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Acidophiles comprise a group of microorganisms adapted to live in acidic 
environments. Despite acidophiles are usually associated with an autotrophic 
metabolism, more than 80 microorganisms capable of utilizing organic matter 
have been isolated from natural and man-made environments. The ability to 
reduce soluble and insoluble iron compounds has been described for many 
of these species and may be harnessed to develop new or improved mining 
processes when oxidative bioleaching is ineffective. Similarly, as these 
microorganisms grow in highly acidic media and the chances of contamination 
are reduced by the low pH, they may be  employed to implement robust 
fermentation processes. By conducting an extensive literature review, this work 
presents an updated view of basic aspects and technological applications in 
biomining, bioremediation, fermentation processes aimed at biopolymers 
production, microbial electrochemical systems, and the potential use of 
extremozymes.
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1 Introduction

Microorganisms are the earliest life forms that emerged on our planet nearly 3.7–4.3 
billion years ago. Since then, living organisms have colonized the sea and land from pole to 
pole being nowadays omnipresent on Earth (Thakur et al., 2022). Although the concept of 
“extreme conditions” follows anthropocentric criteria rather than broader biological criteria, 
it is used to define the group of extremophiles (Merino et  al., 2019). Hence, the term 
extremophile comprises a heterogeneous group of living organisms that thrive under extreme 
environmental conditions in harsh niches (Rampelotto, 2013). The heterogeneity found among 
extremophilic microorganisms, which might be the most abundant life forms on our planet, 
makes it necessary to establish subclassifications depending on the ability to grow at different 
pH, temperature, salinity, pressure, and water activity values (Thakur et al., 2022).

Regarding microorganisms able to grow at low pH, moderate acidophiles grow optimally 
from pH 3 to 5, whereas extreme acidophiles have an optimum pH at 3 or below. 
Acidithiobacillus thiooxidans, formerly known as Thiobacillus thiooxidans, was the first extreme 
acidophile discovered a century ago (Johnson and Quatrini, 2020). This bacterium is a 
mesophilic obligate aerobe that obtains energy from the oxidation of elemental sulfur and 
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reduced inorganic sulfur compounds to sustain a strict autotrophic 
metabolism (Yang et  al., 2019). Since then, several other extreme 
acidophilic autotrophs have been isolated from mine sites, 
hydrothermal vents, and geothermal acidic sites, including the most 
studied extremely acidophilic prokaryote Acidithiobacillus 
ferrooxidans (formerly named Thiobacillus ferrooxidans) (Quatrini 
and Johnson, 2019). Not surprising that acidophilic autotrophs have 
been utilized in coal and oil desulfurization, biotrickling, 
bioremediation, and biomining processes. Currently, they are a 
valuable tool for beneficiation of uranium, refractory gold, and 
low-grade copper ores due to their iron- and sulfur-
oxidizing metabolism.

In contrast to acidophilic autotrophs, first extreme acidophilic 
heterotrophs were isolated in 1970 (Darland et al., 1970) and in the 
early 1980s (Harrison, 1981; Wichlacz and Unz, 1981; Johnson and 
Kelso, 1983), i.e., several decades after the discovery of Acidithiobacillus 
ferrooxidans and Acidithiobacillus thiooxidans. This may 
be paradoxical since heterotrophy is the most widespread form of 
metabolism among bacteria (Johnson and Roberto, 1997). Research 
in acidophiles is still highly focused on autotrophs, but several 
heterotrophic and mixotrophic acidophiles have been isolated over 
last decades (see Figure 1A). Figures 1B,C show that most bacteria 
grow better under mild and moderated temperatures, except those 
belonging to the genus Sulfurisphaera, while archaea tend to grow 

optimally at low pH or high temperatures. Since some microorganisms 
may be used in different bioprocesses, the aim of this article is to 
review and discuss significant and recent advances in the technological 
applications of organic matter-degrading acidophiles.

