next-generation
sequencing; ppmv, parts-per-million by volume; OTU, operational
taxonomic unit; POM, particulate organic matter; SAS, sulfuric acid
speleogenesis; SEM, scanning electron microscopy; SRA, Sequence Read
Archive; TOC, total organic carbon; VOC, volatile organic carbon.

cavities, created by human excavation (Parise et al., 2013). Early
studies on cave microbiology date back to the 1960s and have been
conducted on water and sediments using basic microscopy and
culture-based approaches (Caumartin, 1963). It was only in the
1990s that, following the advent of molecular technologies and
the use of the 16S rRNA gene as a phylogenetic marker, it became
possible to study microbial communities in more detail, by gaining
comprehensive taxonomic information from environmental
DNA (eDNA) extracted from cave samples (Engel et al., 2004a).
Although the culturability of bacteria from caves remains very low
(0.02–1%), some strains endowed with biotechnological potential
have been isolated under laboratory conditions (Bender et al.,
2020). Microorganisms ubiquitously colonize caves, though the
microbial density is much less than that of the soil. For example,
a single gram of soil harbors up to 1010 bacterial cells and an
estimated species diversity of 4x103 to 5x104 species (Raynaud and
Nunan, 2014). The microbial density in caves is estimated at <106

microbial cells per gram of sample and varies depending on the
distance from the entrance, the nutrient availability, and the rock
geochemistry (Barton and Jurado, 2007; Barton, 2015).

Given the continuous improvement of next-generation
sequencing (NGS) and analytical chemistry methods, various
culture-independent approaches are being applied to cave
microbiomes, e.g., 16S rRNA metataxonomic profiling (Biagioli
et al., 2023), metagenomic shotgun sequencing (Wiseschart
et al., 2019; Turrini et al., 2020), metatranscriptomics (Mondini
et al., 2022) and proteomics (van Spanning et al., 2022). In
parallel, high-magnification and fluorescence microscopies
have contributed to unveiling biofilm-like structures on cave
surfaces, identifying and quantifying specific taxa composing these
communities, and studying the functional properties of individual
microbial components (Jones et al., 2023). Cave microbiology
has masterly been reviewed in the past, with an emphasis on
geomicrobiology (Northup and Lavoie, 2001; Barton, 2006; Barton
and Northup, 2007), anthropic impact (e.g., Bontemps et al.,
2022), biogeochemical cycling (e.g., Zhu et al., 2022), biodiversity
and functional roles of microbial communities (Engel, 2010;
Kosznik-Kwaśnicka et al., 2022).

To the best of our knowledge, comparative studies of
the microbial communities thriving in different types of caves
(limestone, SAS, and volcanic caves) have not yet been conducted.
Accordingly, here, we will i) describe the complexity of the cave
ecosystem; ii) briefly overview basic concepts in cave microbiology;
iii) describe the fundamental geological features of limestone, SAS,
and volcanic caves, with a focus on the ecology and diversity
of their microbial inhabitants; iv) compare the metataxonomic
profiles of cave microbiomes retrieved from studies employing the
Illumina (MiSeq) sequencing platform for sequencing the V3-V4
hypervariable regions of the prokaryotic 16S rRNA from limestone,
SAS and lava tubes among volcanic caves; v) propose concepts
and ideas for integrative cave microbiome studies, highlighting
key steps of the investigation. We expect this review will also
stimulate the exploitation of novel biotechnological potentials of
cave microorganisms. The following three sections are intended
to provide entry-level geomicrobiological information on the most
common and best-studied cave ecosystems, to push forward and
broaden the research interest into a still elusive component of the
Earth’s microbiome.
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2 The biological complexity of cave
ecosystems

Caves are complex ecosystems comprising abiotic and biotic
components (Culver and Pipan, 2009). All forms of life (i.e., viruses,
bacteria, fungi, algae, protozoa, plants, and animals) have been
described in subterranean ecosystems, including rock surfaces,
groundwater pools, streams, bat guano, sediments, and others
(Culver and Pipan, 2009).

The cave fauna can be divided into three categories based on
adaptation and cave-related life cycle: trogloxenes, troglophiles,
and troglobites (Figure 1). Some animals accidentally enter caves
because they fall in or are transported by water flow. They are
called trogloxenes due to their inability to survive in caves, while
troglophiles are cave temporary resident animals. Troglophiles
freely move in and out of the cave but need to use the Earth’s surface
environment for at least one vital function (i.e., reproduction or
feeding). For instance, bats use caves as shelters during the day, and
exit at night to forage for insects (Măntoiu et al., 2022). Finally,
troglobites are animals permanently confined to subterranean
environments, with specific physiological and morphological
adaptations to cave habitats (Culver and Pipan, 2009).

In general, the cave biota distribution and adaptation
depend on underground environmental conditions. Darkness
is undoubtedly the hallmark of cave environments and the
first ecological driver for autochthonous organisms. The
only alternative to sunlight is the chemical energy deriving
from the oxidation of inorganic compounds, supplied by
chemolithoautotrophic microorganisms (Sogin et al., 2021).
However, caves are oligotrophic environments and the chemical
energy required to sustain primary production is limited, except
in the case of SAS caves (Brad et al., 2021). All other caves are
mostly dominated by heterotrophic organisms that consume
organic matter, originating from outside the cave or generated
inside by autotrophic production, as energy and carbon sources
(Hershey and Barton, 2018). Organic nutrients, comprising
particulate organic matter (POM), dissolved organic matter
(DOM), and volatile organic carbon (VOC), enter the caves in
different ways and quantities (Simon, 2019). They are transported
via three main mechanisms: water, air, and animals (Culver and
Pipan, 2009). Water is the primary nutrient carrier, enabling
the transport of nutrients through flowing and percolation
(Pronk et al., 2009). Surface streams can flow directly into void
environments dragging organic material in the form of debris
or large particles (POM), such as leaves and wood (Simon
et al., 2007). For DOM transportation, rainwater first infiltrates
through the soil and then into the rock microfractures before
reaching the cave level (Simon et al., 2007). Wind and airflow
inside the caves can contain spores, pollen, microorganisms, and
VOCs (Porca et al., 2011). Animals can also transport nutrients
through their movements in and outside the cave (e.g., feces,
eggs, dead bodies).

Based on environmental parameters (light, temperature,
humidity) and nutrient availability, scientists have generally
subdivided caves into four zones, namely the photic, twilight,
transition, and deep zones (Figure 1; Lee et al., 2012). The
photic zone near the cave entrance mostly harbors phototrophic
organisms. Flowering plants (Spermatophyta) are rarely found in

caves, while ferns, mosses, and lichens form the bulk of the plant
biomass in the cave entrance (Glime, 2022).

Progressing from the photic zone to the twilight zone, the light
gradually fades depending on the daily and seasonal arc-like path
of the sun (Behrendt et al., 2020). At this zone, plants can no longer
grow due to low light levels and are generally replaced by algae
(e.g., diatoms and green algae) (Falasco et al., 2014). This zone is
also enriched with microbial species, such as fungi and bacteria,
especially Cyanobacteriota, which produce f and d chlorophylls
that allow them to absorb near-infrared (700–780 nm wavelength)
radiations for oxygenic photosynthesis (Behrendt et al., 2020).
Next, the transition zone is characterized by a complete absence of
light, though both temperature and humidity still vary according
to the climatic conditions of the Earth’s surface and the seasonal
changes (Kosznik-Kwaśnicka et al., 2022).

The transition zone is rich in microbial life, and the extension
of this area can vary greatly depending on orography, the altitude
at which the cave opens, the size and volume of the cave, and the air
circulation inside the cave. Finally, the deep zone is characterized
by darkness, almost constant temperature, humidity close to
saturation (Badino, 2010), and oligotrophy with less than 2 mg/L of
total organic carbon (Hershey and Barton, 2018). Due to its extreme
conditions for life, this last zone of the cave is mainly colonized
by troglobites (Novak et al., 2012), which have evolved various
adaptive traits to darkness and oligotrophy, e.g., depigmentation,
loss of sight sensory organs, the utmost development of touch
sensory organs, lower metabolism, larger and more slender body
shape (Culver and Pipan, 2009). Despite the vast knowledge
of fauna caves in the deep zone, microorganisms thriving in
this hidden part of the Earth remain elusive due to difficult
accessibility, scarcity of biological materials, and challenges in
culture-dependent and -independent approaches for the detection
of cave microorganisms.

Due to their geographic location, temperate caves show
remarkable differences compared with tropical caves. The most
evident difference is temperature, with temperate caves typically
having cooler temperatures, usually around 8–15◦C, while the
temperature is around 25◦C in tropical caves (Mejía-Ortíz et al.,
2020). Interestingly, the biodiversity is considerably higher in
tropical caves than in temperate caves. This difference is linked
to the greater quantity of energy permanently available in tropical
caves, e.g., the abundance of guano resulting from bat colonies
(Gnaspini and Trajano, 2000). However, most animals that inhabit
tropical caves do not exhibit specific adaptations to cave life,
different from troglobites that inhabit temperate caves, where
climate is more stable and trophic resources are generally scarce
(Howarth, 1980).

