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Ammonia-oxidizing archaea 
adapted better to the dark, 
alkaline oligotrophic karst cave 
than their bacterial counterparts
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Subsurface karst caves provide unique opportunities to study the deep 
biosphere, shedding light on microbial contribution to elemental cycling. 
Although ammonia oxidation driven by both ammonia-oxidizing bacteria (AOB) 
and ammonia-oxidizing archaea (AOA) is well explored in soil and marine 
environments, our understanding in the subsurface biosphere still remained 
limited to date. To address this gap, weathered rock and sediment samples 
were collected from the Xincuntun Cave in Guilin City, an alkaline karst cave, 
and subjected to high-throughput sequencing and quantification of bacterial 
and archaeal amoA, along with determination of the potential nitrification rates 
(PNR). Results revealed that AOA dominated in ammonia oxidation, contributing 
48–100% to the PNR, and AOA amoA gene copies outnumbered AOB by 2 to 
6 orders. Nitrososphaera dominated in AOA communities, while Nitrosopira 
dominated AOB communities. AOA demonstrated significantly larger niche 
breadth than AOB. The development of AOA communities was influenced by 
deterministic processes (50.71%), while AOB communities were predominantly 
influenced by stochastic processes. TOC, NH4

+, and Cl− played crucial roles 
in shaping the compositions of ammonia oxidizers at the OTU level. Cross-
domain co-occurrence networks highlighted the dominance of AOA nodes in 
the networks and positive associations between AOA and AOB, especially in the 
inner zone, suggesting collaborative effort to thrive in extreme environments. 
Their high gene copies, dominance in the interaction with ammonia oxidizing 
bacteria, expansive niche breadth and substantial contribution to PNR 
collectively confirmed that AOA better adapted to alkaline, oligotrophic karst 
caves environments, and thus play a fundamental role in nitrogen cycling in 
subsurface biosphere.
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1 Introduction

Earth’s subsurface environments are isolated from phototrophic 
energy sources, which are characterized by oligotrophic condition and 
limitation in electron donors or electron acceptors (Jones et al., 2018). 
Microorganisms living in such environments are highly dependent on 
the oxidation of limited inorganic matter for energy (Zhang et al., 
2018; Dong et al., 2020; Jones and Northup, 2021). Nevertheless, a 
large number of microbial cells is estimated to be 2 × 1029–6 × 1029 in 
the terrestrial subsurface biosphere excluding those in soils 
(Magnabosco et  al., 2018). The subsurface biosphere serves as a 
fascinating place to decipher microbial dark matter and offer new 
knowledge about life, particularly in examining minimum energetic 
requirements and adaptations to oligotrophic environments.

Karst caves are known as subsurface extreme ecosystems with 
twilight or dark conditions, nutrient deprivation and isolation from 
the surficial environments, which harbor numerous chemoautotrophic 
microorganisms (Marques et al., 2019). Currently, progresses have 
been made on microbial communities, niche differentiation, 
community assembly and their correlation with environmental 
variables (Yun et al., 2016; Zhao et al., 2017; Cheng et al., 2019, 2021, 
2022; Cao et al., 2021). Bacteria, microalgae, and fungi are found to 
be  involved in the elemental cycles of carbon, nitrogen, sulfur, 
manganese, and iron, as well as in the dissolution and precipitation of 
limestone (Grobbelaar, 2000; Mulec, 2008; Sebela et al., 2015; Jones 
and Northup, 2021). Moreover, microbial functional groups such as 
ammonia-oxidizers are also been investigated and ammonia-oxidizing 
archaea (AOA) contribute more to ammonia oxidation than their 
bacterial counterparts as indicated by clone libraries in cave sediments 
(Zhao et al., 2017). Nevertheless, the limitation of the first-generation 
sequencing technique may not reveal the nitrifying communities 
comprehensively. Moreover, the adaption and ubiquitous occurrence 
of ammonia oxidizers in different cave habitats such as sediments and 
weathered rocks and how AOA and AOB interact with each other 
remain largely unexplored in the subsurface biosphere.

Nitrification is one of the fundamental biogeochemical processes 
mediated by microorganisms in natural environments, which has 
been well-reported in ecosystems such as soils, wetlands, farmland, 
estuary, and marine environments (He et al., 2007; Beman et al., 2012; 
Veresoglou et al., 2012; Phillips et al., 2015; Chen et al., 2019; Luvizott 
et al., 2019; Wei et al., 2023). The oxidation of ammonia (NH3) to 
nitrite (NO2

−) is the first and rate-limiting step in nitrification, 
catalyzed by ammonia monooxygenase enzymes encoded by the 
amoA gene of AOA and AOB (Daims et al., 2015). Therefore, the 
amoA gene is widely used to explore ammonia-oxidizing communities 
in natural environments (Heiss et al., 2022). AOA and AOB are widely 
distributed in natural ecosystems, and they dominate ammonia-
oxidizing communities under different conditions. Usually, AOA 
dominate in strong acidic environments with low ammonia 
concentration (Zhang et al., 2012; Kozlowski et al., 2016), whereas 
AOB is dominant in nitrogen rich environments (Di et al., 2009) due 
to their different substrate affinity (Martens-Habbena et al., 2009). 
Nevertheless, recent study showed that not all AOA possess such 
higher substrate affinity than AOB. In fact, the substrate affinity of 
ammonia-oxidizers correlated with their cell surface area to volume 
ratio (Jung et al., 2022). These new information on enzyme kinetic 
may indicate more complexity about niche differentiation between 
AOA and AOB. In addition, oxygen concentration, light condition, 

temperature, metal and organic compound also contribute to their 
distinct ecological niche differentiation in natural environments (Liu 
et al., 2015; Ouyang et al., 2017; Cheng et al., 2019; Khanom et al., 
2021). The isolation and relative stable conditions create specific 
microhabitats within caves, especially loose sediments on the ground 
and weathered rocks of the cave passage (Cheng et  al., 2023; Liu 
X. Y. et al., 2023), providing excellent conditions for the exploration 
of the niche differences of ammonia-oxidizing microorganisms in 
oligotrophic environments. However, the distribution of AOA and 
AOB and the ecological processes responsible for their development 
in these unique microhabitats remain poorly understood.

