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The combined application of chemical and organic fertilizers has been 
recognized to enhance soil fertility and foster the soil microbial ecosystem. 
However, the optimal ratio of chemical and organic fertilizers in oilseed rape 
cultivation is still uncertain, and the role of rhizosphere effect is still unclear. 
Thus, this study aimed to elucidate the impacts of varying ratios of chemical 
and organic fertilizers on the structure and potential functionalities of 
rhizosphere and non-rhizosphere soil microbial communities. The interplay of 
microbial communities with soil properties and oilseed rape root exudates was 
investigated in controlled pot cultivations receiving varying ratios of chemical 
and organic fertilizers. Results indicated clear segregation in the soil bacterial 
community, influenced by both fertilization treatments and rhizosphere effects. 
The bacterial community structure significantly correlated with nitrate nitrogen, 
organic acids, and dissolved organic carbon (DOC) content. Rhizosphere effects 
led to increased bacteria abundance, reduced diversity, and decreased network 
stability. Notably, F3 treatment receiving 25% chemical and 75% organic 
fertilizers showed a significantly higher abundance at 1.43  ×  1011 copies g−1 dry 
soil, accompanied by increased species and genetic diversity, and ecological 
network complexity. This treatment also yielded the highest aboveground 
biomass of oilseed rape. However, the application of organic fertilizers also 
increased the risk of plant pathogenicity. This study reveals the impact of 
fertilizers and rhizosphere effects on soil microbial community structure and 
function, shedding light on the establishment of more effective fertilization 
schemes for oilseed rape agriculture.
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1 Introduction

In agriculture, the augmentation of soil fertility usually involves 
substantial fertilizer applications to bolster crop yields (Brtnicky et al., 
2023). However, the excessive reliance on chemical fertilizers has led 
to a range of environmental concerns, including biodiversity loss, soil 
acidification and degradation, greenhouse emissions, and 
contamination of ground and surface water systems (Searchinger 
et al., 2018; Yu et al., 2020; Kanthilanka et al., 2023). To mitigate the 
adverse repercussions of chemical fertilizer application, organic 
fertilizers have emerged as a potential alternative strategy (Chen et al., 
2020; Kumari et al., 2024). Numerous studies have underscored the 
capacity of organic fertilizers to improve soil fertility and promote 
crop growth (Cui et al., 2018; Maltas et al., 2018; Wu et al., 2018; He 
et  al., 2022; Li et  al., 2024). However, organic fertilizer also has 
limitations, such as the nutrient release rate is often slow (Garzón 
et al., 2011; Zhang et al., 2024). Combined application of organic and 
chemical fertilizers has positive effects on soil fertility and microbial 
properties compared to application of single type of fertilizers (Qaswar 
et al., 2020; Kumari et al., 2024). Studies suggest prolonged application 
of mixed organic and chemical fertilizers improves crop growth, 
nutrient utilization, and yield stability across various crops, including 
wheat, apple, rice, and other crops (Wang et al., 2023; Zhao et al., 2023; 
Lu et  al., 2024). This practice also nurtures bacterial resilience to 
environmental changes, promoting soil carbon and nitrogen cycling 
(Chen W. et al., 2023). Fertilizer application strategy and rates affect 
soil fertility, microorganisms, and crop growth (Li D. et al., 2023), 
reducing the amount of chemical fertilizers and determining the 
optimal ratio of organic fertilizers to chemical fertilizers are key 
measures to achieve sustainable agricultural development.

Soil microbial communities are integral to an array of soil- and 
plant-related processes and play a pivotal role in regulating plant 
health (Fahey et al., 2020). Microbial communities are fundamental 
in maintaining agricultural sustainability and the overall functioning 
of soil ecosystems (Trivedi et al., 2016; Manoharan et al., 2017; Vezzani 
et al., 2018). In recent years, the rhizosphere microbiota has received 
much attention due to the important role of beneficial interactions 
between roots and rhizosphere microorganisms in fostering plant 
growth (Zheng et al., 2017). Notably, rhizosphere microorganisms are 
regarded as the second genome of plants (Deng et al., 2021). These 
microorganisms can enhance nutrient availability, promote plant 
growth, and confer resilience on plants against various abiotic and 
biotic stresses (Zheng et  al., 2018; Ali and Khan, 2021). Recent 
evidence suggests that an increase in endospheric microorganisms 
diversity and abundance under stress conditions might contribute to 
plant survival, suggesting a significant role of microbes in improving 
plant health (Yuan et al., 2018).