2 Basic aspects

Acidophiles use a variety of homeostatic mechanisms to maintain 
a circumneutral intracellular pH while living in acidic media (Baker-
Austin and Dopson, 2007). Interestingly, acidophiles able to grow at 
extremely low pH (~pH 0, e.g., Picrophilus oshimae) can utilize organic 
matter as carbon and energy source (Xianke, 2021). As organic acids 
may act as uncouplers of the respiratory chain (Baker-Austin and 
Dopson, 2007), the ability to degrade them may be key to proliferate 
near pH 0 (Ciaramella et al., 2005). Most acidophilic heterotrophs 
degrade organic compounds using dissolved oxygen as final electron 
acceptor, while a strict respiratory metabolism has been reported for 
microorganisms belonging to the genera Acidisphaera, Acidocella, 
Acidomonas, Alicyclobacillus, and Sulfobacillus (Sievers and Swings, 
2015; da Costa et al., 2015a,b; Hiraishi, 2015a,b). Notwithstanding, the 
utilization of alternative final electron acceptors such as Fe(III), 
Mn(IV), sulfate, and nitrate has been described for several strains: 
Acidibacter ferrireducens, Acididesulfobacillus acetoxydans, 

A
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FIGURE 1

(A) Number of isolated acidophilic bacteria (gray bars) and archaea (white bars) able to degrade organic compounds, and the cumulative percentage of 
exclusive heterotrophic microorganisms (square markers). Panels (B,C) Growing conditions of acidophilic bacteria (Panel B) and archaea (Panel C) able 
to degrade organic compounds. The blue diamond represents an exclusive heterotrophic metabolism, and the red square shows a mixed 
heterotrophic/autotrophic metabolism. Markers have been plotted in the optimum values or in the center of optimal ranges. Supplementary Tables S1, 
S2 show detailed data while numbers in markers are referred to strains listed in both tables.
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Acidimicrobium ferrooxidans, Desulfosporosinus acidiphilus, 
Ferrimicrobium acidiphilum, Ferrithrix thermotolerans, and some 
microorganisms belonging to the genera Acidiphilium, Alicyclobacillus, 
and Sulfobacillus (Johnson and McGinness, 1991; Wakao et al., 1994; 
Clark and Norris, 1996; Alazard et al., 2010; Falagán and Johnson, 
2014; Norris, 2015a,b; da Costa et al., 2015b). In fact, dissimilatory 
iron reduction is a widespread characteristic among acidophilic 
heterotrophic bacteria (Coupland and Johnson, 2008), a metabolism 
that may derive from an ancient form of respiration when ferric iron 
was the most abundant oxidant (Knoll et al., 2016; Dong et al., 2021). 
However, a recent report showed that microbial iron reduction is 
usually reported at extreme pH and temperatures, but not when these 
extremes are combined; with the exception of four acidophilic 
hyperthermophiles (Saccharolobus shibatae, Saccharolobus caldissimus, 
Saccharolobus solfataricus, and Acidianus manzaensis) and two other 
strains (Nixon et al., 2022).

At circumneutral pH the solubility of Fe(III) is minimum (Cornell 
and Schwertmann, 2003), and some microorganisms (e.g., Geobacter 
and Shewanella) have developed several mechanisms for transferring 
electrons to ferric solids to act as electron sink (Gralnick and Newman, 
2007). Nevertheless, iron reduction in acidophiles has not yet been 
sufficiently explored (Malik and Hedrich, 2022), considering the large 
availability of Fe(III) below pH 2.5, which solubility largely exceeds 
the solubility of oxygen in pure water at 25°C and 0.21 atm 
(2.56·10−4 mol/L) (Xing et al., 2014). Additionally, since acidophiles 
maintain a circumneutral intracellular pH, the energy harnessed from 
Fe(III) reduction (Equation 1) is similar to that obtained from using 
O2 as final electron acceptor (Equation 2). Redox transformations of 
other species can also be mediated by acidophilic heterotrophs, such 
as reduction of Cr(VI) (Cummings et al., 2007), reduction of Mo(VI) 
(Brierley and Brierley, 1982), or oxidation of As(III) (Battaglia-Brunet 
et  al., 2011), but some of these reactions are not related to 
energy-conservation.