The theory of microbial assembly based on ecological niches is 
one of the universal tools to study microbial communities (Stegen 
et al., 2012; Ferrenberg et al., 2016; Yuan et al., 2019; Zhao et al., 2019a; 
Yu et al., 2021; Wang et al., 2024). Deterministic processes are the 
selection and filtering of species by ecological choices imposed by 
biotic and abiotic factors, while stochastic processes are the role of 
unpredictable interventions such as births and deaths on microbial 
communities (Zhou and Ning, 2017; Zhang et  al., 2022; Fang 
W. K. et  al., 2023). Ecological guilds exhibit different community 
structures due to different responses to environmental selection (Zhao 
et  al., 2019b). Studies have clearly demonstrated the strong niche 
specificity of bacterial communities in loose sediments and those 
living on weathered rocks (Cao et al., 2021; Liu X. Y. et al., 2023) as 
well as for methanotrophs (Cheng et al., 2022), which may be also true 
in microbial functional groups involved in nitrification. If it is the case, 
what ecological processes contribute to the differences in ammonia-
oxidizing communities in different niches in karst caves?

To fill these knowledge gaps, we collected loose sediment and 
weathered rock samples from the Xincuntun Cave in Guilin city, along 
the cave passage and subjected to amplicon high-throughput 
sequencing and quantification of the amoA gene and PNR (potential 
nitrification rate) measurement. Our aims are to investigate: (i) 
composition and niche differentiation of ammonia-oxidizing 
microbial communities; (ii) potential role of the environmental factors 
in ecological niche differentiation; (iii) the contribution of AOA and 
AOB to nitrification and their adaption to subsurface caves.

2 Materials and methods

2.1 Site description

The Xincuntun (XCT) Cave is a pristine karst cave without any 
tourists, located in Yongfu County, Guilin city, Guangxi Province 
(24°58′38.5″N, 109°44′15.7″E). It has a subtropical monsoon climate 
with an annual average temperature of 18.8°C and an annual average 
rainfall of 1,950 mm, which is mainly concentrated in March to 
August. The XCT Cave consists of two branches with a total length of 
386 m. We sampled the left branch in this study, which is 100 m long, 
2–7 m high, and about 3 m wide.

2.2 Sample collection

The weathered rock (W) and loose sediment (S) samples were 
collected from the cave with an interval of 20 m. The first two sampling 
sites were located in the entrance nearby zone with weak light 
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(designated as ENZ), whereas the other three sampling sites located 
in the dark inner zones (IZ). Surface sediment samples were collected 
by five-point sampling method with a depth <5 cm with sterilized 
shovels and weathered rock samples were gently scraped from the 
weathered cave wall. All samples were stored in 50 mL sterile 
centrifuge tubes and kept on ice. They were immediately stored in 
freezer upon arrival in the hotel (−20°C). All utensils used for 
sampling were sterilized beforehand, and sterile gloves and masks 
were worn throughout the sampling to avoid contamination. Samples 
were transported back to the laboratory on ice in an insulated box and 
stored at −80°C for future use.

2.3 Physicochemical analysis parameters

Samples were freeze-dried for 24 h using a freeze-dryer (ALPHA 
1-2LD, Christ, Germany). 10 g of ground sample was mixed with 
ultrapure water in a ratio of 1:5 (w/v), shaken for 5 min (Vortex-
Genie®2, QIAGEN, Germany) and centrifuged at 6,800 × g (TGL-16A, 
Changsha) for 15 min. The supernatant was filtered through a 0.22 μm 
membrane, acidified with 3 M HCl for cation except NH4

+ 
measurement using ICS-600 (Thermo, United States). The ammonium 
of the filtrate without acidification was measured by the salicylic acid 
assay (Kandeler and Gerber, 1988), and the filtrate without 
acidification was determined for anion with ICP-OES (iCAP 7,600+) 
ion chromatography. pH was determined using a multi-parameter 
water quality tester (HACH, Loveland, CO, United States), and TOC 
was determined using an elemental analyzer (Vario MACRO cube, 
Elementar, Germany). The amount of un-ionized NH3 based on pH 
was calculated using the following formula (Emerson et al., 1975):

 
NH mg kg p a pH

3
1 1 10 1· /− −( ) = +( )K

Where pKa is the dissociation constant of NH3 + H+/NH4
+ pair 

in solution.