Soil microorganisms are sensitive to environmental changes, and 
fertilization often exerts a significant influence on microbial activity 
(Francioli et al., 2016). Studies have shown that moderate organic 
fertilizer applications increase bacterial abundance and diversity (Liu 
et  al., 2021, 2023). For example, rhizosphere microbial biomass 
increased and endosphere microbial community composition 
changed significantly after the application of organic fertilizer (Peng 
et  al., 2016); the combination of organic fertilizer and chemical 
fertilizer improved the soil quality of maize arable land, increased the 
diversity of bacterial communities, and led to a more stable bacterial 
network and an increase in the complexity of potential microbial 

metabolites (Lu et  al., 2024). In addition, bacterial community 
composition varies depending on the proportion of organic fertilizer 
applied. For example, manure treatment enriched bacterial taxa 
involved in phosphorus transformation (Zhang et al., 2023). Thus, the 
blending of organic and chemical fertilizers emerges as a promising 
avenue to regulate soil health and enhance the microecological 
environment by modulating the soil bacterial community. However, 
there remains a dearth of research on the effects of organic-chemical 
fertilizer combinations on rhizosphere processes mediated by 
microbes and the intricate relationship between microbial diversity, 
soil properties, and crop root systems, particularly under diverse 
fertilization conditions (Pang et al., 2021).

Oilseed rape is a major cash crop in China and serves as a vital 
feedstock for biofuel production. While previous studies have 
demonstrated significant soil quality and yield improvements with the 
combined application of organic and chemical fertilizers, the specific 
impacts of chemical-organic fertilizer dosing on soil microbiology in 
oilseed rape cultivation remain nebulous. Therefore, this study aims 
to investigate the effects of chemical and organic fertilizer allocation 
alongside rhizosphere effects on the structure and potential 
functionalities of microbial communities in oilseed rape soils, and to 
determine the optimal chemical and organic fertilizer ratio for 
reducing chemical fertilizer usage while promoting oilseed rape 
growth, laying a theoretical foundation for the eco-efficient 
management of oilseed rape cultivation.

2 Materials and methods

2.1 Test materials and site selection

The experiment was conducted in a well-lit and ventilated 
greenhouse at the Institute of Subtropical Agriculture, Chinese 
Academy of Sciences (118°05′E, 28°12’N). The oilseed rape cultivar 
was Xiangmai Oil No. 6. The test soil was collected from 0 to 20 cm of 
dryland soil at the Taoyuan Agricultural Ecology Experimental Station 
of the Chinese Academy of Sciences (111°26′E, 28°55’N, 92.2 m above 
sea level). The soil used was typical red soil in subtropical regions 
(derived from Quaternary red clay), with a pH of 4.5, organic matter 
of 13.81 g kg−1, total nitrogen 0.84 g kg−1, total phosphorus 0.38 g kg−1, 
total potassium 12.33 g kg−1, alkaline dissolved nitrogen 77.81 g kg−1, 
effective phosphorus 6.05 g kg−1, and quick-acting potassium 
103.40 g kg−1.