 Fe e Fe E pH V
3 2

2 0 77
+ − + °′+ → ( ) = .  (1)

 O 4H 4e 2H O E pH V2 2 7 0 81+ + → ( ) =+ − °′
.  (2)

Some organic matter degrading acidophiles can synthesize 
pigments, such as bacteriochlorophyll and carotenoids. 
Bacteriochlorophylls are bacterial pigments involved in 
photosynthesis without the production of oxygen. To date, seven 
bacteriochlorophylls types have been identified with annotation 
using letters a–g (Yang et al., 2021). On the other hand, carotenoids 
(carotenes and xanthophylls) are tetraterpenes widely distributed in 
photosynthetic bacteria, and some species of archaea, fungi, algae, 
plants, and animals (Maoka, 2020). For instance, the genus 
Acidiphilium is characterized by the production of zinc-chelated 
bacteriochlorophyll a (Zn-BChl a) and the carotenoid spirilloxanthin 
(Hiraishi and Imhoff, 2015). However, Acidisphaera rubrifaciens, the 
only species belonging to the genus Acidisphaera, produces 
magnesium-chelated bacteriochlorophyll a (Mg-BChl a) as the main 
photopigment. Zn-BChl a is more stable than Mg-BChl a under 
acidic conditions (Hiraishi et al., 2000), and it has been shown to play 
a protectant role of the photosynthetic apparatus of Acidiphilium 
rubrum against copper toxicity (Jaime-Pérez et  al., 2021). 

Biopolymers, such as polyhydroxyalkanoates (PHAs) and 
extracellular polymeric substances (EPS), are also produced by 
microorganisms belonging to the genus Acidiphilium. PHAs are 
biopolyesters accumulated by numerous microorganisms as storage 
compounds, being poly (3-hydroxybutyrate) (P3HB) the most 
common type of PHA (Palmeiro-Sánchez et al., 2022). Several strains 
of Acidiphilium cryptum can accumulate P3HB (Xu et  al., 2013; 
González et al., 2023) while EPS production has also been reported 
for Acidiphilium sp. (Tapia et al., 2009, 2011; González et al., 2023). 
The section below addresses how these aspects may be involved in 
biotechnological applications of these microorganisms.

3 Technological applications

3.1 Biomining and bioremediation 
processes

Iron- and sulfur-oxidizing autotrophic acidophiles have been 
successfully used in mining applications. Therefore, several efforts 
have been made to use heterotrophic and mixotrophic acidophiles in 
biotechnology applied to this area. Most acidophiles able to reduce 
dissolved Fe(III) can also reductively dissolve ferric iron-containing 
minerals such as: amorphous ferric hydroxide, jarosite, magnetite, 
goethite, and hematite, among others (Johnson and McGinness, 1991; 
Bridge and Johnson, 1998, 2000; Hallberg et al., 2011; González et al., 
2015a,b). Hence, the iron-reducing metabolism has been shown to 
be  useful in biohydrometallurgical processes when oxidative 
bioleaching is ineffective or more sustainable methods are required 
(Malik and Hedrich, 2022). According to Eisele and Gabby (2014), 
iron-reducers may be  used to: (i) remove iron impurities from 
materials where iron gives undesirable properties, (ii) recover iron 
from ores that are resistant to conventional processes, and (iii) 
promote the liberation and recovery of other metals.

The presence of iron impurities negatively affects the price of 
kaolin, bauxite, and silica due to color and other properties adversely 
affected. For example, main methods of kaolin bleaching comprises 
flocculation with polymers, chemical solubilization, extraction, and 
washing (Cobos-Murcia et  al., 2022). Despite iron-reducing 
microorganisms can also be  used for this purpose (Hosseini and 
Ahmadi, 2015; Yong et al., 2022), few studies report the utilization of 
heterotrophic acidophiles for kaolin bleaching (Kupka et al., 2007). On 
the other hand, metallic iron may be obtained from recalcitrant ores 
by the sequential using of iron-reducers (González et al., 2020) and 
electrowinning (Mostad et al., 2008). However, it seems not applicable 
at large scale because iron is highly abundant in the earth’s crust, and 
extractive metallurgy has developed highly optimized methods to 
obtain this metal at low cost.