2.4 DNA extraction, sequencing and 
quantification of AOA and AOB

Total DNA was extracted from 0.5 g of freeze-dried weathered 
rocks and sediments using the FastDNA® SPIN kits for soil (MP 
Biomedicals, United States). The concentration and quality of the 
extracted DNA were determined using a Nanodrop 2000 (ND2000, 
Thermo Fisher Scientific) spectrophotometer for subsequent 
experiments. AOA was amplified using the primer set of Arch-
amoA26F/Arch-amoA417R (Park et al., 2008), and the primer set of 
amoA1F/amoA2R was used for AOB (Weiner and Maizels, 1999). 
Paired-end sequencing of the amoA functional genes of AOA and 
AOB was performed on the Illumina Miseq PE300 platform at 
Shanghai Personal Biotechnology, Co., Ltd., Shanghai, China. 
Quantification of the amoA genes of AOA and AOB was performed 
using the primer sets of Arch-amoAF/Arch-amoAR and amoA1F/
amoA2R, respectively, with the systems and reactions as described 
previously (Rotthauwe et al., 1997; Francis et al., 2005; Gao et al., 
2016). The R2 values of the standard curves were 0.95 or higher in this 
study. The abundance of each gene was normalized to the number of 

qPCR-derived gene copies per gram of dry weight sample. All raw 
sequence reads were deposited in National Omics Data Encyclopedia 
(NODE) with the project numbers OER444534 for AOA and 
OER445462 for AOB.

2.5 Sequence processing and 
bioinformatics analysis

Primer fragments were excised with cutadapt plugin, sequences were 
spliced with the fastq_mergepairs module of Vsearch, and quality control 
was performed with the fastq_filter module. Repetitive sequences and 
chimeras were removed with the derep_fulllength module and uchime_
denovo module, respectively. A perl1 script was run to filter chimeras 
from the sequence set after quality control. High quality sequences were 
clustered at 85% similarity (Pester et al., 2012). Species annotation was 
performed using the National Center for Biotechnology Information 
(NCBI) database.2 The sequence numbers of amoA genes were, 
respectively, resampled to 58,405 (for AOA) and 39,470 (for AOB) reads 
to avoid the influence of sequencing depth on microbial diversity.

Alpha diversity indices (Chao 1, Shannon, Simpson), and 
principal coordinate analysis (PCoA) were calculated via the vegan 
and ggplot packages in R (Dixon, 2003). The permutational 
multivariate analysis of ANOVA (PERMANOVA) was conducted 
based on Bray–Curtis dissimilarity via the vegan package in R (Rui 
et al., 2015). Redundancy analysis (RDA) of environmental factors and 
relative abundance of dominant OTUs were conducted with Canoco 
5, and co-occurrence network of ammonia-oxidizing microorganisms 
was analyzed with Hmisc package and were visualized with the 
Fruchterman-Reingold layout in Gephi (Bastian et al., 2009). Keystone 
taxa was characterized using betweenness centrality values (Jiao et al., 
2016; Xiang et  al., 2017). Community construction was based on 
iCAMP in the R package implemented in the Galaxy platform online 
website3 (Ning et al., 2020). The Pearson test was used in the correlation 
between βNTI and environmental factors for those that conformed to 
a normal distribution and the Spearman test for those that did not. The 
niche breadth index was calculated using the spaa package in R. The 
phylogenetic tree was constructed by selecting the dominant OTUs 
with >10% abundance and using the National Center for Biotechnology 
Information (NCBI) GenBank database for BLAST comparison to 
obtain highly homologous sequences (> 97%) (Liu H. Y. et al., 2023). 
Phylogenetic analysis was performed using the maximum likelihood 
method using MEGA 11 software (Ren et al., 2023).

2.6 Potential nitrification rate (PNR)

PNR measurements were conducted in triplicates with two 
experimental groups. The air-dried sample of 5 g was transferred into 
a 50 mL corning tube and 20 mL of phosphate buffer was added. 1 mM 
(NH4)2SO4 was added into the centrifuge tubes to serve as the 
substrate for ammonia oxidation (Zhao et  al., 2017). The control 
groups were treated with 800 μg/mL kanamycin to inhibit the growth 

1 https://github.com/torognes/vsearch/wiki/VSEARCH-pipeline

2 https://www.ncbi.nlm.nih.gov/guide/data-software/

3 http://ieg3.rccc.ou.edu:8080/
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of AOB (Taylor et al., 2010). Subsequently samples were incubated at 
19°C (close to the mean annual temperature in XCT Cave) for 24 h in 
the dark at rest followed by the addition of 1 mM KClO3 to stop nitrite 
oxidation (He et  al., 2007; Tourna et  al., 2011; Zhao et  al., 2017). 
Nitrite concentration was measured with sulfonamide colorimetric 
method with a 1:4 ratio of sulfonamide to nitrite (Yu et al., 2007). 
Variation of nitrite was used to calculate the potential nitrification rate 
based on the formula of:

 
PNR g C NOAOA kanamycinµM· /− −( ) =1

2 5

 
PNR g C NO PNRAOB no kanamycin AOAµM· /−

−
−( ) = −1
2 5

The definition of abbreviation in the formula are showed as follow:
PNRAOA: the potential nitrification rate by AOA; CkanamycinNO2

−: 
NO2

− concentration in the system with the addition of kanamycin; 
Cno-canamycinNO2

−: NO2
− concentration in the system without the 

addition of kanamycin; PNRAOB: potential nitrification rate of AOB.