2.2 Experimental design

The soil used for cultivation was air-dried and crushed, then 
passed through a 2-mm sieve, and after removing residues and 
impurities, the soil was mixed with fertilizers of different organic and 
chemical fertilizer ratios. Five fertilization treatments were set up, each 
receiving the same amount of total N, i.e., F0: application of chemical 
fertilizer alone (CK) was used as the control; F1: 25% organic fertilizer 
and 75% chemical fertilizer (1:3); F2: 50% organic fertilizer and 50% 
chemical fertilizer (1:1); F3: 75% organic fertilizer and 25% chemical 
fertilizer (3:1); and F4: only organic fertilizer was applied. Each 
treatment contained four replicates. Fertilizers with different ratios of 
chemical fertilizers were mixed well, considering the amount of 
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fertilizers applied in the field (Nitrogen fertilizers: 105–225 kg N ha−1, 
Phosphorus fertilizers: 45–78 kg P ha−1, Potassium fertilizers: 
78–137 kg K ha−1), so that the content of the fertilizers added to the 
potting soil eventually reached 200 mg kg−1 of N. Nitrogen, 
Phosphorus, and potassium fertilizers were added in the form of urea, 
calcium superphosphate, and potassium chloride, respectively, and 
organic fertilizers used were fermented and then air-dried cow dung, 
with nutrient contents of total N 1.09 g kg−1, total P (as P2O5)  
4.39 g kg−1 and total K (as K2O) 18.46 g kg−1.

PVC pots, 20 cm high and 16 cm in diameter, were used for 
cultivation experiments. Each pot was filled with 3.5 kg of mixed 
fertilizer soil, and the water content was adjusted to 75% of the soil 
water holding capacity. Then, three 2-week-old rapeseed seedlings in 
uniform growth were transplanted. After 15 days, the seedlings were 
planted. On day 58, when the rapeseed reached the budding stage, 
samples of rhizosphere soil (collected using the root shaking method) 
and non-rhizosphere soil were obtained. A portion of these soil 
samples was preserved in a refrigerator at 4°C for subsequent analysis 
of parameters including ammonium nitrogen, nitrate nitrogen, water 
content, soluble organic carbon, and rhizosphere secretion. The 
remaining portion underwent quick-freezing with liquid nitrogen and 
was stored at −80°C for molecular analysis.

2.3 Determination of rhizosphere exudates

Root exudates were collected via ex-situ incubation in 5 mM 
calcium chloride for 6 h, and then the total amount of amino acids was 
determined by an automatic amino acid analyzer (Hitachi L8900). The 
total amount of organic acids in the rhizosphere soil was detected with 
high-performance liquid chromatography (HPLC).

2.4 DNA extraction and library construction 
for 16S rRNA amplicon sequencing

DNA was extracted by the CTAB method and DNA quality was 
determined using a NanoDrop 1,000 spectrophotometer (Thermo 
Fisher Scientific, Wilmington, United States). Bacterial abundance was 
then determined by qPCR using a Roche LightCycler480II 
fluorescence quantitative PCR instrument. The bacterial 16S rRNA 
gene was amplified by polymerase chain reaction (PCR) using primer 
pair 338F (5′-ACTCCTACGGGGAGGCAGCA3′) and 806R 
(5′-GGACTACHVGGGTWTCTAAT-3′) (Langille et al., 2013). The 
amplicon samples were sequenced at MajorbioBio-Pharm Technology 
Co. Ltd. (Shanghai, China) using the Illumina MiSeq platform. After 
removing low quality reads, remaining sequences were divided into 
OTUs at 97% similarity using Uparse (version 7.0.1090) and were 
analyzed for other bioinformatic statistics.

2.5 Data analysis

Soil physicochemical properties have been determined in a 
previous study and the results of this data were used (Wang et al., 
2021). One-way analysis of variance (ANOVA) was performed using 
SPSS 26.0 to determine differences in microbial composition and 

microbial α-diversity between treatments. Correlations between 
environmental factors, bacterial abundance, and species α-diversity 
were then plotted using origin2022b, and correlation heatmaps were 
utilized to assess the correlation between environmental factors, 
bacterial abundance, and species α-diversity, and differences in 
means were considered statistically significant if p < 0.05. 
Non-metric multidimensional scaling (NMDS) was used to 
investigate the effect of treatments on microbial community 
composition at the microbial OTU level. To compare α-diversity 
among treatments, OTU data were analyzed using the phylogenetic 
diversity (PD) metric and Shannon index. Redundancy analysis 
(RDA) was performed by Canoco5 where the statistical methods 
used to assess the significance of environmental factors were Monte 
Carlo tests, and ANOSIM (analysis of similarity) based on the 
OTU’s Bray-Curtis distances was used to measure the effects of 
fertilizer application and rhizosphere effects on the composition of 
the bacterial community.