Iron-reducing microorganisms can also be used for the recovery 
of metals different to iron. For example, manganese leaching from 
low-grade ores is increased by Acidiphilium cryptum growing 
heterotrophically (González et al., 2018), while rock phosphate, pyrite 
(Xiao et al., 2013), copper ores (Xu et al., 2010a; Yang et al., 2013), and 
printed circuit boards (Priya and Hait, 2020) are better leached when 
using mixed cultures of Acidiphilium sp. and Acidithiobacillus 
ferrooxidans. The action mechanism of iron reducers has been 
explained due to interactions with the solid compounds and other 
strains (i.e., iron- and sulfur-oxidizers) (Johnson and Roberto, 1997; 
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Liu et al., 2011). Nevertheless, the ability of some heterotrophs to 
oxidize Fe(II) and sulfur-reduced compounds may also be relevant 
(Bacelar-Nicolau and Johnson, 1999; Priya and Hait, 2018; Bulaev, 
2020; Panyushkina et al., 2021, 2022; Enuh and Aytar Çelik, 2022; Cho 
et al., 2023).

In this regard, a mixed culture of Acidiphilium multivorum and 
Acidithiobacillus ferrooxidans has been used in a biomineralization 
process where iron and sulfate are removed from acid mine drainage 
as schwertmannite to decrease the subsequent lime consumption and 
sludge generation (Jin et  al., 2020). Similarly, a mixed culture of 
Alicyclobacillus tolerans and Acidiphilium cryptum was able to produce 
crystalline schwertmannite precipitates with the potential to remove 
arsenic from acidic effluents (Nural Yaman et  al., 2023). Other 
applications related to highly impactful topics in material sciences 
include leaching of rare earths elements (e.g., by Acidomonas 
methanolica) (Hedrich et al., 2023), and the production of precious 
metals nanoparticles (palladium, gold and platinum, e.g., by Acidocella 
aromatica and Acidiphilium cryptum) (Okibe et al., 2017; Rizki and 
Okibe, 2018; Matsumoto et al., 2021).

3.2 Fermentation processes

Microbial fermentation is currently used for producing food and 
beverages, food ingredients and supplements, pharmaceuticals and 
nutraceuticals, monomers, solvents, and biofuels. The utilization of 
extremophiles in fermentation processes has been encouraged in 
recent works to increase the competitiveness of these processes (Chen 
and Jiang, 2018; Chen and Liu, 2021), having PHA as a particular 
product which can be generated using extremophiles (Koller, 2017). 
The accumulation of P3HB by acidophilic heterotrophs was presumed 
or reported in some early works where TEM imaging showed 
electron-transparent granules (Wichlacz et al., 1986; Matsuzawa et al., 
2000). However, early studies in which the intracellular polymer was 
extracted and analyzed were first published by Yang et al. (2007) and 
Peng et al. (2008). Acidiphilium sp. DX1-1 (Zhang et al., 2013) has 
been the most commonly used strain to study the accumulation of 
P3HB at low pH from glucose, although the type strain A. cryptum 
Lhet 2 was utilized in a recent study using glycerol (González et al., 
2023). The optimal conditions for P3HB production (glucose 40 g/L, 
KNO3 15 g/L, and pH 3.0) were determined through an orthogonal 
array test which yielded the maximum of 19.75 g/L of P3HB (Xu et al., 
2008). On the other hand, Xu et al. (2010) reported that chloroform-
sodium hypochlorite was the best method for extraction of P3HB 
from A. cryptum (73% extraction and 92% purity) to obtain a material 
with a crystallinity degree of 46% formed mostly by fragments 
of 672 Da.

The expression of 13 genes related to the metabolism of P3HB was 
studied under different C:N ratios using real-time PCR (Xu et al., 
2010b). This work showed upregulation of these genes when 
A. cryptum was grown using a C:N ratio equal to 2.4 to obtain 0.88 g 
of P3HB per gram of dry cells. Hence, acetyl-CoA synthetase and 
poly-β-hydroxybutyrate polymerase were pointed as the most 
upregulated genes for P3HB synthesis under the optimal C:N ratio. 
The authors also suggest that the P3HB yield may be raised using 
molecular biology techniques to increase the expression of Acry_3030 
(poly-β-hydroxybutyrate polymerase) or decrease the expression of 
Acry_2759 (polyhydroxyalkanoate depolymerase) since there are no 

side pathways to polymerize or depolymerize P3HB, a task that may 
be addressed by synthetic biology of extremophiles (Ye et al., 2023).