3 Cave microbiology: an overview

Cave microbiology is a growing research field, continuously
providing novel insights into the evolution and adaptation of cave
microbial inhabitants. Prominent topics in cave microbiology
grossly refer to five research areas: the discovery of new species,
geo-microbial interactions, microbial diversity assessment,
anthropogenic impacts on cave microbiomes, mechanisms
of microbial adaptation, and biotechnological potentials of
cave microorganisms.
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FIGURE 1

Schematic representation of the different cave zones, and their characteristics in relation to light intensity, temperature, humidity, airflow, and
nutrient availability.

By analyzing research literature, out of 1,226 research papers
retrieved from the Scopus database (December 2023) using
“cave AND bacteria” and “cave AND microbes” as keywords,
112 described new bacterial species (nov. sp. cave bacteria as
keywords) and their adaptive traits to the cave environment. Due
to isolation from the Earth’s surface and the selective pressure
imposed by diverse habitats, cave microorganisms can accumulate
genetic changes that make them distinct from their surface soil
counterparts (Griebler et al., 2014).

Historically, culture-based approaches have been the main
strategy for studying cave microbial species. For instance, members
of the Streptomyces genus have been isolated from Altamira Cave
and have been shown to precipitate calcium carbonate in laboratory
cultures (Groth et al., 1999). By applying novel high-throughput
technologies, Candidatus Mycobacterium methanotrophicum was
isolated from an extremely acidic biofilm growing on the wall
of a SAS cave in Romania (van Spanning et al., 2022). This
bacterium represents the first member of Actinomycetota to
show aerobic methanotrophic properties, previously described
only in Pseudomonadota and Verrucomicrobiota. The probability
of discovering new microbial species is likely to increase when
different types of caves, or different cave zones, especially the
very deep ones, will be explored. Another critical feature of
cave microorganisms is their ability to interact with the rock
surface (Jones and Northup, 2021). They can contribute to rock
dissolution by releasing corrosive organic acids, e.g., oxalic acid
and formic acid (Bin et al., 2008), or ligands such as metal-
complexing agents, like siderophores, enabling the mobilization of
mineral elements necessary for their nutrition (Duncan et al., 2021).
The metabolic activity of cave microorganisms can also induce
biomineralization or mineral depositions, thereby contributing to
the formation of secondary mineral deposits called speleothems
(Northup and Lavoie, 2001). For instance, the moonmilk formation

is characterized by microcrystalline aggregates textures (i.e., calcite,
aragonite, hydromagnesite) resulting from the precipitation of
calcite fibers induced by certain cave bacteria, e.g., Actinomycetota
(Cañaveras et al., 2006; Cacchio et al., 2014; Maciejewska
et al., 2017). These biomineralization abilities could be useful
in formulating novel bacterial-based building materials (Kosznik-
Kwaśnicka et al., 2022).

Furthermore, with the advent of NGS technologies, cave
microbial diversity has more intensively been investigated
(Tomczyk-Żak and Zielenkiewicz, 2016). Metataxonomic profiling
of the prokaryotic hypervariable regions (e.g., V3-V4) of the 16S
rRNA gene, the fungal internal transcribed spacer (ITS) rRNA
gene, and the eukaryotic 18S rRNA gene unraveled the great
diversity of cave microbial communities, which are consortia
composed of many species from multiple phyla (Hershey and
Barton, 2018). With shotgun sequencing methodologies, the
abundance of underexplored domains, including Archaea,
Eukarya, and Viruses was revisited (Rossmassler et al., 2016;
Kimble et al., 2018; Wiseschart et al., 2019; Turrini et al., 2020). The
high species richness in oligotrophic caves remains challenging to
explain (Hershey and Barton, 2018). Some authors attribute this
phenomenon to competitive exclusion (Prescott et al., 2022), while
others suggest interspecies interactions to exploit the scarcity of
available nutrients (Barton and Jurado, 2007).

In this context, cave microbial communities are model systems
for investigating bacterial relationships and even cell-to-cell
communication (Ma et al., 2021). However, comparative studies
on cave microbial diversity are challenging due to various factors,
including rock types (e.g., limestone, quartz, basalt, gypsum),
environmental matrix (wall rock surface, sediment, groundwater
water), and the sampling location inside the cave (photic, twilight,
transient, and deep zone). As for other extreme environments,
caves have attracted researchers to study the ecological implications
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of resistance to antibiotics (Bhullar et al., 2012), heavy metals
(Hamedi et al., 2019), salinity (Farda et al., 2022a), UV radiation
(Snider et al., 2009), radioactivity (Enyedi et al., 2019), and
desiccation (Vardeh et al., 2018). For instance, in a remote zone
at 400 m depth of a pristine cave in New Mexico, isolated for
over 4 million years, bacteria were resistant to many antibiotics
used in human medicine (Bhullar et al., 2012). Isolate LC231
belonging to Paenibacillus sp. was resistant to 26 of 40 antibiotics
tested, including daptomycin, a relatively new antibiotic produced
by Streptomyces roseosporus (Pawlowski et al., 2016). This finding
supported the notion that antibiotic resistance mechanisms not
only spread in the environment but have existed long before
the selection pressure created by human use of antibiotics
(Bhullar et al., 2012).

Therefore, caves constitute an excellent model to study
the origins and the evolution of the mechanism of resistance
in natural microbiomes, unexposed to exogenous interference.
It is also clear that caves are fragile ecosystems, extremely
susceptible to anthropogenic impact (Bontemps et al., 2022). For
instance, show caves which attract tourists due to their beautiful
speleothems or paleolithic paintings, alter their autochthonous
microbial community structures due to the introduction of
allochthonous species of presumptive human origin (Bontemps
et al., 2022). The introduction of artificial light sources has
been found to induce a progressive proliferation of greenish
biofilms named “lampenflora” (Kosznik-Kwaśnicka et al., 2022).
Additional factors, including a large number of visitors, and
fluctuations in both environmental parameters and nutritional
levels, were also associated with microbial community shifts and
the appearance of alien species (Alonso et al., 2019; Rachid and
Güngör, 2022). However, a dearth of information is currently
available about the human impact on other types of caves,
including polluted natural caves, especially those in industrial
and urban areas (Qian et al., 2020; Scharping and Garey, 2021).
Regarding the biotechnological potential, cave autochthonous
microorganisms have extensively been investigated for their
capacity to produce bioactive compounds (Ghosh et al., 2017a;
Rangseekaew and Pathom-aree, 2019; Farda et al., 2022a; Zada
et al., 2022). Actinomycetota, the main group of antibiotic-
producing microorganisms (Barka et al., 2016), are generally
abundant in limestone and some volcanic caves (Riquelme et al.,
2017; Covington et al., 2018), and interesting antimicrobial
properties have been documented for culturable Streptomyces
strains isolated from moonmilk cave deposits (Maciejewska et al.,
2016). Production of novel add-value secondary metabolites has
been documented in cave isolates, including cervimycins by
Streptomyces tendae in a limestone cave from Grotta dei Cervi,
Italy (Herold et al., 2005), xiakemycin and huanglongmycin by
Streptomyces sp. CC8-201 from karst caves in China (Jiang et al.,
2018), hypogeamicins by Nonomuraea species from Hardin’s cave
system in Tennessee, USA (Derewacz et al., 2014), and curamycin
by Streptomyces benahoarensis from a lava tube in La Palma Island
(Canary Islands), Spain (Gonzalez-Pimentel et al., 2022). Recently,
Cyanobacterota isolates from the lightened walls of the Stiffe cave in
Italy were found to produce poly-β hydroxybutyrate for potential
use in bioplastics production (Djebaili et al., 2022). Given the
problematic culturability of cave bacteria, attempts should be made
to implement culture-based strategies for better exploiting their
biotechnological potential.

4 Main cave systems and microbial
colonization patterns

Most studies on cave microbiology have been conducted
in limestone, SAS, and volcanic caves. Considering the crucial
influence of the mineral matrix on the colonizing microbial
communities, hereafter we summarize the mechanisms of
formation and the geological structure of limestone, SAS, and
lava tubes among volcanic caves, and provide an overview of their
microbial diversity.