Full length 16S rRNA sequences of common pathogens were 
retrieved from NCBI, and were used as query to blast against our 
sequences using TBtools. Hit sequences with > = 94% identity were 
considered as the same genus of respective pathogen. To reveal the 
potential effects of fertilization practices on microbial interactions, 
OTUs with abundance greater than 0.5% were used to construct 
microbial networks with Spearman using the “psych” package in R 
(version 3.6.3), and were visualized with Gephi 0.9.2. and set the set 
the p-value threshold to 0.01 and the correlation coefficient 
threshold to 0.7 to filter out the relationships with less than a certain 
correlation or frequency of co-occurrence. Complexity of the 
network and highlight important relationships. and various 
topological features of the bacterial networks were computed to infer 
the network characteristics.

3 Results

3.1 Soil bacterial abundance

The abundance of rhizosphere bacteria significantly 
responded to fertilizer treatments (Table 1), demonstrating an 
escalating trend with higher proportions of organic fertilizers 
(Supplementary Figure S1). Notably, F3 exhibited the highest 
bacterial abundance at 1.43 × 1011 copies g−1 dry soil, while F1 had 
the lowest at 2.96 × 1010 copies g−1. In non-rhizosphere soils, the 
impact of fertilizer treatments on bacterial abundance was less 
pronounced, showing no significant differences among treatments. 
Interestingly, bacterial abundance in the F4 treatment receiving 
only chemical fertilizer was much higher in the rhizosphere soil 
than in the non-rhizosphere. Rhizosphere bacterial 16S rRNA 
gene abundance showed a positive correlation with total amino 
acids, while non-rhizosphere abundance correlated positively with 
soil water content (Supplementary Figure S2).

3.2 Soil microbial diversity

A total of 2,240,027 high-quality sequences with an average 
length of 432 bp were obtained in this study, and a total of 3,092 
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operational taxonomic units (OTUs) were classified at 97% sequence 
similarity cutoff. Differences in microbial diversity existed between 
the rhizosphere and non-rhizosphere (Table 1). In the F2 treatment 
receiving equal proportion of organic and chemical fertilizers, the 
Shannon index of the rhizosphere microbes was lower than that of 
the non-rhizosphere soil (Figure 1A). Organic fertilizer enhanced 
microbial PD in both rhizosphere and bulk soils, even if it was 
applied at the minimum level (25%). An increasing proportion of 
organic fertilizer further increased the PD index, which remained 
relatively stable at all other treatments (Figure 1B). However, the 
impact of organic fertilizer application on the Shannon index was 
ambiguous (Figure 1A). These findings suggest that organic fertilizer 
sustains a higher microbial functional diversity. Further analysis 
indicated that the PD index positively correlated with amino acids 
content and DOC in rhizosphere soil and with nitrate-N in 
non-rhizosphere soil (Supplementary Figure S2).

3.3 Soil microbial community composition

Actinobacteria, Proteobacteria, and Chloroflexi dominated 
both rhizosphere and non-rhizosphere soils, with the relative 
abundance of Actinobacteria at 37 and 29%, and Chloroflexi at 22 
and 29%, respectively. Compared to the F0 treatment receiving 
only chemical fertilizer, the application of organic fertilizer 
enhanced the relative abundance of Actinobacteria while 

decreasing that of Chloroflexi, in both rhizosphere and 
non-rhizosphere soils. The abundance of Proteobacteria remained 
relatively stable in all treatments (Figure 2A). At the genus level, 
the dominant genera observed in the oilseed rape soil were  
mostly uncultured (norank_c_JG37-AG-4, 2.30–14.39%; 
norank_p_Saccharibacteria, 2.19–12.43%, and norank_f_
ODP1230B8.23, 2.25–7.94%). These bacterial genera responded 
significantly to fertilizer treatments. Apart from the F3 treatment 
that receiving 75% of organic fertilizer, the relative abundance of 
Norank_c_JG37-AG-4 group demonstrated a decreasing trend 
along increasing proportion of applied organic fertilizers. 
Meanwhile, the relative abundance of norank_p_Saccharibacteria 
and norank_f_ODP1230B8.23 differed in soil compartments, 
showing dominance in rhizosphere and non-rhizosphere soils, 
respectively (Figure 2B).