The accumulation of P3HB and the expression of genes related to 
P3HB synthesis, CO2 fixation, and sulfur metabolism were studied in 
media containing glucose, elemental sulfur and mixtures of both 
substrates (Xu et al., 2013). The values of P3HB accumulated at the 
stationary phase are atypical when compared to other studies because, 
in most cases, they are higher than the values attainable by the initial 
concentration of glucose, being these results attributed to fixation of 
atmospheric CO2 through the Calvin cycle (Li et al., 2020). The highest 
overexpression of genes related to CO2 fixation was detected in the 
culture performed in medium containing glucose 1 g/L and elemental 
sulfur 5 g/L, a condition that produced 6.2 g/L of P3HB at the 
stationary phase. On the other hand, the highest overexpression of 
genes related to P3HB accumulation was observed in media 
containing 5 g/L of sulfur and 5 or 10 g/L of glucose, conditions that 
yielded the highest P3HB accumulations reported in this work, 8.3 or 
14.1 g/L of P3HB at the stationary phase, respectively. Although these 
results seem promising for obtaining an efficient process for 
transforming CO2 into bioplastics (Kajla et al., 2022), to the best of our 
knowledge there are no subsequent studies using media containing 
sulfur and other organic compounds/residues, or addressing the 
up-scaling of this process.

Polyhydroxyalkanoates are not the only polymers synthesized by 
extremophiles. Nicolaus et  al. (1993) showed that Sulfolobus 
solfataricus MT3 and MT4 synthesize a soluble exopolysaccharide 
when grown at 75 and 88°C, respectively. The analysis performed on 
these exopolymers showed the presence of glucose, mannose, 
glucosamine, and galactose in proportion 1.2:1.0:0.77:0.73 and 
1.2:1.0:0.18:0.13 for MT3 and MT4 strains, respectively. More recent 
studies used lectin staining to show the presence of galactose, 
glucosamine and mannose/glucose residues in the extracellular 
polysaccharide synthesized by attached cells of S. solfataricus, 
Sulfolobus tokodaii and Sulfolobus acidocalcarius (Koerdt et al., 2010; 
Zolghadr et  al., 2010). Acidiphilium sp. also produces bound EPS 
mainly consisting of proteins and carbohydrates where Fe(III) can 
be  sorbed (Tapia et  al., 2009, 2011), whereas A. cryptum Lhet 2 
generates soluble EPS which analysis showed the presence of mannose, 
rhamnose, and glucose in a proportion near to 3.2:2.3:1 (González 
et al., 2023).

3.3 Microbial electrochemical systems

Microbial electrochemical systems are devices where 
microorganism mediate electrochemical reactions by exchanging 
electrons with an electrode through direct or indirect mechanisms 
(Chaudhary et  al., 2022). The acidophilic bacterium Acidiphilium 
cryptum Lhet2 has been used for electricity generation in a microbial 
fuel cell operating at low pH (≤4.0) (Borole et al., 2008). The presence 
of dissolved iron in the medium enables the current generation. 
However, supplementation with a chelating agent (nitrilotriacetic 
acid) and an electron shuttle (phenosafranin) led to a higher steady-
state voltage output. Although the maximum power density obtained 
(12.6 mW/m2) was low when compared to the maximum known 
values (5.61–7.72 W/m2) (Slate et al., 2019; Ren, 2021), the utilization 
of a acidophilic strain in optimized systems (e.g., miniaturized 
devices) may prevent the anode acidification; a phenomenon that 
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inhibits the microbial activity by accumulation of hydrogen ions 
(Obileke et al., 2021).

Acidiphilium sp. strain 3.2 Sup 5 has also been reported to be an 
electrogenic strain able to produce currents between 2.0 and 3.0 A/m2 
when degrading glucose at pH 2.5 (Malki et al., 2008). In this study, 
the current was reduced by ~25% when the colonized electrode was 
moved to a new glucose solution free of cells, thereby indicating that 
the attached cells are mainly responsible for the stablished current. 
Nonetheless, this bioanode seems to be highly resilient to oxygen 
infiltration in the anodic chamber because polarization curves 
obtained in the absence and presence of dissolved oxygen (6.2 ppm) 
were similar. The draft genome of a third electroactive bacteria 
belonging to the Acidiphilium genus has also been reported (San 
Martin-Uriz et  al., 2011). Malki et  al. (2008) suggested that the 
mechanism for electron transfer is via redox proteins allocated on the 
bacterial membrane or via excreted redox compounds. However, a 
more recent study reported that Acidiphilium cryptum JF-5 can form 
extracellular appendages, although the electrical conductivity of these 
appendages was not tested (González et al., 2018).