4.1 Limestone caves

Limestone caves are natural cavities in carbonate rocks formed
underneath the Earth’s surface, and they can be very different
from each other. Some are small, which humans can hardly
penetrate, others develop complex networks, which propagate
underground for up to several hundred km, reaching over one km
in depth (Klusaitė et al., 2016). Most of the largest limestone caves
are complex underground structures consisting of rooms, wells,
meanders, and intercommunicating tunnels, which are organized
to form a system or karst complex (Figure 2A). Mammoth Cave
National Park, a World Heritage site in Kentucky, in the USA, has
the world’s most extended natural cave network with more than
675 km of surveyed passages. Another World Heritage site, Mulu
National Park in Sarawak (Malaysia), contains the world’s largest
underground room - Sarawak Chamber in Nasib Bagus Cave. It
covers an area of about 160,000 m2 and has a volume of about 10
million m3. The deepest limestone cave in the world is Verëvkina
(Veryovkina) Cave in the Arabika Massif in Abkhazia (Georgia),
which is 2,2 km deep (Gulden, 2019).

Dissolution of carbonate rocks requires acidic water that
increases the solubility of calcite. CO2 present in the atmosphere
and soil reacts with rainwater by forming carbonic acid (H2CO3)
(Eq. 1), which further dissociates, producing protons (H+) that
acidify the solution (Eq. 2). Acid water induces the dissolution of
carbonate bedrock to release bicarbonate (HCO3

−) and calcium
(Ca2+) ions (Eq. 3) (Ford and Williams, 2007). These simple
chemical reactions can be expressed as follows:

CO2 +H2O↔ H2CO3 (1)

H2CO3 ↔ H+ +HCO−3 (2)

Ca2+
+ 2HCO−3 ↔ CaCO3 + CO2 +H2O (3)

Increasing CO2 or decreasing Ca2+ drives the Eq. 3 reaction
to the left, inducing calcite dissolution, while increasing Ca2+

or decreasing CO2 drives the Eq. 3 reaction to the right,
precipitating calcite.

Irrespective of whether they are epigenic or hypogenic,
limestone caves originate from the action of acidic water that flows
through the fractures of the bedrock, thus generating subsurface
voids. In epigenic caves (Figure 2A), water flows by gravity through
the limestone massif causing subterranean drainage (groundwater
circulation), and ultimately it returns to the surface at the springs.
Conversely, in hypogenic caves, acidic water ascends from the
depths of the Earth causing mineral dissolution, as exemplified in
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FIGURE 2

Geological characteristics of limestone, SAS, and volcanic (lava tubes) caves. (A) Schematic drawing of an epigenic limestone cave with the three
zones of groundwater circulation. The “feeding zone” is the interface zone between the surface and caves that absorbs and collects rainwater and
surface runoff waters. The “unsaturated zone” is where superficial waters flow in depth through mainly vertical paths, including wells and meanders
or in correspondence with rock fractures. The “saturated zone” corresponds to totally submerged tunnels, ducts, and fractures, where the
pressurized waters move in a sub-horizontal direction toward the emergency zone (spring). (B) Speleogenesis of hypogenic sulfuric acid caves.
Ascending water from the depths of the Earth rich in aggressive substances (H2S, CO2) induces the dissolution of carbonate rock. (C) Formation of
lava tubes is the consequence of cooling, emptying, and crusting in the lava flow channel.

SAS caves (Figure 2B and the following session 3.2). A karst system
can identify three diverse zones with very different groundwater
circulations: feeding, unsaturated, and saturated (Palmer, 1991;
Culver and Pipan, 2009; Figure 2A).

The lowest zone of the karst system is an extreme oligotrophic
environment made of tunnels filled with water (saturated zone) and
inhabited by obligate subterranean aquatic animals (stygobionts)
whose sustenance depends on chemolithoautotrophic organic
matter production (Hutchins et al., 2016). The karst system is not
an isolated environment; it is indeed an open system in continuous
contact with the external environments by exchanging flows of
matter (mainly air, water, and solutes) (Figures 3A, B) and energy
(heat) (Waring et al., 2017).

Near the cave entrance, microbial mats overlaid by water
droplets, reflecting yellow-gold or silver colored light when
illuminated with an LED lamp, can be observed on the
walls and ceilings (Pašić et al., 2009; Turrini et al., 2020;

Martin-Pozas et al., 2023). These microbial communities are
typical of limestone caves and are located predominantly in the
trophic transition zone (Porca et al., 2012). Air entering the cave
undergoes a decrease in temperature and an increase in relative
humidity until it reaches the dew point (Mulec et al., 2015). The
water vapor passes to the liquid phase, creating condensation
droplets on the surface of the microbial matter (Figures 3C, D).
These biofilm-like structures deserve more thorough studies to
better understand the role played by water condensation droplets
in their maintenance and functionality.

4.2 Sulfuric acid speleogenetic (SAS)
caves

Some limestone caves originate from carbonate rock
dissolution by H2S- and H2SO4-rich water, and therefore they
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FIGURE 3

Examples of the unsaturated or vadose zone in limestone caves from Lazio region, Italy. Water is transferred in the deep zone of the cave across
vertical wells (A–B). Biofilms colonize the walls near the cave entrance and appear overlaid by water droplets reflecting gold- or silver-colored light
when illuminated with an LED lamp (C). Close-up image (D) showing yellow microbial communities organized into similarly sized spheroidal
structures (about 60 µm in diameter) retaining water droplets due to the condensation of the water vapor. Scale bar (C, 100 µm). Photo by P. Turrini.

are called SAS caves (Rossmassler et al., 2012; Gulecal-Pektas and
Temel, 2017; de Bruin et al., 2022). Although both biotic and abiotic
processes are implicated in the development of large sulfuric-acid
karsts (Laurent et al., 2023), SAS caves are typically considered
hypogenic since they originate from the action of water ascending
from the depths of the Earth (Forti et al., 2002). This water
contains high concentrations of aggressive substances, primarily
H2S, and rises through rock fissures and tectonic over-pressuring
or hydraulic gradients from sediment basins of the volcanic source
to the surface (Figure 2B). When H2S-containing fluids get in
touch with carbonate bedrock, a cave occurs (Egemeier, 1981).
Indeed, H2S-rich water meets oxygenated groundwater fed by
meteoric infiltration or oxygen from the atmosphere and oxidizes
to sulfuric acid (Eq. 4) that immediately reacts with carbonate

bedrock by forming gypsum (CaSO4 · 2H2O) and CO2 (Eq. 5).

H2S+ 2O2 → H2SO4 (4)

H2SO4 + CaCO3 +H2O→ CaSO4 · 2H2O+ CO2 (5)

Gypsum (CaSO4 · 2H2O) removal through flowing meteoric
water increases void spaces, enlarging the cave (Palmer, 1991;
Palmer and Hill, 2019). SAS caves have been reported from many
areas worldwide and occur in carbonate rocks in different climates,
representing less than 10% of all known caves (Klimchouk,
2017). H2S and elemental sulfur are toxic to most organisms,
though some chemolithoautotrophic sulfur-oxidizing bacteria
can use reduced sulfur compounds as energy sources and
electron donors for their energetic metabolisms (Engel, 2007;
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Kumaresan et al., 2014). In correspondence with the H2S-rich
rising water, chemolithoautotrophic floating filaments grow on
the water surface (Figure 4A; Rohwerder et al., 2003; D’Angeli
et al., 2019b), while biofilms thrive as streamers and sedimented
filaments in the subaqueous environment (Engel et al., 2003;
Jones et al., 2010; Figure 4B). Droplets of freshwater on
the walls and ceilings of SAS caves absorb H2S degassing
from the water table, and chemolithotrophic oxidation of
H2S to sulfuric acid occurs (Hose et al., 2000). The most
acidic drops accumulate on the tips of the gypsum crystals,
forming characteristic highly acidic viscous peduncles called
snottites (Figure 4C; Hose et al., 2000; Macalady et al., 2006;
Jones et al., 2012). These extremely acidic (pH∼1) biofilms
attached to cave walls or ceilings are sulfur-based chemosynthetic
ecosystems and are observed where H2S concentration in the
cave atmosphere is 0.2–25 parts-per-million by volume (ppmv)
(Jones et al., 2016).

Biovermiculations are typical formations that can be found
in SAS caves, located on the surface wall rock at a certain
distance from the SAS degassing water. They incorporate microbial
populations forming characteristic microbial colonization patterns
on the rock resembling leopard skin and appear as worm-like
deposits of mud and clay (Figure 4D; Hose et al., 2000; Jones et al.,
2008; D’Angeli et al., 2019b). Vermiculations from the Frasassi
Cave were found to be composed of densely packed prokaryotic and
fungal cells in a mineral-organic matrix containing 5–25% organic
carbon (Jones et al., 2008).