NMDS, ANOSIM and PERMANOVA analysis all indicated that 
the microbial communities differed between rhizosphere and 
non-rhizosphere soils, as well as among treatments receiving different 
fertilizer applications (Figure 3, Table 2; Supplementary Table S1).

Redundancy analysis (RDA) highlighted the importance of DOC 
in influencing rhizosphere bacterial community structure, while 
nitrate nitrogen in shaping non-rhizosphere microbial community 
structure (Figure 4A). In addition, factors such as organic acids and 
DOC were also significantly associated with bacterial community 
structure in the rhizosphere and non-rhizosphere soil fertilization 
treatments, respectively (Figures 4B,C).

FIGURE 1

Phylogenetic diversity (A) and Shannon index (B) of bacterial communities in soil. Uppercase letters indicate differences between rhizosphere and non-
rhizosphere between each group of fertilizer treatments; lowercase letters indicate differences between fertilizer treatments (p  <  0.05).

TABLE 1 Rhizosphere effects and fertilizer treatments on soil bacterial abundance and α-diversity.

Group Abundance (16S rRNA) Shannon index Phylogenetic diversity

F p-value F p-value F p-value

REs 8.728 0.006** 9.999 0.004** 5.563 0.025*

Fs 2.105 0.105 2.381 0.074 26.442 0.000**

REs*Fs 2.287 0.083 1.534 0.218 0.470 0.757

REs, Rhizosphere effects; Fs, Fertilization treatments; REs*Fs, Interaction of rhizosphere effect and fertilization treatments.
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3.4 Pathogenic bacteria abundance in 
organic fertilization treatments

Soil pathogenic bacteria analysis revealed that Ralstonia 
solanacearum (R. solanacearum) and Clavibacter michiganensis subsp. 
Michiganensis (Cmm) accounted for a comparatively high relative 
abundance at the OTU level of 0.95–3.8 and 1.00–5.75%, respectively. 
And their relative abundance was generally higher in the rhizosphere 
than in non-rhizosphere soils (Table 3). Other pathogenic bacteria 
Xanthomonas arboricola pv. Juglandis (X. juglandis) and Pseudomonas 
syringae (Pst) had a lower relative abundance of less than 1% (Table 3). 
The highest abundance of R. solanacearum was found in both 
rhizosphere and non-rhizosphere soils of F0 treatment receiving 
chemical fertilizer alone, and organic fertilizer application reduced its 
abundance. In contrast, the relative abundance of Cmm was enhanced 
in treatments with organic fertilizers, and this phenomenon was more 

evident in non-rhizosphere soils. The rest pathogens with lower 
relative abundance were also slightly enriched in treatments receiving 
combined organic-chemical fertilizers than chemical fertilizer alone.

3.5 Co-occurrence network analysis of soil 
bacterial communities

Fertilization and rhizosphere effects influenced microbial 
networks (Supplementary Table S2). Actinobacteria and Chloroflexi 
were the keystone taxa comprising most of the highly connected 
nodes in both rhizosphere and non-rhizosphere microbial networks, 
neither of which, however, formed clear modules. There were more 
positive edges in the rhizosphere network. In the rhizosphere 
microbial networks of different fertilization treatments, keystone taxa 
shifted from Chloroflexi in the F0 treatment to Actinobacteria in 

FIGURE 2

Community composition at the phylum level (A) and Genus level (B).
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treatments with organic fertilizers (Figure 5). The F3 treatment, which 
received 75% of organic fertilizer, had highly connected nodes from 
more taxa, including Chloroflexi, Actinobacteria, and Proteobacteria, 
and exhibited a trend of modularity (Figure  5, RF3). Positive 
interactions were predominant, especially in the treatments with 
higher proportions of organic fertilizers. In non-rhizosphere microbial 
networks, there were generally more diverse keystone taxa in all 
treatments, but no clear modules were formed (Figure 5, NRF0-NRF4).