3 Results

3.1 Changes of physicochemical 
parameters with niches

The NH4
+ concentration was higher in the sediment samples than 

those in weathered rock. Toward the interior of the cave, NH4
+ 

concentration decreased, and NH3 increased (Table 1). The highest 
NH4

+ concentration (23.43 ± 4.54 mg/kg) was observed in the 
sediment collected in entrance nearby zone (ENZ-S), and the lowest 
NH4

+ concentration (10.40 ± 4.15 mg/kg) was observed in the 
weathered rock collected in the dark inner zone (IZ-W). The variation 
of NH3 ranged from 88.04 ± 22.46 to 151.53 ± 47.29 mg/kg (Table 1). 
All samples were weakly alkaline and the pH value (8.03 ± 0.47 and 
8.38 ± 0.40) of IZ samples was higher than those of ENZ samples 

(7.69 ± 0.47 and 7.81 ± 0.18) (Table 1). Temperature in inner zone was 
higher (16.30 ± 0.92°C) than that in ENZ (10.00 ± 0.14°C).

3.2 Diversity and composition of 
ammonia-oxidizing microbial communities

Alpha diversity of ammonia-oxidizers was significantly different 
among different niches. Overall AOA communities showed higher alpha 
diversity than those of AOB as indicated by Chao 1 index, Simpson index 
and Shannon index (Figure 1). The AOA alpha diversity in inner zone 
was higher than that that in the entrance nearby zone, and the alpha 
diversity of the weathered rock was higher than that of the sediments 
(Figure 1A). In contrast, AOB showed a higher alpha index in IZ than 
those in ENZ, whereas the significant difference was only found in the 
rock samples in ENZ and sediments in IZ (Figure 1B). PCoA analysis 
showed significant differences in AOA (p = 0.002) and AOB (p = 0.001) 
communities between different niches such as sediments versus 
weathered rocks and samples in ENZ versus those in IZ (Figures 1C,D).

A total of 200 AOA OTUs was recovered from the cave samples 
and OTU1 was numerically dominant in all habitats (Figure 2A). All 
the AOA OTUs were affiliated with Thaumarchaeota, which was 
furthered divided into two orders (Nitrosopumilales and 
Nitrososphaeria) and three genera (Nitrososphaera, Candidatus 
Nitrosocosmicus, and Nitrosopumilus). AOTU1 dominated AOA 
communities with the highest relative abundance of 94.86%, 53.17%, 
and 61.16% in ENZ-S, IZ-S and ENZ-W, respectively, while AOTU2 
dominated IZ-W with the relative abundance of 43.17% (Figure 2A). 
At the genus level, Nitrososphaera was dominant in samples from 
ENZ-S, IZ-S and ENZ-W, accounting for 95.70%, 61.28%, and 68.18%, 
respectively. However, an unclassified genus of Nitrosophaeraceae had 
the highest relative abundance (45.30%) in IZ-W, followed by the 
Nitrosopumilus with a relative abundance of 37.54% (Figure 2C).

In total 35 AOB OTUs were assigned with three genera, 
Nitrosomonas, Nitrosospira, and Nitrosovibrio, which belonged to the 
orders of Nitrosomonadales and Nitrosomonadaceae, affiliated to 
Betaproteobacteria class. BOTU1 dominated in AOB communities with 
the relative abundance of 60.47%, 54.42%, 90.00%, and 72.54% in 

TABLE 1 Physicochemical parameters of weathered rocks and sediments within the XCT Cave, Guilin City, Guangxi Province.

Sample ENZ-S IZ-S ENZ-W IZ-W

pH 7.81 ± 0.18a 8.38 ± 0.40a 7.69 ± 0.19a 8.03 ± 0.47a

K+ (mg/kg) 2.50 ± 0.33a 1.88 ± 0.78a 3.60 ± 0.64a 44.73 ± 30.50a

TOC (%) 1.99 ± 0.04a 3.00 ± 1.67a 1.83 ± 1.02a 3.58 ± 0.70a

Cl− (mg/kg) 1.65 ± 0.06 a 1.10 ± 0.38 a 2.44 ± 0.81 a 12.80 ± 6.21a

NO3
− (mg/kg) 16.36 ± 11.57a 6.32 ± 2.40a 6.11 ± 3.42a 349.48 ± 268.28a

SO4
2− (mg/kg) 20.82 ± 3.02a 17.82 ± 2.26a 27.61 ± 4.69a 1,345 ± 1,147.66a

NH4
+ (mg/kg) 23.43 ± 4.54a 16.41 ± 3.50a 13.28 ± 3.83a 10.40 ± 4.15b

Mg/Si 0.09 ± 0.07a 0.05 ± 0.06a 0.24 ± 0.17a 1.41 ± 1.06a

Ca/Si 4.10 ± 0.65a 4.37 ± 0.44a 6.46 ± 0.13a 32.77 ± 21.63a

Temperature (°C) 10.00 ± 0.14b 16.30 ± 0.92a 10.00 ± 0.14b 16.30 ± 0.92a

NH3 (mg/kg) 88.04 ± 22.46a 114.02 ± 53.70a 114.91 ± 39.58a 151.53 ± 47.29a

Different letters (a, b) show significant difference (p < 0.05) among groups based on one-way ANOVA. ENZ-S, sediments collected from the entrance nearby zone in the XCT Cave; ENZ-W, 
weathered rock samples collected from the entrance nearby zone; IZ-S, sediment collected from the inner zone; IZ-W, weathered rock collected from the inner zone.
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ENZ-S, IZ-S, ENZ-W and IZ-W, respectively (Figure 2B). Whereas, at 
the genus level, Nitrosospira dominated in all samples with 99.91%, 
91.57%, 97.24%, and 95.94% in ENZ-S, IZ-S, ENZ-W, and IZ-W, 
respectively (Figure 2D).