4.3 Volcanic caves

Different from dissolution caves, volcanic caves are formed
following eruption and lava outflow. Molten rock (magma) rises
to the surface from depths and loses gas and aqueous vapor

FIGURE 4

Microbial colonization patterns from a SAS cave in the Lazio region, Italy. Sulfur-oxidizing microbial communities floating on the water surface (A) or
forming streamers and filaments in the subaqueous environment (B). Microbial communities form highly acidic viscous peduncles called snottites
(C) or vermiculations on the surface wall rock (D). Scale bar (A, 10 cm; B, 1 cm; C, 1 cm). Photos in (A) and (D) are by P. Turrini, (B) and (C) are
courtesy of A. Benassi (June 2021).
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forming the so-called lava on the surface. The viscosity of the
lava depends on its silica content. Low-silica basalt lava has a low
viscosity and can form fast-moving narrow lava streams. Volcanic
caves are indeed a large category of cavities in volcanic rocks,
and they can be either primary or secondary caves, depending on
their genesis (Kempe, 2019). Among primary volcanic caves, lava
tubes (Figure 2C) are the most common caves (Palmer, 2007).
They are formed as the consequence of cooling and crusting
over the lava flow channel, followed by the emptying out of the
molten lava leaving behind an empty conduit tube (Figures 2C,
5A; Palmer, 2007; Northup and Lavoie, 2015). Lava tubes are
aphotic, shallow subsurface voids that, depending on age and lava
texture, can be colonized by plant roots growing through the caves’
ceilings in search of water (Palmer, 2007). These roots, along with
water percolating from the surface, bring carbon and nitrogen
into lava tubes, creating a mosaic of nutrient availability for
diverse microbial mats, mainly consisting of heterotrophic bacteria

and fungi, covering the cave walls and ceilings (Figures 5B, C;
Hathaway et al., 2014; Riquelme et al., 2015; Gonzalez-Pimentel
et al., 2018; Nicolosi et al., 2023). Volcanic caves are widespread
worldwide (Gulden, 2019), and contain many secondary mineral
deposits with rich biological components that have gained interest
as biosignatures for life, aiding the search for life on Mars (Northup
et al., 2011). Microbial colonization patterns are visible in a range
of colors and shades, including white, yellow, orange, blue-green,
gold, and pink mats that cover the walls of lava tubes in various
volcanic locations such as the Azores, Hawaii (Hathaway et al.,
2014), California (Lavoie et al., 2017), and New Mexico (Northup
et al., 2011). These microbial formations are closely associated with
secondary mineral deposits, including amorphous copper-silicate
deposits and iron-oxide formations (Northup et al., 2011). Coloring
is likely to originate from pigments associated with some bacteria
present in the colonization patterns, particularly Actinomycetota
(Lavoie et al., 2017; Gonzalez-Pimentel et al., 2018).

FIGURE 5

Example of a lava tube. Entrance of Montana Corona cave, Lanzarote, Canary Islands (A). Microbial communities live on the basaltic rock surface (B).
Close-up of the microbial communities (C). Scale bar (A, 1 m; B, 1 cm; C, 100 µm). Courtesy of A. Benassi (January 2022).
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5 Microbial diversity in caves

5.1 Bacteria in caves

An extensive literature search was conducted to identify the
most prevalent bacterial taxa in limestone, volcanic, and SAS
caves. Out of 225 research articles screened in our literature
analysis, only 20 of them, reporting metataxonomic data for 105
samples, met the inclusion criteria for a comparative assessment
of bacterial diversity in caves, as determined by sequence analysis
of the V3-V4 hypervariable regions of 16S rRNA using the
Illumina (MiSeq) platform (Supplementary Figure 1). With the
improvement of deep sequencing technologies, it became possible
to detect extremely rare and still unclassified taxa. These are
represented by taxonomic units with very low abundance together
with unassigned sequences that could not be classified using
currently available sequence taxonomy reference databases. Data
on cave type, geographic location, and relative distribution of major
bacterial taxa in the scrutinized cave samples are provided in
Supplementary Dataset 1.

Twenty-three prevalent phyla were observed in limestone
caves, with major variation in abundance depending on the

sampled site and type of matrix. Based on average abundance
values of 78 environmental samples from 17 limestone caves
worldwide, it can be observed that Pseudomonadota were the most
abundant phylum (40.0%), followed by Actinomycetota (13.5%),
Acidobacteriota (9.5%), Verrucomicrobiota (5.3%), Bacillota
(4.5%), Chloroflexota (4.1%), Nitrospirota (4.1%), Planctomicetota
(3.5%), Candidatus Patescibacteria (3.0%), Bacteroidota (2.9%),
Gemmatimonadota (1.7%), Candidatus Methylomirabilota
(0.7%), Myxococcota (0.6%), Bdellovibrionota (0.5%), Candidatus
Elusimicrobiota (0.4%), Candidatus Dependentiae (0.3%),
Candidatus Latescibacteria (0.3%), Cyanobacteriota (0.2%),
Candidatus Rokubacteria (0.2%), Candidatus GAL15 (0.1%), NB1-j
(0.1%), Fibrobacterota (>0.1%), Campylobacterota (>0.1%), and
others (4.5%) (Figure 6). The overall distribution of prevalent
phyla was retained irrespective of the geographical location of
the caves, and was remarkably similar to that of volcanic caves
(lava tubes), even if Actinomycetota were more abundant in the
latter cave type (Figure 6). Based on average abundance values
of 17 environmental samples from 3 lava tubes worldwide, a
predominance of Actinomycetota (35.0%) and Pseudomonadota
(34.6%) was observed, followed by Acidobacteriota (7.4%),
Cyanobacteriota (3.5%), Chloroflexota (2.8%), Planctomycetota

FIGURE 6

Boxplot of bacterial communities in limestone, volcanic (lava tubes), and SAS caves determined by 16S rRNA gene (V3-V4) sequencing on Illumina
platform. Major phyla of pooled samples (water, sediment, biofilm) from various limestone caves retrieved from Leuko et al. (2017), Oliveira et al.
(2017), Dhami et al. (2018), Alonso et al. (2019), De Kumar et al. (2019), Long et al. (2019), Dong et al. (2020), Jurado et al. (2020), Park et al. (2020),
Addesso et al. (2021), Chen et al. (2021), Koner et al. (2021), Farda et al. (2022b), Bogdan et al. (2023), Martin-Pozas et al. (2023). The phyla pattern of
microbial mats on the rock surface of volcanic caves (lava tubes) was obtained from Gonzalez-Pimentel et al. (2018), Gonzalez-Pimentel et al.
(2021), Nicolosi et al. (2023). The phyla pattern of biofilms thriving as streamers and sedimented filaments in the water of SAS caves was obtained
from D’Angeli et al. (2019a), Jurado et al. (2021). The boundaries for the first and third quartiles are shown (box length), with the centerline
representing the median, the symbol (†) indicating the average, and the whiskers representing the maximum/minimum values. Raw data are
provided in Supplementary Dataset 1.
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(2.5%), Nitrospirota (1.8%), Bacteroidota (1.7%), Bacillota (1.7%),
Candidatus Rokubacteria (1.2%), Candidatus Patescibacteria
(1.1%), Gemmatimonadota (0.7%), Verrucomicrobiota (0.2%) and
others (5.9%) (Figure 6).

The average phyla distribution in 10 environmental
samples from two SAS caves showed the dominance of
Pseudomonadota (40.0%) and Campylobacterota (16.5%), followed
by Bacteroidota (10.2%), Chloroflexota (4.4%), Candidatus
Patescibacteria (3.8%), Planctomicetota (3.7%), Spirochaetota
(2.3%), Acidobacteriota (1.9%), Actinomycetota (1.2%),
Chlamydiota (0.9%), Verrucomicrobiota (0.6%), Nitrospirota
(0.5%), Bacillota (0.5%), Gemmatimonadota (0.4%) and others
(13.3%) (Figure 6).

Following the updated taxonomic revision of bacterial phyla
(Oren and Garrity, 2021), the class-level distribution of the
Pseudomonadota members (Alpha-, Beta-, Gamma-, and Delta-
proteobacteria) and the Campylobacterota phylum (formerly
Epsilonproteobacteria) were compared for the three types of caves.
A remarkably different distribution of taxa was observed in the
three cave types; Gammaproteobacteria predominated in limestone
and volcanic caves, whereas the phylum Campylobacterota
(heterotypic synonym Epsilonproteobacteria) dominated in SAS
caves (Figure 7). In addition to the Fetida Cave, Italy (Figure 7),
also the Lower Kane Cave, USA (Engel et al., 2003), the Frasassi
Cave, Italy (Macalady et al., 2008; Zerkle et al., 2016) and
the Acquasanta Terme Cave, Italy (Jones et al., 2010) showed
Campylobacterota as the major contributor to microbial mats.

According to the selected literature (Supplementary
Dataset 1), the taxonomic data of bacterial communities
from volcanic (lava tubes) and SAS caves are mainly referred
to biofilms and microbial aggregates collected from the rock
surfaces and H2S-rich groundwater, respectively (Figure 6 and
Supplementary Dataset 1).