4 Discussion

Organic fertilizer applications provide sustained nutrient supply, 
enrich soil structure, and promote long-term soil health (Liu et al., 
2021). But nutrient contents of organic fertilizers vary widely and their 
release is often slow. Additionally, animal manure or compost-derived 
organic fertilizers may carry pathogens and contaminants like 
antibiotic resistance genes, bringing concerns for their application (Xu 
et al., 2020; Wei et al., 2022). So, as an integrated nutrient management 
practice, the combined application of chemical and organic fertilizers 
offers several benefits, such as providing a balanced nutrient supply 
and mitigating the environmental risks associated with the excessive 

use of synthetic fertilizers (Liu et al., 2022; Wu et al., 2022). However, 
balancing the application rates of chemical and organic fertilizers and 
determining the optimal ratio and timing of application can 
be challenging. Soil microbial diversity and functionality can be a 
potential indictor.

Some short-term field studies have reported reduced soil 
bacterial diversity with organic fertilizer application (Tian et al., 
2015), others emphasize the enriching potential of organic fertilizers, 
attributing to their nutrient-rich content, thus promoting bacterial 
growth and increasing bacterial population and diversity (Ji et al., 
2018; Feng et al., 2021). However, the optimal fertilizer rate is still 
controversial and may be potentially influenced by varying soil types 
and crops. Application of 10–30% organic fertilizer significantly 
increased bacterial diversity in a maize pot experiment by Han et al. 
(2021). In the current study, the most pronounced effect was 
observed with the application of 75% organic fertilizer, consistent 
with some previous studies (Ren et  al., 2021; Yang et  al., 2023). 
Additionally, the dry weight of the aboveground oilseed rape 
biomass was the highest in the F3 treatment, indicating a better 
growth of oilseed rape under 75% of organic fertilization (Yang, 
2019). Normally, the application of different rates of organic and 
chemical fertilizers coordinates the availability of different nutrients 
(Bao et al., 2020), and can lead to distinct responses of microbial 
populations (Lin et al., 2019), consequently, the effect of fertilizer 
application on microbial community assemblage and plant 
growth differs.

Fertilizer application changes environmental factors including 
contents of ammonium nitrogen, nitrate nitrogen, and DOC, therefore 
significantly affecting bacterial abundance and diversity. Actinobacteria 
abundance increased after the application of organic fertilizer. In 

FIGURE 3

Non-metric Multidimensional Scale ordination of bacterial communities.

TABLE 2 Intergroup similarity analysis of rhizosphere effects and 
fertilization treatments (Adonis).

Adonis MeanSqs R2 P

REs 0.206 0.087 0.030*

F 0.263 0.545 0.001**
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contrast, the relative abundance of Chloroflexi was higher at F0. 
Studies have reported that Chloroflexi is oligotrophic, adapted to 
nutrient-limited environments, and sensitive to changes in nitrogen 
and carbon levels (Trivedi et al., 2016; Dai et al., 2019; Romero-Salas 
et  al., 2021). In contrast, Actinobacteria can rapidly decompose 
organic matter, which increases levels of carbon and other nutrients 
to improve the soil environment. Thus its relative abundance increases 
with the application of organic fertilizers (Yan et  al., 2021). This 
selective effect helps to maintain the balance of soil ecosystems, but 
may also trigger certain microbial diseases.

Ralstonia solanacearum can cause plant greening and is one of the 
most common soil-borne diseases. The application of organic manure 
from swine manure alters the composition of the soil microbial 
community and reduces the community of Ralstonia solanacearum 
(Gorissen et  al., 2004). However, it is widely known that organic 
fertilizer application may introduce exogenous pathogens. Potential 
pathogenic bacteria such as Pseudomonas, Flavobacterium, and 
Bacillus were detected in more than 13% of organic fertilizer products 
(Xu et al., 2022). Our results showed that the combined application of 
organic manure with chemical fertilizers significantly suppressed 
R. solanacearum compared to chemical fertilizers alone. In addition, 
Cmm was similarly abundant in F0 treatment and other treatment 
receiving organic fertilizers, and other pathogens did not show 
increasing abundance with increasing proportion of organic fertilizer 

applied (Table 3), suggesting that these pathogens were not introduced 
solely, if not at all, by organic fertilizer application in this study.