Previous studies have examined mesophilic electrogenic 
microorganisms, but only recently a thermophilic electrogenic 
bacteria phylogenetically related to Alicyclobacillus hesperidum was 
isolated from a microbial fuel cell (Zhang et al., 2021). This bacterium 
was able to grow at pH 3.0 and 50°C generating a maximum power 
density of 188.1 mW/m2. The authors proposed the self-excretion of 
soluble redox-active small molecules, such as quinones, as the 
mechanism for electron transfer for this bacterium. Few studies have 
addressed the electrochemical properties of acidophilic heterotrophs, 
but we speculate that there are probably several other electroactive 
microorganisms able to proliferate under similar conditions. Our 
assumption is based on the facts that (i) almost all organisms that can 
catabolically reduce ferric iron are also able to reduce an anode surface 
(Richter et  al., 2012), and (ii) dissimilatory iron reduction is a 
widespread ability among acidophilic heterotrophic microorganisms 
(Coupland and Johnson, 2008).

3.4 Extremozymes

Extremozymes are enzymes obtained from extremophiles that can 
be used to catalyze reactions under extreme conditions, owing the 
prevalence of acidic amino acids on the protein surface (Samanta 
et al., 2022). Since intracellular enzymes of acidophiles operate at 
circumneutral pH (Baker-Austin and Dopson, 2007), it may 
be  expected that only extracellular enzymes are resistant to low 
pH. However, several studies have reported that certain intracellular 
enzymes are capable of operating at extremely low pH (Golyshina 
et al., 2006). Extremozymes of interest that are tolerant to low pH 
include amylases, glucoamylases, xylanases, cellulases, proteases, and 
oxidases. These extremozymes may be useful in biofuel production, 
food mining, starch processing, desulfurization of coal, valuable metal 
recovery, and feed component (Samanta et al., 2022).

Several polysaccharide-degrading enzymes (e.g., α- and 
β-glucosidase, endoglucanase, and mannanase) have been isolated 
from acidophiles. For example, She et  al. (2001) sequenced the 
genome of Sulfolobus solfataricus and found three genes encoding 
potentially secreted endo-β-glucanases (sso1354, sso1949, and 
sso2534). Later studies showed that the endo-β-glucanase Sso2534 is 

active at pH 5.8, the protein Sso1354 works optimally at pH lower than 
4.5, and the protein Sso1949 has optimum conditions at pH 1.8 and 
80°C (Limauro et al., 2001; Huang et al., 2005; Girfoglio et al., 2012; 
Lalithambika et  al., 2012). In addition, the endoglucanase CelA4 
produced by Alicyclobacillus sp. works optimally at 65°C and pH 2.6, 
being stable over a wide pH range (1.8–7.6) and resistant to acidic and 
neutral proteases (Bai et al., 2010). Boyce and Walsh (2018) showed 
that Sulfolobus shibatae produces an endo-1,4-β-glucanase which has 
its maximum activity at 95–100°C and pH in the range 3.0–5.0. This 
enzyme was able to hydrolyze barley β-glucan, lichenin, CMC, 
and xylan.

Three intracellular α-glucosidases of Ferroplasma acidiphilum 
exhibit no similarity to other glycosyl hydrolases (Golyshina et al., 
2006). The optimal temperature for these enzymes is 60°C and their 
optimal pH is in the range 2.0–4.0, values significantly lower than the 
intracellular pH (5.6). On the other hand, Sulfolobus acidocaldarius 
produces a β-glucosidase belonging to the GH1 family (Park et al., 
2010). This enzyme operates optimally at pH 5.5 and 90°C, although 
its half-life increases from 0.2 to 494 h when the temperature decreases 
from 90 to 70°C. Mannanases of microbial origin are mainly secreted 
extracellularly, although intracellular mannanases are produced by 
few bacteria (e.g., Alicyclobacillus acidocaldarius). The endo-β-1,4-
mannanase produced by this acidophile has significant 
transglycosylation activity and relatively low hydrolytic activity, 
working optimally at pH 5.5 and 65°C (Zhang et al., 2008).