Three different types of matrices, namely biofilms, sediments,
and water, are commonly investigated at the microbiological level
in limestone caves. Figure 8 illustrates pooled data on the relative
abundance of bacterial phyla in biofilm, sediment, and groundwater
samples (33, 34 and 11 samples, respectively) taken from 17
limestone caves worldwide. The most abundant phyla in biofilm
and sediment samples were (respectively) Pseudomonadota (45.1–
40.9%) followed by Actinomycetota (15.0–15.3%), Acidobacteriota
(9.0–11.6%), Verrucomicrobiota (0.6–2.4%), Bacillota (4.0–6.1%),
Chloroflexota (3.6–5.2%), Nitrospirota (5.0–3.0%), Planctomycetota
(4.6–3.1%), Bacteroidota (2.3–2.9%), Gemmatimonadota (1.9–
2.0%), and others (5.7–4.3%). Differently, the abundance of phyla
in water samples was Verrucomicrobiota (28.3%), Pseudomonadota
(22.3%), Candidatus Patescibacteria (16.9%), Bacteroidota (4.4%),
Acidobacteriota (4.2%), Nitrospirota (3.7%), Myxococcota (3.5%),
Bdellovibrionota (3.5%), Actinomycetota (3.4%), Chloroflexota
(2.5%), Candidatus Elusimicrobiota (2.1%), Planctomicetota
(1.5%), Candidatus Methylomirabilota (1.2%), Bacillota (0.4%),
Fibrobacterota (0.4%), Gemmatimonadota (0.3%), Cyanobacteriota
(0.2%), and others (1.0%).

It was interesting to notice the very similar distribution
of bacterial phyla in biofilms and sediments, both showing
remarkable differences from water samples taken from the same
cave. Sediments are likely to serve as a reservoir and source
of bacteria which can spread on cave wall surfaces giving
rise to biofilm formations on suitable rock matrices under

FIGURE 7

Boxplot of bacterial communities in limestone, volcanic (lava tube),
and SAS caves determined by 16S rRNA gene (V3-V4) sequencing
on Illumina platform. Relative composition of Pseudomonadota at
the class level and Campylobacterota (heterotypic synonym
Epsilonproteobacteria) phylum. Major classes of pooled samples
(water, sediment, biofilm) from various limestone caves retrieved
from Leuko et al. (2017), Oliveira et al. (2017), De Kumar et al. (2019),
Jurado et al. (2020), Park et al. (2020), Addesso et al. (2021), Farda
et al. (2022b), Martin-Pozas et al. (2023). The class pattern of
microbial mats from volcanic caves (lava tubes) was obtained from
Gonzalez-Pimentel et al. (2018), Gonzalez-Pimentel et al. (2021),
Nicolosi et al. (2023). The class pattern of biofilms thriving as
streamers and sedimented filaments in the water of SAS caves was
obtained from D’Angeli et al. (2019a), Jurado et al. (2021). The
boundaries for the first and third quartiles are shown (box length),
with the centerline representing the median, the symbol (†)
indicating the average, and the whiskers representing the
maximum/minimum values. Raw data are provided in
Supplementary Dataset 1.

permissive environmental conditions (Martin-Pozas et al., 2023).
Overall, one major difference between groundwater samples
and both biofilm and sediment samples was the prevalence of
Verrucomicrobiota and Candidatus Patescibacteria, and the relative
scarcity of Actinomycetota. This is not surprising, given that
Verrucomicrobiota and Candidatus Patescibacteria are prominently
aquatic taxa, as opposed to the ubiquitous Actinomycetota that
can thrive in both terrestrial and aquatic environments (Dhami
et al., 2018). Indeed, Verrucomicrobiota were detected with high
abundance in cave drip water, whereas they were rare in sediments
and biofilms (Bogdan et al., 2023; Martin-Pozas et al., 2023).

5.2 Functional roles of bacteria in
limestone and volcanic caves

The success of Pseudomonadota in colonizing cave
environments may partly be attributed to their involvement
in sulfur cycling, and their ability to degrade a wide range of
organic compounds, fix atmospheric carbon, and transform
nitrogen (Tomczyk-Żak and Zielenkiewicz, 2016). Among
Gammaproteobacteria, the prevalent orders in caves are
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FIGURE 8

Distribution of the main bacterial phyla in three types of matrices (water, biofilm from wall surfaces, and sediment) from limestone caves determined
by 16S rRNA gene (V3-V4) sequencing on Illumina platform. Phyla distributions of the biofilm samples were obtained from Leuko et al. (2017), Alonso
et al. (2019), De Kumar et al. (2019), Long et al. (2019), Dong et al. (2020), Jurado et al. (2020), Addesso et al. (2021), Chen et al. (2021), Koner et al.
(2021), Martin-Pozas et al. (2023). Phyla distributions of the sediment samples were obtained from Oliveira et al. (2017), Dhami et al. (2018), Dong
et al. (2020), Park et al. (2020), Koner et al. (2021), Farda et al. (2022b), Bogdan et al. (2023), Martin-Pozas et al. (2023). Phyla distribution of the water
samples was obtained from Chen et al. (2021), Bogdan et al. (2023), Martin-Pozas et al. (2023). The boundaries for the first and third quartiles are
shown (box length), with the centerline representing the median, the symbol (†) indicating the average, and the whiskers representing the
maximum/minimum values. Raw data are provided in Supplementary Dataset 1.

Pseudomonadales, Xanthomonadales, and Chromatiales, which are
generally associated with freshwater (Porca et al., 2012; Hershey
et al., 2018). In the Alphaproteobacteria class, Rhizobiales are
typically associated with nitrogen fixation (Carvalho et al., 2010),
and are generally found near the cave entrance, their tropism
being influenced by the nearby rhizosphere community and the
availability of nutrients from root exudates (Michail et al., 2021).
Sphingomonadales can degrade aromatic compounds (Marques
et al., 2019). Caulobacterales (e.g., members of the Brevundimonas
genus) are often isolated from caves (Ghosh et al., 2017b; Zhu et al.,
2021). Within the class Betaproteobacteria, the dominant order
is Nitrosomonadales (including Nitrosomonas and Nitrosospira)
which are ammonia-oxidizing bacteria (Zhao et al., 2017; Kimble
et al., 2018; Jurado et al., 2020). Actinomycetota colonize both
limestone and volcanic caves, mainly due to their broad adaptive
abilities. For instance, they can produce degradative enzymes for
numerous natural macromolecules (Riquelme et al., 2017; Hamedi
et al., 2019), and release secondary metabolites such as antibiotics
to prevent nutrient withholding by competitors under oligotrophic
conditions (Barka et al., 2016; Maciejewska et al., 2016). Crossiella
(Pseudonocardiales) is a common inhabitant of both limestone
and volcanic caves and is often isolated from moonmilk deposits,
where it plays a critical role in calcite precipitation through urease
activity-dependent alkalinization (Gonzalez-Pimentel et al., 2021).

Crossiella also provided a new model of bacterial proliferation
and dispersion in caves, since free Crossiella cells from surface
and underground sediments can attach to cave walls and form
the first filaments that subsequently evolve into mature biofilms
(Martin-Pozas et al., 2023). The family Euzebyaceae has been
reported to be abundant in microbial mats of lava tubes (Riquelme
et al., 2015; Gonzalez-Pimentel et al., 2018) and limestone caves
(Ma et al., 2021).

Bacteria of the genus Streptomyces (Maciejewska et al., 2017;
Oliveira et al., 2017; Long et al., 2019) are the most abundant
producers of antimicrobials and play a role in maintaining the
microbial community by inhibiting the growth of surrounding
microorganisms (Park et al., 2020). Bacteria belonging to the
phylum Acidobacteriota are ubiquitous in various terrestrial
environments (Kalam et al., 2020) and relatively abundant in caves
(Figure 6 and Supplementary Dataset 1). Although acidobacterial
sequences are preponderant in soil samples and account for a
significant fraction of cave microbiomes, the ecological role and
metabolic function(s) of these bacteria remain elusive due to
their recalcitrance to laboratory cultivation. Some Acidobacteriota
members have been classified as k-strategists, in that they have
oligotrophic metabolism which enables them to thrive in settings
with limited nutritional availability with slow growth rates (Kalam
et al., 2020). These features are likely to contribute to the
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environmental fitness of Acidobacteriota in caves (Fierer et al.,
2007). Bacillota is a phylum frequently found in caves due to
their resistance to desiccation and nutrient stress (Dong et al.,
2020). Both anaerobic (e.g., Clostridium spp.) and aerobic (e.g.,
Bacillus spp.) spore-formers were detected in caves (Oliveira et al.,
2017). The Chloroflexota are CO2-fixing autotrophic green non-
sulfur bacteria that frequently colonize volcanic caves, where they
represent one of the most abundant phyla (Riquelme et al., 2015).