Phylogenetically all the dominant AOA OTUs (AOTU) in the 
XCT Cave belonged to Group I.1b (Figure 3A) and the AOB OTUs 
(BOTU) belonged to Cluster D and Cluster C (Figure 3B).

3.3 Absolute abundance of amoA gene, 
PNR, co-occurrence network and 
community assembly of 
ammonia-oxidizers

The AOA outnumbered AOB by 2 to 6 orders magnitude as 
confirmed by the quantification of amoA gene. In samples close to the 

cave entrance, the absolute abundance of AOA amoA gene ranged 
from 3.02 × 1010 to 6.25 × 1010 copies/g in weathered rock, whereas 
AOB was ranging from below detection to 4.87 × 107 copies/g 
(Figure 4A). In sediments samples, AOA varied from 5.05 × 109 to 
6.64 × 1010 copies/g, whereas the AOB ranged from 1.76 × 105 to 
7.48 × 106 copies/g (Figure 4A). In the inner zone, AOA had 1.73 × 1010 
to 5.61 × 1010 copies/g in weathered rock, while AOB ranged from 
2.48 × 104 to 2.51 × 108 copies/g sample. In sediments samples, AOA 
had 4.22 × 109 to 5.62 × 109 copies/g, and AOB varied from 1.78 × 104 
to 6.85 × 106 copies/g (Figure 4A).

Weathered rock samples showed higher PNR (0.37 ± 0.24 μM/g) 
than those in the sediment samples (0.22 ± 0.11 μM/g) 
(Supplementary Table S1) and AOA contribute more to PNR than 
AOB within the XCT Cave (Figure 4B). AOA exclusively contributed 
to PNR in rock samples close to the entrance and AOB contributed 
52% to PNR in the sediments in IZ (Figure 4B).

FIGURE 1

Alpha diversity of ammonia-oxidizing archaea (A) and ammonia-oxidizing bacteria (B) within the XCT Cave, Guilin City. Different letters (a, b) above the 
box show significant difference (p <  0.05) among groups based on one-way ANOVA. Panels (C,D) revealed beta diversity based on the Bray-Curtis 
distance based on amoA gene sequences of ammonia-oxidizing archaea and ammonia-oxidizing bacteria as indicated by PCoA plots, respectively. 
ENZ-S, sediments collected from the entrance nearby zone; ENZ-W, weathered rock samples collected from the entrance nearby zone; IZ-S, sediment 
from the interior zone; IZ-W, weathered rock from the interior zone.
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The ENZ network of ammonia-oxidizers consisted of 134 nodes 
and 429 edges, and the IZ network consisted of 131 nodes and 546 
edges, respectively (Table  2). Positive links dominated in all 
networks. Higher weighted degree, diameter, and modularity index 
were observed in the ENZ network compared with the IZ network, 
whereas the topology indices of density and mean clustering 
coefficient were higher in the IZ network (Table 2). The nodes of 
AOA predominated in all networks, accounted for 86.57% and 
84.73% in the networks of ENZ (Figures 5A,B) and IZ (Figures 5D,E), 
respectively. More nodes were from weathered rocks in ENZ 
networks (56%) (Figure 5C), while more nodes were from sediments 
in the IZ networks (65%) (Figure 5F).

The identification of keystone taxa showed that the most dominant 
taxon in the ENZ network was OTU320 (Nitrosopira) with the highest 
betweenness centrality value of 221, followed by OTU3 
(Nitrosopumilus) with the highest betweenness centrality value of 194, 
in addition to Nitrososphaera, Nitrosomonas, Nitrosospira and 
Candidatus Nitrosocosmicus (Table  3). In contrast, the keystone  
taxa in the IZ network were Nitrosopira, Nitrososphaera, and 

Nitrosopumilus, with the highest betweenness centrality values 130 of 
OTU344 (Nitrosopira) (Table 3).

Deterministic process dominated in AOA community assembly 
with a contribution of 50.71% (especially, homogeneous selection) 
(Figure  4C). NO3

−, NH4
+, TOC, and Cl− were the environmental 

factors that significantly affected the βNTI of AOA (Table  4). 
Contrasting with the ecological processes for AOA community 
assembly, stochastic processes contributed 100% to AOB community 
assembly, dominated by drift with a contribution of 92.09% 
(Figure 4C). None of the environmental factors investigated in this 
study had a significant correlation on the βNTI of AOB (Table 4).

3.4 Correlation between environmental 
factors and ammonia-oxidizers and their 
niche breadth

The RDA analysis indicated that TOC, Cl− and NH4
+ significantly 

impacted on ammonia-oxidizers (p < 0.05). RD1 and RD2 explained 

FIGURE 2

Compositions of ammonia oxidizing archaea and bacteria within the XCT Cave. The relative abundance of ammonia oxidizers at the OTU level (top 13) 
(A) and the genus level (C). The compositions of ammonia-oxidizing bacteria at the OTU level (top13) (B) and the genus level (D) in the XCT Cave. 
Abbreviations of ENZ-S, ENZ-W, IZ-S ang IZ-W are the same as those in Figure 1.
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67.60% and 21.00% of the variance, respectively (Figure 6A). Among 
them, TOC was positively correlated with AOTU3, AOTU11, AOTU2, 
and negatively correlated with most AOB OTUs and AOTU1, AOTU6 
(Figure 6A). A linear fit of TOC to the AOTU1 showed that a negative 
correlation between the content of TOC and the relative abundance 

of AOTU1, R2 = 0.49 (Figure 6B). However, the linear fit effect of to the 
OTU of AOB was poor (Supplementary Figure S1).