Although many studies have shown that organic fertilizers inhibit 
a wide range of plant soil-borne diseases, soil diseases are usually 
caused by multiple soil pathogens, and it is difficult to effectively 
inhibit multiple pathogens by applying a single organic fertilizer alone; 
therefore, there is a need for more in-depth research on the application 
of fertilizer mixtures, such as the mixing of multiple organic fertilizers, 
organic fertilizers, and biocontrol formulations, as well as mixing of 
organic fertilizers with induced activators (Liu et al., 2017; Yang et al., 
2022). In addition to this, the application of organic fertilizers after 
soil fumigation can activate beneficial soil microorganisms, promote 
soil health, and increase crop yield (Li Q. et al., 2022).

The microbial networks of F2 and F3 treatments receiving 50 and 
75% of organic fertilizers application had the highest number of nods 
and edges in the rhizosphere and non-rhizosphere soils, respectively, 
suggesting high complexity and stability of these microbial 
communities (Okuyama and Holland, 2007). Complex networks often 
support more diverse functions, resulting in increased efficiency of 
resource cycling and information transfer (Morriën et al., 2017; Wagg 
et al., 2019), which also improve the stability of microbial communities 
(Wang et al., 2017; Ji et al., 2020). Positive and negative associations, 
which indicate cooperation and competition among species, 
respectively, are key network attributes (Deng et al., 2015). It has been 

FIGURE 4

Redundancy analysis of soil bacterial community structure and soil physicochemical properties in oilseed rape with different fertilizer treatments. 
(A) Rhizosphere and non-rhizosphere soil bacterial community structure; (B) Rhizosphere fertilization treatment soil bacterial community structure; 
(C) Non-rhizosphere fertilization treatment soil bacterial community structure.

TABLE 3 The relative abundance of pathogenic bacteria in soil samples.

R. solanacearum Cmm A. tumefaciens X. juglandis Pst

NR

F0 3.26 ± 1.14a 1.00 ± 0.11c 0.08 ± 0.02c 0.00 ± 0.00c 0.00 ± 0.00c

F1 1.01 ± 0.20b 4.03 ± 1.04a 0.08 ± 0.03c 0.023 ± 0.01bc 0.01 ± 0.01bc

F2 0.95 ± 0.12b 2.21 ± 0.20b 0.14 ± 0.05ab 0.04 ± 0.03b 0.02 ± 0.01ab

F3 1.88 ± 0.35b 2.94 ± 0.71b 0.17 ± 0.06ab 0.05 ± 0.04b 0.01 ± 0.00b

F4 1.16 ± 0.56b 2.78 ± 0.27b 0.18 ± 0.06a 0.17 ± 0.01a 0.02 ± 0.00a

R

F0 3.80 ± 1.33a 3.75 ± 0.36b 0.23 ± 0.08b 0.00 ± 0.00c 0.01 ± 0.00bc

F1 2.20 ± 1.17ab 3.59 ± 0.30b 0.1 ± 0.05c 0.01 ± 0.01c 0.00 ± 0.00c

F2 1.01 ± 0.09b 5.75 ± 0.89a 0.14 ± 0.01bc 0.04 ± 0.01bc 0.02 ± 0.00ab

F3 2.90 ± 1.09ab 3.27 ± 0.51b 0.56 ± 0.08a 0.12 ± 0.12ab 0.02 ± 0.01a

F4 1.00 ± 0.41b 4.86 ± 0.77a 0.19 ± 0.03bc 0.16 ± 0.03a 0.01 ± 0.01ab
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suggested that a high positive correlation may lead to dependence and 
mutual collapse (Coyte et  al., 2015), and conversely, the negative 
correlation may stabilize co-oscillations in microbial communities and 
enhance network stability (Zhou et al., 2020). Yang et al. found a 
higher negative correlation in microbial networks under the 
combination of organic and inorganic fertilizers, which suggests that 
the combined application of fertilizers resulted in microbial 
communities with higher network stability (Yang et  al., 2023). 
However, it should be  noted that co-occurrence networks infer 
biological interactions based on co-occurrences or absence of 
sequences, it is important to exercise caution when drawing 
conclusions from microbial networks (Faust, 2021).