While nitrogen is a limiting nutrient in caves (Anda et al., 2020),
the chemolithoautotrophic members of phylum Nitrospirota are
relatively abundant and ubiquitous in subterranean environments,
where they play a role in primary production by assimilating
inorganic carbon (Lücker et al., 2010; Mueller et al., 2023). The
ammonia-oxidizing Nitrosospira and nitrite-oxidizing Nitrospira
complete the entire nitrification cycle and support primary
production in oligotrophic environments (Lavoie et al., 2017; Leuko
et al., 2017). Nitrospirota members were detected in a variety of
subterranean environments, e.g., on a cave wall in the western Loess
Plateau of China (Anda et al., 2020), in the Su Bentu limestone
cave in Sardinia (Leuko et al., 2017) and the limestone Pindal Cave
in Spain (Martin-Pozas et al., 2023), but also in speleothems of a
silicate cave in Guiana (Liu et al., 2022) and in the lava tubes of
Lava Beds National Monument, USA (Lavoie et al., 2017). Members
of Thermodesulfovibrionia, a class of Nitrospirota characterized
by hydrogen oxidation, sulfate reduction, nitrate reduction, and
sulfur disproportionation, are rare in surface environments but are
frequent in marine and terrestrial subsurface aquifers (D’Angelo
et al., 2023).

Bacteroidota are common inhabitants of caves (Figure 6
and Supplementary Dataset 1) and have been proposed
as bioindicators of human disturbance since their relative
abundance significantly increased in a cave open to tourists
(Alonso et al., 2019). Indeed, the most convincing alteration of
the microbiota caused by touristic visits to show caves is the
occasional introduction of human commensal microorganisms,
like Staphylococcus spp. or Enterobacteriaceae (Espino del
Castillo et al., 2018; Bontemps et al., 2022). Seemingly, the
overall distribution of microbial phyla in caves reflects what is
observed in the soil (Hershey and Barton, 2018). It should be
considered that microorganisms can constantly gain access to
the caves through entrances, underground streams, air currents,
and percolating water, continuously modifying the native cave
microbial communities (Wu et al., 2015). However, at lower
taxonomic levels, only 16 % overlap of OTUs was observed
between the cave and external microbiomes in the limestone
Kartchner Caverns, Arizona (Ortiz et al., 2014), and 11.2 %
between surface soil and microbial mats collected from lava tubes
of Lava Beds National Monument, California (Lavoie et al., 2017).
These data support the hypothesis that cave-indigenous microbial
populations differ from surface soil populations. Indeed, Earth’s
surface microorganisms can migrate into the caves, but once there,
environmental, and chemical factors determine a selective pressure
that selects those microorganisms that better adapt to the harsh
conditions dictated by the caves.

Most cave microbiology studies have been performed in easily
accessible shallow caves or near cave entrances, while limited
information is available in the deep zone. In the Krubera-Voronja
Cave, one of the deepest limestone caves in the world, high
microbial diversity was observed at the phylum and genus levels

(Kieraite-Aleksandrova et al., 2015). Pseudomonadota were most
abundant in the lower parts of the cave, while Actinomycetota
dominated in the upper parts, presumably due to differences in
organic carbon availability between these two zones (Kieraite-
Aleksandrova et al., 2015). In the case of limestone caves, there is
some evidence of the presence of cave-adapted bacteria. Indeed,
a core microbiome was observed in the golden droplet-forming
microbial communities inhabiting three geographically separate
limestone caves, namely Altamira Cave in Spain, Sloup-sosuvka
caves in the Czech Republic, and Pajsarjeva Jama in Slovenia (Porca
et al., 2012). About 60% of the 16S rRNA full-length gene sequences
formed three core OTUs common to all three sampling sites.
These were referred to Pseudonocardinae (30–50% of sequences),
Chromatiales (6–25% of sequences), and Xanthomonadales (0.5–
2.0% of sequences). Interestingly, the bacterial communities
inhabiting the rock surfaces in a limestone cave located on the
western Loess Plateau of China (Wu et al., 2015) and the moonmilk
samples collected from a limestone cave in South Korea (Park et al.,
2020) were dominated by some phylotypes showing high similarity
with phylotypes identified in geographically distinct European
caves (Porca et al., 2012).

Furthermore, a robust core microbiome of shared ASVs
(15.1%) between five limestone caves located in different regions of
Italy (Biagioli et al., 2023) supported the high degree of adaptation
and specialization for microbial communities in limestone caves.
Different from limestone caves, studies on volcanic caves from
geographically distant areas highlighted a low number of shared
OTUs among microbial communities, suggesting that slight
differences in lava chemistry or other microenvironmental factors
may affect the microbial community structure of volcanic caves
(Hathaway et al., 2014; Gonzalez-Pimentel et al., 2018; Prescott
et al., 2022). In particular, differences in mineral composition and
the high porosity of volcanic rocks could favor the diversification of
the endemic microbial communities. In this context, the microbial
community can vary because of the interaction with different
mineral components of volcanic rocks (Jones and Bennett, 2014).
In contrast, limestone caves comprise less porous and mineral-
poor carbonate rocks. This makes limestone caves more similar to
each other, even if located in geographically distant karst areas. The
uniform nature of the carbonate rock could therefore select specific
taxa, well adapted to limestone subterranean substrates.

5.3 Functional roles of bacteria in SAS
caves

Campylobacterota (Waite et al., 2017), are the most abundant
bacteria in SAS caves (Figure 7; Engel et al., 2003; Macalady
et al., 2006). Members of Campylobacterota are prominently
associated with sulfur metabolism, causing both sulfide oxidation
and sulfate reduction, thereby completing the sulfur cycle (Barton
and Luiszer, 2005). Microbial communities associated with SAS
caves include stream biofilms, snottites, and biovermiculations
(Figure 4). In correspondence with the H2S-rich rising water,
chemolithoautotrophic biofilms thrive as streamers and
sedimented filaments in the subaqueous environment (Engel et al.,
2003, 2004a; Macalady et al., 2006; Jones et al., 2010), while floating
filaments grow on the water surface (Rohwerder et al., 2003;

Frontiers in Microbiology 13 frontiersin.org

https://doi.org/10.3389/fmicb.2024.1370520
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-15-1370520 March 18, 2024 Time: 16:5 # 14

Turrini et al. 10.3389/fmicb.2024.1370520

D’Angeli et al., 2019b). Studies on water streamer communities
in Lower Kane Cave and Frasassi Cave have confirmed the
prevalence of sulfur-oxidizing microorganisms, particularly
Campylobacterota which dominate in waters with high H2S and
low oxygen, while Thiothrix (Thiotrichales, Gammaproteobacteria)
dominate in waters with low H2S and high oxygen levels (Engel
et al., 2004a; Macalady et al., 2008). Beggiatoa (Thiotrichales,
Gammaproteobacteria) was the dominant group in locations
where the shear stress caused by the flowing water is low enough
to allow fine sediment accumulation, regardless of sulfide and
oxygen concentration (Macalady et al., 2008). In the sulfidic spring
of Fetida Cave, Italy, the microbial biomass of water filaments
was dominated by the genus Arcobacter within the phylum
Campylobacterota (Jurado et al., 2021). Notably, Arcobacter species
are primary producers because capable of fixing CO2 and growing
chemolithotrophically via sulfur oxidation. Desulfocapsa (Jurado
et al., 2021) are anaerobic sulfate-reducing bacteria that produce
H2S useful for sulfur-oxidizing bacteria (Macalady et al., 2006,
2008; Keeler and Lusk, 2021). Snottites are extremely acidic
(pH∼1) biofilms growing on the walls and ceilings of caves
where sulfide-rich springs degas H2S into the cave atmosphere
(Figure 4C; Jones et al., 2012). In Frasassi Cave, snottites are
dominated by Acidithiobacillus (Gammaproteobacteria, 71.4–
75.4%), Thermoplasmatales (15.6–20.0%), and Acidimicrobiaceae
(Actinomycetota, 5.7–7.0%), in addition to several low-abundance
taxa (Macalady et al., 2007). Acidithiobacillus are sulfide-oxidizing
chemolithoautotrophic bacteria, while Acidimicrobiaceae and
Thermoplasmatales are capable of organotrophic or mixotrophic
growth via sulfide and organic carbon oxidation (Macalady et al.,
2007).

Biovermiculations are organic-rich sediment formations,
showing a typical deposition pattern, found on the walls of
some SAS caves (Figure 4D). The diversity of biovermiculation
patterns has been studied in Fetida Cave and Frasassi Cave, both
located in Italy (Jones et al., 2008; D’Angeli et al., 2019b),
and Cueva de Villa Luz Cave in Mexico (D’Auria et al.,
2018). Biovermiculations are mainly composed of bacteria
belonging to the Betaproteobacteria, Gammaproteobacteria,
Acidobacteriota, Nitrospirota, and Planctomycetetota. Members
of Hydrogenophilales (Hydrogenophilia) and Acidiferrobacterales
(Gammaproteobacteria) obtain energy from sulfur and iron
oxidation, and perform carbon fixation (D’Angeli et al., 2019b).
In biovemiculations, the presence of Nitrospirota suggests an
energetic metabolism based on the oxidation of reduced nitrogen
compounds, together with chemoheterotrophy, as inferred by the
presence of hydrocarbon-degrading bacteria (Hydrocarboniphaga,
Gammaproteobacteria), and members of Acidobacteriota and
Actinmycetota (Jones et al., 2008).