The niche breadth index showed that the dominant OTUs of AOA 
showed much wider niche breadth compared to that of AOB. The 
niche breadth index of AOA ranged from 3.8 (AOTU1) to 22.3 

FIGURE 3

Phylogenetic tree of ammonia-oxidizing archaea (A) and ammonia-oxidizing bacteria (B) based on amoA gene sequences. Branching patterns in the 
maximum likelihood tree were expressed using the respective bootstrap values (1,000 iterations). OTU in bolds are from this study. AOTU, archaeal 
OTU; BOTU, bacterial OTU.
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(AOTU3) (Figure 6C), whereas the BOTUs had niche breadth index 
ranging from 3.2 to 3.9 (Figure 6D).

4 Discussion

4.1 Better adaption of AOA in the 
oligotrophic karst cave than their bacterial 
counterpart

The niche breadth index provided robust support for the superior 
adaption of AOA in oligotrophic karst cave compared to their bacterial 
counterparts. The elevated niche breadth index (Figures  6C,D) 
signified that AOA might effectively exploit a broader spectrum of 
resources in oligotrophic conditions when contrasted with AOB. On 
the contrary, the narrower niche breadth index indicated that AOB 
encountered environmental stress and heightened competition for 
resources (Vorobeichik, 1993; Martorell et  al., 2015; Pannek 
et al., 2016).

The low concentration of ammonium in our cave strongly 
supports the dominance of AOA. AOA outnumbered their 

ammonia-oxidizing counterpart AOB by up to thousands of times in 
the copy numbers of amoA gene within the XCT Cave (Figure 4A), 
and contributed over 50% to PNR (Figure 4B), which matched well 
with the observation in other oligotrophic environments (Zhao et al., 
2017; Marques et al., 2018; Cardarelli et al., 2020). Usually, AOA 
show high affinity to ammonium thus achieves a competitive 
advantage under oligotrophic conditions (Martens-Habbena et al., 
2009). Experimental evidence with enriched culture of AOA and 
AOB from freshwater environments supported this, revealing AOA 
dominance at an initial ammonium concentration of 50 μM, while 
AOB dominate at 500 μM (French et  al., 2021). A moderately 
thermophilic ammonia-oxidizing archaea is partially inhibited by a 
concentration of 3.08 mM ammonium, whereas active at 0.14 and 
0.79 mM ammonium (Hatzenpichler et al., 2008). The ammonium 
concentrations in our cave varied from 10.40 ± 4.15 to 
23.43 ± 4.54 mg/kg, equivalent to 0.58 ± 0.23 to 1.30 ± 0.25 mM 
(Table  1), favored for the establishment and thriving of 
AOA communities.

pH is another fundamental factor selecting on the nitrifying 
communities in natural environments (Li et al., 2018; Aigle et al., 
2019). Thaumarchaeota Groups I.1a and I.1b are generally 

FIGURE 4

Absolute abundances of archaeal and bacterial amoA genes in the XCT Cave (A). Relative contribution to nitrification by AOA and AOB in the XCT Cave 
(B). The relative contribution of different ecological processes to ecological assembly processes of ammonia-oxidizing archaea and ammonia-
oxidizing bacteria communities (C). Abbreviations of ENZ-S, ENZ-W, IZ-S ang IZ-W are the same as those in Figure 1.

TABLE 2 Topology indices of ENZ and IZ co-occurrence network of ammonia oxidizing archaea and ammonia-oxidizing bacteria within the XCT cave, 
Guilin City, Guangxi Province.

Location Nodes Edges
Weighted 

degree
Diameter Density

Modularity 
index

Mean 
clustering 
coefficient

ENZ 134 429 11.181 9 0.048 0.857 0.841

IZ 131 546 7.976 8 0.064 0.827 0.906

ENZ, the entrance nearby zone; IZ, the interior zone.
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FIGURE 5

Cross-domain co-occurrence networks based on pairwise Spearman’s correlations between OTUs with a coefficient  >  |0.6| and a p-value <0.01. 
Cross-domain co-occurrence networks of ENZ with OTUs colored by ammonia-oxidizers (A) and modularity (B), and the histogram represented the 
relative abundance of nodes in each module in weathered rocks and sediments (C). Cross-domain co-occurrence networks of IZ with OTUs colored 
by ammonia-oxidizers (D) and modularity (E), and the histogram represented the relative abundance of nodes in each module in weathered rocks and 
sediments (F). The size of each node is proportional to the number of connections. Red lines represent positive correlations and green lines represent 
negative correlations. W, weathered rock; S, sediment.
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associated with neutrophilic or alkaline limestone systems (Chelius 
and Moore, 2004; Spear et al., 2007; Tetu et al., 2013), whereas 
Thaumarchaeota Group I.1c tend to dominate in sandstone caves 
with the pH ranging from 3 to 7 (Barton, 2013; Zhao et al., 2017; 
Marques et al., 2018). All of our dominant AOTUs affiliated with 
Group I.1b (Figure  3A), indicating a carbonate cave niche 
specificity. Compared with Group I.1a, the higher NH3 affinity 
[Km(app) ≈ 0.14–31.5 μM] (Jung et al., 2022) may help Group I.1b to 
dominate in karst caves. Due to the ionization of ammonia to 
ammonium, ammonia concentration decreases exponentially with 
the decreasing pH (Allison and Prosser, 1993; Wang et al., 2019). 
Therefore, AOA contributes more to nitrification under acidic pH 
conditions (Li et al., 2018, 2019; He et al., 2020). Different from the 
observation of the dominance of AOA in acidic soils, AOA has also 
been confirmed to dominate in alkaline and oligotrophic cave 
sediments (Zhao et al., 2017), which matched our results in this 
study (Figures  4A,B). At alkaline conditions with a pH > 7.3, a 
significant portion of the NH3/NH4