A recent study isolated carboxylesterases from the microbial 
community inhabiting an acid mine drainage (pH ~2) (Vidal et al., 
2022). In this work, 16 esterases were identified in microorganisms 
belonging to the genera Acidithrix, Acidimicrobium/Ferrimicrobium 
and Acidiphilium, among others, being 10 of them successfully 
expressed in E. coli. The results showed that optimal pH and 
temperature were in the ranges 7.0–9.0 and 30–65°C, respectively, 
although at pH 5.5 the enzymes retained 33–68% of their activity. Six 
of these hydrolases showed efficient degradation of acrylic- and 
terephthalic-like esters, which may be  relevant for degradation of 
plastics. Esterases of Ferroplasma acidiphilum (Golyshina et al., 2006) 
and Acidiphilium sp. (Isobe and Wakao, 1996) have also been reported. 
The former exhibits excellent activity near pH 2 despite being 
intracellularly located, whereas the latter, located both in cells and 
culture supernatant, is active at pH 4.0–5.0 hydrolyzing Tween 80. 
Other enzymes can also be obtained from this microbial group, having 
as example the histidine ammonia lyase from Thermoplasma 
acidophilum which was used to implement a microreactor able to 
operate at pH 2.8 (Ade et al., 2022). Additionally, Ortiz-Cortés et al. 
(2021) showed the presence of β-galactosidase, cellulase, lipase, 
xylanase, and protease activities in the cell-free medium obtained after 
culturing Alicyclobacillus sp. at pH 3 and 5, while Micciche et  al. 
(2020) identified mercury and arsenic reductases in some 
Acidiphilium strains.

4 Concluding remarks and future 
perspectives

While autotrophic acidophiles, like Acidithiobacillus ferrooxidans, 
have played pivotal roles in the understating of life at low pH and 
some bioprocesses, heterotrophic and mixotrophic acidophiles have 
been significantly less studied. Notwithstanding, by conducting an 
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extensive literature review, this work presented an integrative view of 
the basic metabolic and culture aspects of heterotrophic acidophiles. 
These traits lay at the core of the development of technological 
applications, including biomining, bioremediation, and fermentation 
processes aimed at biopolymers production, microbial electrochemical 
systems, and the potential use of extremozymes.

Although acidophiles capable of utilizing organic matter may 
be relevant to establish new or optimized mining processes, special 
attention should be  paid into (i) the proliferation of undesired 
microorganisms in liquid media and (ii) the availability and price of 
required organic matter. Despite sterilization of base metal ores is 
probably unfeasible from an economic point of view, some strains (e.g., 
Acidithiobacillus ferrooxidans) or microbial groups (e.g., iron and sulfur 
oxidizing chemolithoautotrophs) may be  inhibited by organic 
compounds (Määttä et al., 2022), or by controlling the osmotic pressure 
and concentration of certain ions (Harahuc et al., 2000). On the other 
hand, problems related to the availability and price of organic matter 
may be confronted using cheap and locally available organic substrates, 
having as example the domestic effluent used by Magowo et al. (2020) 
to drive sulfate reduction in an acid mine drainage.

Acidophilic heterotrophs also constitute a good option to establish 
robust fermentation processes as the culture proceeds self-protected by 
the low pH (Chen and Jiang, 2018). Regarding production of PHAs, 
significant accumulations have been reported at high salinity and extreme 
temperatures (Koller, 2017), but acidophiles have been not extensively 
studied for this purpose. Hence, more studies aimed to modify their 
metabolism and optimize culture parameters will be required to achieve 
large efficiencies. Finally, the utilization of acidophilic heterotrophs in 
microbial electrochemical systems and identification of useful 
extremozymes on them are fields even newer or less explored than those 
previously reported. Hence, probably bioinformatics and synthetic 
biology will be valuable tools to harness their potential.
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