5.4 Fungi in caves

Fungi are important components of cave microbiotas,
particularly Ascomycota which are the predominant phylum.
Genus Candida (class Saccharomycetes) was found abundant in
caves open to tourists where visitors may act as a primary vector of
human commensal fungi (Biagioli et al., 2023). Other fungal phyla
found in caves are Basidiomycota, Zygomycota, and Mycetozoa

(Vanderwolf et al., 2013; Carmichael et al., 2015). Fungal taxa
so far recognized in caves are those commonly found on the
Earth’s surface, and air currents entering and circulating within
caves can distribute spores from the outside environment. It
has also been suggested that the presence of fungi in caves is an
indirect consequence of the entry of organic matter vehicled by
cave animals, human visitors, and airborne spores from outside
(Martin-Pozas et al., 2022). Fungi are not distributed evenly
throughout caves, being commonly associated with organic
debris and cave fauna. The genus Mortierella, a psychrotolerant
cellulose-degrading fungus belonging to Mortierellomycota, was
found particularly abundant in wild natural caves, primarily
associated with the macro-fauna components, i.e., rodents and bats
(Biagioli et al., 2023). Fungi in caves generally act as decomposers
or parasites, and several fungal species in caves are known to
parasitize cave insects (Benoit et al., 2004). Mycorrhizal fungi can
also be found in association with plant roots that penetrate shallow
caves, such as lava tubes.

Bats can be vectors for fungal spores in and out of the cave
environments. Bat guano is the most common source of organic
matter where several fungal species grow (Vanderwolf et al., 2013).
Among these, Histoplasma capsulatum is the most widely studied
fungus in caves, being the etiological agent of histoplasmosis, a
potentially fatal disease acquired by the inhalation of spores vehicle
by bats, endemic to Southeast Asia, Australia, Africa, and parts of
South and North America (Taylor et al., 2022).

5.5 Archaea in caves

Archaea are generally found in caves, and their abundance in
microbial communities seems to be quite small (<2%) (Hershey
and Barton, 2018), although their population size can increase
especially under oligotrophic conditions (Cheng et al., 2023).
Archaea play a key role in the nitrogen cycle (Kimble et al., 2018),
the predominance of the phylum Thaumarchaeota in archaeal cave
populations is mainly attributed to its ability to oxidize nitrogen
compounds (e.g., ammonia and nitrites) even under low nitrogen
conditions, and autotrophically generate organic molecules for
growth (Ortiz et al., 2014; Wiseschart et al., 2019). Other archaeal
taxa in cave communities are Euryarchaeota, Crenarchaeota, and
Woesearchaeota phyla (Alonso et al., 2019; Biagioli et al., 2023).
The role and activity of Archaea in cave ecosystems remain
enigmatic (Hershey and Barton, 2018; Alonso et al., 2019). Their
composition in caves revealed similar patterns as those found
on plants, suggesting that some Archaea could originate from
plants’ rhizosphere growing above caves and transported inside
caves by water infiltration (Bontemps et al., 2022). This hypothesis
is reasonable for microbial communities thriving near the cave
entrances (photic, twilight, and transient zones) where matter
transfer from the external environment occurs.

6 Good practices in future cave
microbiome studies

While most natural and man-made caves are still unexplored
from a microbiological perspective, the fascinating idea is
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gaining ground that caves are not only model ecosystems to
investigate microbial adaptation to extreme conditions (pH,
temperature, oligotrophy, darkness, presence of potential growth
inhibitors, etc.) but also valuable reservoirs of microbial diversity
and potential sources of biotechnologically relevant microbial
species. Literature analysis has evidenced some methodological
heterogeneity in the design and conduction of studies aimed
to characterize cave microbial communities, complicating the
comparison of results, data processing, and the proposal of
prototypical microbiomes for different types of caves and/or
environmental samples. Microbiological investigation of caves
requires careful planning and standardization of methodological
approaches, to make data from different studies comparable.
Hereafter we shall briefly discuss some methodological approaches
to cave microbiome investigations, encompassing “in-cave”, “in-
lab”, and “in-silico” studies.

It is advisable for microbiologists to join regional/international
speleological groups to obtain permission and assistance for
access to caves. Conventions with the local authorities should
be signed whenever caves are in a protected natural area
or signatory countries of the Nagoya Protocol agreement
(McCluskey et al., 2017).

For in-situ studies, the map, GPS coordinates, and elevation
above sea level of the cave entrance should be determined.
Sampling sites along the four cave trophic zones (i.e., photic,
twilight, transient, and deep zones) should be mapped and
reported in data repositories and/or research papers. To define
these zone borders, environmental parameters including light
intensity (i.e., photosynthetic active radiation PAR, λ = 400–
700 nm), temperature (◦C), humidity (%), and TOC (mg/L,
mg/Kg) should be measured at each sampling site and, preferably,
monitored during the time using in situ dataloggers (Mejía-Ortíz
et al., 2020). The TOC concentration determines the nutrient
availability across the cave zones, and it should be determined
in the groundwater and sediments. Standard physicochemical
characterization of the environmental matrices (e.g., groundwater,
rock, air, sediment) would aid in understanding the metabolic
activity of microbial inhabitants and the local biogeochemical
cycling (D’Angeli et al., 2019b; Zada et al., 2022; Zhu et al., 2022).
For instance, portable spectrophotometers and Fourier Transform
Infrared (FTIR) spectroscopes can detect the presence of some
organic and inorganic compounds (e.g., heavy metals) potentially
involved in microbial metabolism (Macalady et al., 2008).

Recent advances in imaging and camera resolutions make
it possible to take high-resolution photographs of microbial
colonization patterns. Macro-photography can be carried
out whether using in situ optical microscopy lenses (with
appropriate adapters) or employing in-lab optical microscopy
on environmental matrix samples. It is recommended to change
the focal plane during the picture collection to reconstruct
the focused three-dimensional object (e.g., with Helicon focus
software). Scanning electron microscopy (SEM) is a powerful
tool for imaging and analyzing cave microbiome morphologies,
generating images with very high magnifications (He et al., 2021).
It can also provide elemental analysis. However, SEM requires
ex-situ preparation steps (fixation, dehydration, and coating) that
can alter the native structure of the sample. Whenever possible,
samples should be kept refrigerated (4◦C) or frozen (<20◦C)
during transportation to the laboratory.

For in-lab studies, cell count is also a key parameter to
estimate the microbial population size in different cave matrices
(e.g., biofilm, air, sediment, and groundwater). Several methods
have been proposed for the quantification of bacteria in water
(Hershey et al., 2019) and soil (Lee et al., 2021). Fluorescence
in situ hybridization (FISH) can identify and quantify specific
microbial taxa in environmental samples, allowing for direct
microscopic observation using epifluorescence or confocal laser
scanning microscopies (Jones et al., 2023).

Metagenomic analysis of environmental samples can provide
a comprehensive view of the structure and dynamics of microbial
communities thriving in caves. To analyze eDNA samples, two
approaches could be used. In one case, biological replicates
(≥2 from the same cave site and matrix) could be extracted,
sequenced, and analyzed separately [e.g., (D’Angeli et al., 2019b)].
Otherwise, samples from multiple homogeneous sites can be
collected and pooled before eDNA extraction, to capture the
full range of microbial diversity in a specific cave site (Biagioli
et al., 2023). Sample pooling increases the quantity and diversity
of eDNA and ensures statistical robustness, though it affects
the alpha and beta diversity indices and reduces the sensitivity
required for the detection of rare taxa (Beng and Corlett, 2020;
Weinroth et al., 2022). Following the extraction of eDNA, the
microbial community structure can be determined by amplicon
metataxonomic profiling (e.g., 16S rRNA, ITS, 18S rRNA) using
appropriate primers for specific domains of life (e.g., Archaea,
Bacteria, Eucaryotes, Fungi, Viruses), in combination with NGS
technologies. Recent portable NGS platforms (e.g., MinION) can
apply to cave microbiome studies due to low cost and rapid
workflow (Latorre-Pérez et al., 2020; Wang et al., 2021). This
approach offers acceptable accuracy when combined with novel
algorithms of error corrections and other NGS technologies (e.g.,
Illumina) (Nygaard et al., 2020; Kovaka et al., 2023). The shotgun
metagenomic approach involves the untargeted sequencing of all
microbial genomes in the eDNA sample. This approach provides a
more accurate taxonomic profile of the entire microbial community
and can substantiate metabarcoding results. Recovering whole
genome sequences can also provide essential information about
the functional properties of the microbial community through
the reconstruction of metabolic pathways (Quince et al., 2017;
Chiciudean et al., 2022). De novo assembly of metagenome
samples has been applied to studying cave microbial communities
(Rossmassler et al., 2016; Kimble et al., 2018; Wiseschart et al., 2019;
Turrini et al., 2020) and constructing microbial genomes, known as
MAGs (van Spanning et al., 2022).