+ pair exists as NH3, leading to 
NH3 concentrations exceeding 1 mM in copiotrophic systems. This 

creates an environment where AOB become more competitive. 
However, based on the pKa of ammonia, it’s worth noting that 
1 mM NH3 is still 100-fold lower than the ammonia concentration 
typically used for AOB culturing (1.2 mM NH4

+ equivalent to 
100 mM NH3) (Martens-Habbena et al., 2009; Pester et al., 2011). 
The NH3 concentration in our cave, determined by the ionization 
constant of NH3 to NH4

+, ranged from 5.18 ± 1.32 to 
8.91 ± 2.78 mM. Although this range still favored the dominance of 
AOA, there was potential for competition from AOB for nitrogen 
resource to some extent.

The PCoA analysis indicated a pronounced segregation in AOA 
communities compared to AOB (Figures 1C,D), suggesting robust 
environmental selection on AOA (D'Amen et al., 2018; Shen et al., 
2022). This aligned with the dominance of homogeneous selection in 
AOA community assembly (Figure 4C), revealing a strong influence 
of environmental factors driving AOA communities towards 
convergence (Wu et al., 2021). Pearson and Spearman tests furthered 
confirmed the significant impact of NO3

−, NH4
+, TOC and Cl− on 

AOA community assembly in our study (Table 4). In line with our 
findings, an increase in NH4

+ supply has been reported to shift the 
ecological process from deterministic to stochastic process in AOA 
community assembly (Ma et  al., 2023). This implied that AOA 
communities exhibited greater competitiveness and adaptability to 
oligotrophic conditions.

In contrast, AOB community assembly exhibited a predominance 
stochastic processes (Figure 4C), suggesting that the development of 
AOB communities was more self-regulated by intrinsic factors (Zhou 
and Ning, 2017). This observation was further supported by the 
Pearson and Spearman tests, revealing no significant correlations 
between environmental factors and βNTI of AOB (Table 4). Similar 
patterns have been demonstrated under other oligotrophic conditions, 
where AOB community establishment is also dominated by stochastic 
process (Yang et al., 2022; Fang J. et al., 2023). The dominance of 
genetic drift in the development of the AOB community in our study 
(Figure 4C) may suggest a relatively small AOB community (Ma et al., 
2023; Ye et al., 2023; Zhang et al., 2023). This could be attributed to the 
challenges that AOB face in colonizing under lower ammonium 
concentrations (Keerio et al., 2020).

TABLE 3 Betweenness centrality of the top 10 nodes in the co-occurrence network of ammonia-oxidizing archaea and ammonia-oxidizing bacteria in 
ENZ and IZ of the XCT Cave, Guilin City, Guangxi Province.

ENZ IZ

Ammonia-
oxidizing microbes

Genus
Betweenness 

centrality
Ammonia-
oxidizing microbes

Genus
Betweenness 

centrality

AOB(OTU320) Nitrosospira 221 AOB(OTU344) Nitrosospira 130

AOA(OTU3) Nitrosopumilus 194 AOB(OTU320) Nitrosospira 108

AOA(OTU22) Nitrosopumilus 140 AOB(OTU341) Nitrosospira 84

AOA(OTU1) Nitrososphaera 50 AOB(OTU329) Nitrosospira 58

AOB(OTU329) Nitrosospira 26 AOA(OTU204) Nitrososphaera 30

AOB(OTU3) Nitrosomonas 22 AOA(OTU6) Nitrososphaera 30

AOA(OTU211) Candidatus Nitrosocosmicus 16 AOA(OTU30) Nitrosopumilus 28

AOA(OTU5) Nitrososphaera 15 AOA(OTU120) Nitrososphaera 24

AOB(OTU360) Nitrosospira 11 AOA(OTU3) Nitrosopumilus 14

AOA(OTU72) Nitrososphaera 9 AOA(OTU22) Nitrososphaera 13

ENZ, the entrance nearby zone; IZ, the interior zone.

TABLE 4 Pearson and Spearman correlation analysis of environmental 
variables with βNTI of AOA and AOB in the XCT Cave, Guangxi Province.