Studies have reported that plant roots impact the soil microbial 
community by releasing a substantial amount of exudates, including 
primary metabolites such as amino acids, organic acids, sugars, and 
carboxylic acids (Li et al., 2018). This release enhances the carbon and 
nitrogen substrate nutrients for microbial growth, turning the 
rhizosphere into a favorable microhabitat for the rapid colonization of 
specific microorganisms (Ulbrich et al., 2022; Steinauer et al., 2023). 
Simultaneously, these secretions exhibit selectivity in promoting the 
growth and colonization of particular soil microbes with certain 
potential metabolic profiles (Bulgarelli et al., 2013; Li et al., 2020; He 
et  al., 2022). Plants recruit beneficial microbial groups through 
rhizospheric exudates, increasing rhizobacterial abundance and a 
decrease in diversity (Ling et al., 2022), aligning with our research 
findings that rhizosphere effects significantly influenced the 
rhizosphere microbial diversity and abundance.

Research indicates that specific plant metabolites, such as organic 
acids, amino acids, and hormones, can serve as signaling molecules, 
activators, and attractants, influencing the composition of microbial 
communities (Baetz and Martinoia, 2014). Many studies have shown 
that different rhizosphere secretions attract different microbial 
communities. For instance, organic acid secretion was found to attract 
Comamonadacea against pathogenic bacteria; Arabidopsis thaliana 
attracts and stimulates specific Pseudomonas colonies by releasing 
long-chain amino acids, etc. (Yuan et al., 2018; Wen et al., 2020). Our 
study also observed significant differences between rhizosphere and 
non-rhizosphere soil microbial communities, and organic acids was 
recognized as a pivotal driver in the formation of these differences. 

Together, these studies highlight the intricate interactions among 
fertilization, crop root exudates and soil microbial communities.

The complexity and negative correlations of rhizosphere microbial 
networks are lower than those in non-rhizosphere environments, 
which could be attributed to the loss of diversity and enriching effects 
of rhizosphere secretions (Chen Y. et al., 2023), driven by changes in 
rhizosphere resource availability and niche differentiation (Zhao et al., 
2020). Currently, many studies are exploring applications of 
rhizosphere effect in plant restoration. For instance, the halophyte 
L. sinense under salt stress can attract and recruit beneficial 
rhizosphere bacteria through root exudates, and the recruited B. flexus 
KLBMP 4941 enhances seedling salt tolerance through intricate plant 
physiological regulatory mechanisms (Xiong et al., 2020). Similarly, 
Luo et al. investigated the succession trajectories and oscillations of 
rhizosphere microbial symbiotic networks in S. alfredii, aiming to 
deepen understanding and design stable bioremediation microbial 
communities (Luo et al., 2021). Understanding the interactions and 
feedback loop involving fertilization, crop root exudates, the soil 
microbial community and soil properties, offers a new avenue for 
sustainable agricultural production.

5 Conclusion

The study demonstrates that the application of combined organic 
fertilizer and chemical fertilizer, together with rhizosphere effects, 
fosters a more stable and conducive soil bacterial community, and 
enhances oilseed rape growth. Nonetheless, the research primarily 
focused on the seedling stage, prolonged investigations will 
be necessary to understand the comprehensive impacts of fertilization 
on bacterial community structure and function, and reveal the best 
ratio of organic to chemical fertilizers in oilseed rape cultivation.
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FIGURE 5

Co-occurrence network analysis based on Spearman’s correlation analysis for connectivity and module partitioning based on selected OTUs. (R,NR) 
Rhizosphere and non-rhizosphere; (NRF) Non-rhizosphere soil fertilization treatment; (RF) Rhizosphere soil fertilization treatment.
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