MAGs provide comprehensive coverage of the genetic diversity
in a microbial community (Asnicar et al., 2020; Kashaf et al.,
2021), and predict the involvement of individual components in
nutrient cycling (Bendia et al., 2022) and symbiotic relationships
(Wang et al., 2022). Metatranscriptomics consists of sequencing
and quantifying the relative abundance of mRNAs in a sample
to determine the functional activities of a given microbiome
(Bashiardes et al., 2016). Although crucial for understanding the
regulation of gene expression in microbial communities (Zhang
et al., 2021), this technique has occasionally been applied to cave
microbiome research (Mondini et al., 2022). It could be combined
with proteomics and metabolomics (Idle and Gonzalez, 2007;
Roldán et al., 2018) to systematically quantify protein expression
and identify metabolites from cave samples. It is worth noting
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that despite the great number of metataxonomic profiling studies
from caves, only a few of them have employed high throughput
metabolite characterization on pure bacterial strains from caves
(Gosse et al., 2019; Zhu et al., 2021).

Culture-dependent approaches make it possible to obtain pure
cultures of cave microorganisms and to gain insights into the role
played by individual components of the community. However,
only a very low fraction, as less as ca. 1% of cave bacteria,
will grow on standard laboratory media (Bodor et al., 2020).
To increase the recovery of microbial species, one possibility is
to move cultivation from the lab into the cave environment.
To this purpose, a diffusion chamber (called “isolation chip” or
“ichip”) in which cells from environmental samples are diluted
in agar and posed between two membranes with 20- to 30-nm
pore size, can be used. Once the chamber is returned to the
original environment (e.g., water, sediment), naturally occurring
nutrients and growth factors diffuse into the chamber, fulfilling the
growth requirements of individual components of the microbial
community, ultimately increasing their recovery rate. In contrast,
the movement of bacteria into/out of the chamber is prevented
(Nichols et al., 2010). Microcosm experiments can also provide
useful information on the ecology of cave microorganisms, as they
allow systematic manipulation of environmental parameters to

examine their impact on microbial communities (Vos et al., 2013).
Enrichment cultures using definite nutrients and energy sources
can also allow the selection of taxa endowed with specific metabolic
properties from the microbial pool.

In the age of big data, integrative microbiome-based research
is expected to provide a comprehensive understanding of
microbiome changes and interactions by the assembly of datasets
from the same ecological niche or sample type (Wood-Charlson
et al., 2020). Different from human microbiome-based initiatives
(e.g., The Integrative Hmp (iHMP) Research Network Consortium,
2019), no attempts have so far been made to apply integrative
microbiomics to cave microbiology. Caves are diverse but
relatively stable ecosystems, so they could be suited to integrative
studies. Physicochemical characterization datasets and multi-omics
studies from a variety of cave types could be integrated into
a standardized database and made accessible to cave scientists
(e.g., microbiologists, geologists, physicists, climatologists, etc.)
(Figure 9). Various strategies can be used, including a number
of statistical tests for microbiome differential abundance analyses
(Lin and Peddada, 2020), spectral clustering (Imangaliyev et al.,
2015), and network analyses (Jiang et al., 2019). Bioinformatic tools
have also been proposed for the integrative analysis of microbiome
datasets, which could well apply to cave microbiome research

FIGURE 9

Integrated methodological workflow for cave microbiology research.
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(The Integrative Hmp (iHMP) Research Network Consortium,
2019; Buza et al., 2019). This concept can also be useful for
monitoring cave microbiome biodiversity over time and detecting
the effects of climate change and the anthropogenic impact, in
addition to predicting potential biotechnological applications of
cave microorganisms. A connection between cave microbiomes
and surface climatic conditions was inferred from the analysis
of various terrestrial caves across the globe, highlighting the
sensitivity of cave microbial communities to changes in external
environmental conditions (Biagioli et al., 2024). In the future,
combining environmental and microbial genomics data with
machine learning algorithms will improve biomonitoring (Cordier
et al., 2019), and provide new insights into the microbial ecology of
cave systems. Noteworthy, machine learning tackled fundamental
problems in the ecology of complex microbial communities (Wang
et al., 2024), and machine-learning algorithms have already been
used in the prediction of cave entrances on the Earth and on Mars
(Character et al., 2023; Watson and Baldini, 2024).

7 Conclusion

Caves are increasingly attractive to microbiological
investigation, as they represent geologically diverse environments
unified by extreme conditions for life. Microbial communities
composed of bacteria, archaea, fungi, and micro-eukaryotes
are the living backbone of cave biota and play a key role in
sustaining trophic networks. Studies of cave microbiomes have
mostly been focused on the geomicrobiological interactions
with different rock matrices, microbial diversity, mechanisms of
microbial resistance and adaptation, anthropogenic impact on
the cave ecosystem, and the biotechnological potential of cave
microorganisms. Limestone, SAS, and volcanic caves have different
genesis, textures of the rock matrix, and chemical composition,
which determine different patterns of microbial colonization.
Sulfidic caves provide an energetically exploitable ecosystem to
chemolithoautotrophic metabolism due to the presence of H2S-rich
groundwater, determining the predominance of sulfur-oxidizing
Campylobacterota. Limestone caves are typically oligotrophic
environments, while volcanic caves are shallow subsurface voids
easily accessible by nutrients, and both cave types are primarily
colonized by Pseudomonadota and Actinomycetota.

Actinomycetota are particularly abundant in volcanic caves and
are endowed with great biotechnological potential. These bacteria
could be isolated as pure cultures, and their ability to produce
added-value secondary metabolites such as antibiotics and enzymes
could be exploited under laboratory conditions. Yet, a significant
portion of cave microbiomes is composed of still unclassified and
uncharacterized taxa which deserve more focused investigation in
search of new species and new metabolic functions or pathways.

Caves are difficult-to-access sites for untrained microbiologists,
so it is not surprising that most studies have focused on
microbial communities sampled near entrances or in caves with
sub-horizontal development, in the so-called “transition zone”,
where the environmental parameters vary depending on external
climatic conditions. Conversely, the deepest cave zones are
largely unexplored, although they account for a huge surface of
underground voids. Stable environmental conditions and nutrient

scarcity make deep zones an attractive model to study life
under conditions of extreme oligotrophy and may also provide
useful hints on how life functioned on the early Earth or
how microorganisms might live beneath the surface of Mars
or other planets.

The rock texture and chemical composition certainly
contribute to inter-cave microbiome variability, being affected by
the compactness and porosity properties of limestone and volcanic
rocks, respectively. Attempts to define a core microbiome for
geologically similar cave types have been successful for limestone
caves (Biagioli et al., 2023), but not for volcanic caves (Gonzalez-
Pimentel et al., 2018). However, genuinely autochthonous cave
microorganisms can hardly be defined without robust comparative
studies that differentiate them from allochthonous ones, i.e., those
driven from outside through infiltrating water, bat guano, soil,
air, etc. Meta-analysis of microbial community structures from
different cave types could therefore help better define shared taxa
between different types of caves, but this approach is challenging.
For instance, Sequence Read Archive (SRA) data and accessory
metadata (e.g., cave type, cave zones, environmental matrix, etc.)
are unavailable in major sequence repositories (e.g., NCBI) for
many studies. Moreover, eDNA extraction methods, 16S rRNA
regions used as taxonomic markers, and sequencing technologies
greatly vary among studies, complicating the assembly of a reliable
dataset for comparative analysis. It should also be emphasized
that the 16S rRNA-barcoding approach can only determine the
taxonomic composition of the cave microbiome, but it does
not provide information on its functional capabilities, with
some arguing that a taxonomic approach is no longer useful
and that a core functional microbiome should be prioritized
(Neu et al., 2021).

Due to the high inter-cave variability and the complex
dynamics of cave microbiomes, several key considerations are
crucial for conducting statistically robust comparative studies at
lower taxonomic levels, including sample size, replication, data
compositionality, and cohorts’ population. Future comparative
studies should also address the taxonomic and potentially
functional characteristics of cave microbial communities by
utilizing a statistically significant number of shotgun sequencing
samples obtained from caves. Additional efforts should therefore
be directed to the harmonization of cave microbiome studies,
encompassing all steps of the investigation, from the sampling
campaign to downstream data analyses.
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