Environmental variables βNTIAOA βNTIAOB

pH −0.036 0.052

K+ −0.199 0.342

NO3
− −0.687* 0.023

NH4
+ −0.646* −0.001

TOC −0.891** −0.101

Cl− −0.685* −0.035

SO4
2− −0.273 −0.166

Mg/Si −0.322 −0.264

Ca/Si −0.6 0.345

Temperature −0.283 0.123

p < 0.05 was considered significantly different and indicated by *. *p < 0.05 and **p < 0.01.
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4.2 Impacts of environmental variables and 
interaction between ammonia-oxidizers 
within the cave

TOC, NH4
+ and Cl− emerged as the primary environmental impact 

factors shaping ammonia oxidizers (Figure 6A). Nitrososphaera of AOA 
exhibited the dominance in the nearby zone of the cave entrance, 
declining in abundance inward to the cave, and was replaced by 
Nitrosopumilus in the IZ-W (Figure  2C). Similarly, IZ-W showed 
higher alpha diversity compared with other niches (Figure 1A). These 
findings suggest that environmental factors can influence the 
community composition and diversity of the AOA (Jin et al., 2011; Patil 
et al., 2021; Kou et al., 2023). The most abundant AOTU1 (Figures 2A) 
showed a negative correlation with TOC (Figure  6B), while the 
dominant OTU of AOB exhibited a positive correlation with TOC 
(Supplementary Figure S1). This aligned with findings in other 
environments, such as ponds, estuaries and upland soils (Dai et al., 
2015, 2018; Wei et al., 2021; Zhu et al., 2023). Most AOA are autotrophs 
and well adapted to oligotrophic environments due to their highly 
efficient CO2-fixation pathway of hydroxypropionate/hydroxybutyrate 
(HP/HB) cycle, as indicated by genomic studies (Kobayashi et al., 2018; 
Zhao and Zhang, 2022). This may well explain the observation of the 
dominance of AOA in oligotrophic conditions and their higher 

contribution to nitrification in karst caves (Wang et al., 2021). However, 
lower TOC does not favor heterotrophic AOB in term of organic 
carbon sources. AOB typically show positive correlation with TOC 
(Zhang et al., 2010; Dai et al., 2018; Zhu et al., 2023).

Cl− showed a negative correlation with the dominant OTUs of 
both AOA and AOB, indicating the inhibition of Cl− on the 
functioning of amoA enzymes in ammonia-oxidizing microorganisms 
(Wang et al., 2014; Roy et al., 2020). Similar negative correlations have 
also been observed between Cl− and ammonia oxidizers in drinking 
water (Scott et al., 2015) and demonstrate inhibition on nitrification 
(Roy et al., 2020).

The AOA also dominated in the co-occurrence networks with 
AOB in caves. AOA occupied a greater nodes number in the cross-
domain networks, forming closer links inward to the cave 
(Figures 5C,F), which suggested more collaboration for enhanced 
survival in subsurface caves. Interestingly, in the ENZ network, most 
nodes belonged to the weathered rock samples (Figure 5C), whereas 
the IZ network exhibited more sediment nodes (Figure 5F). In some 
oligotrophic environments, AOA have been found to dominate the 
nitrification network despite of the higher number of AOB (Zheng 
et  al., 2022; Hu et  al., 2023; Liu J. J. et  al., 2023). These finding 
collectively highlighted the crucial role of AOA in the stabilizing the 
network (Jones and Hallin, 2019; He et al., 2021; Ma et al., 2023).

FIGURE 6

(A) Redundancy analysis (RDA) of physicochemical parameters (red solid arrows) and dominant OTUs (top 5) (blue solid arrows) based on ammonia-
oxidizing archaeal and ammonia-oxidizing bacterial amoA genes. AOTU, archaeal OTU; BOTU, bacterial OTU. Asterisks indicate statistical significance 
(*p  <  0.05, **p  <  0.01, and ***p  <  0.001), and the linear fit of TOC to the AOTU1 relative abundance (B). Panel (C,D) revealed the niche breath index of 
the dominant OTUs of AOA and AOB, respectively.
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Nitrosospira and Nitrosopumilus were the keystone taxa in the 
ENZ network, while Nitrosospira and Nitrososphaera were the 
keystone taxa in IZ (Table 3). Nitrosospira are widely distributed in 
terrestrial and marine ecosystems (Lebedeva et al., 1997; Jiang and 
Bakken, 1999; Hollibaugh et  al., 2002). AOA isolates such as 
Nitrosopumilus, Nitrososphaera, Nitrosopumilus, and Nitrososphaera 
are characterized by small size, and harbor flagellum-encoding genes 
(Tourna et al., 2011; Stieglmeier et al., 2014; Qin et al., 2017; Bayer 
et al., 2019). Although AOA and AOB both survive in oligotrophic 
environments (Ming et al., 2020; Guo et al., 2022), Nitrososphaera is 
more commonly found in areas with arsenic contamination and high 
salinity compared to Nitrosopumilus. This suggests that Nitrososphaera 
exhibits higher resistance to extreme conditions (Li et al., 2013, 2014; 
Liu et al., 2018; Zhu et al., 2022).

5 Conclusion

This study provides compelling evidence showcasing the superior 
adaption of ammonia-oxidizing archaea to oligotrophic subsurface karst 
caves. Dominant AOA OTUs exhibited broader ecological niche indexes 
compared to dominant AOB OTUs. AOA dominated ammonia-oxidizing 
communities with higher amoA gene copy numbers and significant 
contribution (48–100%) to potential nitrification rate. Deterministic 
processes dominate the ecological processes for the establishment of AOA 
communities, and TOC and NH4

+ were identified as the primary 
environmental influence on AOA community assembly. In contrast, AOB 
is mainly governed by stochastic processes. Ammonia-oxidizing archaea 
contributed more nodes in the co-occurrence networks with ammonia-
oxidizing bacteria and they collaborated more with AOB to survive the 
extreme conditions. These findings deepen our understanding of the 
ecology of ammonia-oxidizing microorganisms and nitrogen cycles in the 
subsurface biosphere.
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