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Lactococcus G423 improve 
growth performance and lipid 
metabolism of broilers through 
modulating the gut microbiota 
and metabolites
Mi Wang , Wei Ma , Chunqiang Wang  and Desheng Li *

College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China

This study aimed to explore whether Lactococcus G423 could improve 
growth performance and lipid metabolism of broilers by the modulation of gut 
microbiota and metabolites. A total of 640 1-day-old AA broilers were randomly 
divided into 4 groups [Control (CON), Lac_L, Lac_H, and ABX]. Average daily 
gain (ADG), average daily feed intake (ADFI), feed conversion ratio (FCR), breast 
muscle, thigh muscle, and abdominal fat pad were removed and weighed at 
42  days of age. Serum was obtained by centrifuging blood sample from jugular 
vein (10  mL) for determining high-density lipoprotein (HDL), total cholesterol 
(TC), low-density lipoprotein (LDL), and triglyceride (TG) using ELISA. The ileal 
contents were harvested and immediately frozen in liquid nitrogen for 16S rRNA 
and LC–MS analyses. Then, the results of 16S rRNA analysis were confirmed 
by quantitative polymerase chain reaction (qPCR). Compared with the CON 
group, FCR significantly decreased in the Lac_H group (p  <  0.05) in 1–21  days; 
ADG significantly increased and FCR significantly decreased in the Lac_H group 
(p  <  0.05) in 22–42  days. 42  days weight body and ADG significantly increased in 
the Lac_H group (p <  0.05) in 42  days. Abdominal fat percentage was significantly 
decreased by Lactococcus G423 (p <  0.05), the high dose of Lactococcus G423 
significantly decreased the serum of TG, TC, and LDL level (p <  0.05), and the low 
dose of Lactococcus G423 significantly decreased the serum of TG and TC level 
(p <  0.05). A significant difference in microbial diversity was found among the 
four groups. Compared with the CON group, the abundance rates of Firmicutes 
and Lactobacillus in the Lac_H group were significantly increased (p  <  0.05). 
The global and overview maps and membrane transport in the Lac_L, Lac_H, 
and ABX groups significantly changed versus those in the CON group (p  <  0.05). 
The results of LC–MS demonstrated that Lactococcus could significantly 
improve the levels of some metabolites (6-hydroxy-5-methoxyindole 
glucuronide, 9,10-DiHOME, N-Acetyl-l-phenylalanine, and kynurenine), and 
these metabolites were involved in four metabolic pathways. Among them, the 
pathways of linoleic acid metabolism, phenylalanine metabolism, and pentose 
and glucuronate interconversions significantly changed (p  <  0.05). Lactococcus 
G423 could ameliorate growth performance and lipid metabolism of broilers by 
the modulation of gut microbiota and metabolites.
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1 Introduction

Intestinal microbes and host are bioactive communities, forming 
the junction between animals and their nutritional environment 
(Anand and Mande, 2018). Thus, microbiota may affect the physiology 
and metabolism of host, and certain healthy bacteria in the add 
microbiota may improve gut health (Judkins et al., 2020; Ghosh et al., 
2021; Gill et al., 2021). Intestinal microbes have noticeably attracted 
researchers’ attention recently. Over the past two decades, some studies 
revealed that antibiotics can alter the likely benefit of the host–
microbiota interaction or relationship by regulating the microbiota 
(Yukgehnaish et al., 2020). In the poultry industry, antibiotics have been 
widely used (Angela et al., 2020). However, it is essential to pay further 
attention to antibiotic resistance (Hakimul et al., 2020; Paintsil et al., 
2021), and long-term use of these antibiotics could cause antibiotic 
residues remaining in animals, in which they seriously threaten human 
health (Dawood et al., 2018). It is well known that the basic function of 
probiotics is to reduce gut-related diseases by regulating and improving 
the intestinal microbial balance in humans (Soccol et al., 2010; Zommiti 
et al., 2020). Recently, probiotics have been found to benefit not only 
human health but also animal health (Shi et al., 2020). Several studies 
demonstrated that beneficial effects of probiotics for the host included 
suppression of growth of pathogens, modulation of the immune system, 
improvement of nutrient metabolism, and modification of the 
composition of the intestinal microbiota (Kailasapathy and Chin, 2000; 
Chan and Zhang, 2005; Ashouri et al., 2020; Fan et al., 2021). Especially, 
an appropriate amount of lactic acid bacteria (LAB) can regulate the 
microflora in the gut (Kim et al., 2021). Some studies show that LAB 
could significantly improve lipid metabolism and fat deposition (Cho 
et al., 2020; Wang et al., 2023). Zhang et al. (2022) report that LAB have 
an effect on production performance, lipid metabolism, and meat 
quality in heat–stressed broilers. Previous studies have shown that LAB 
can increase the bacterial phylogenetic diversity in the gut of mice (Usui 
et al., 2018) and weaning piglets (Zhao et al., 2016). Gupta et al. (2018) 
also report that LAB can modulate the composition and interaction of 
the intestinal microbiota of Atlantic salmon. Lactococcus is industrially 
crucial LAB used to produce lactic acid, pickled vegetables, buttermilk, 
cheese, and several types of dairy foods and drinks. In addition, they are 
utilized as probiotics in specific formulations. Lactococcus can modulate 
intestinal microbiota of animals (Busti et al., 2020; Tan et al., 2022). 
Lactococcus lactis has the potential to enhance growth performance, 
immune function, and intestinal development in broiler chickens (Zhou 
et al., 2019). Zhang et al. (2016) also study showed that Lactococcus 
could enhance the growth performance of broiler chickens and improve 
their health. However, they have rarely been studied versus other LAB 
genera. The ribosomal RNA (16S) rRNA (16S rRNA) gene possesses the 
advantage of exploring the composition of the gut microbiota of 
chickens (Shang et al., 2018), broiler chickens (Mohd Shaufi et al., 2015), 
Dagu chickens (Xu et al., 2016), and naked neck chickens (Park et al., 
2016). Liquid chromatography-mass spectrometry (LC–MS) has solid 
analytical capability, and it can detect the association of bacteria and 
metabolites with high resolution and accuracy (Xia et  al., 2021). 
Moreover, correlation analysis between microorganisms and metabolites 
was performed. This was of great significance in revealing the 
contribution of Lactococcus G423 to the formation of metabolites in the 
gut. Therefore, the present study aimed to explore whether Lactococcus 
G423 could ameliorate growth performance and lipid metabolism of 
broilers by the modulation of gut microbiota and metabolites.

2 Materials and methods

2.1 Birds, diets, and experimental design

Totally, 640 1-day-old AA broilers (Shu-ya Poultry Co., Ltd., 
Tieling, China) were randomly classified into four experimental 
groups, and each group included 160 birds (8 replicates of 20 birds). 
Birds were raised in stainless steel cages (400 mm × 450 mm × 1,500 mm) 
in a controlled room for 42 days. This study was performed at Poultry 
Research Farm, Jinzhou Medical University, Liaoning, China. The 
temperature of room was gradually reduced by 3.0–3.5°C weekly until 
achieving a thermo-neutral zone ranged from 21 to 26°C by the end 
of the 3rd week. The experimental diets were based on corn and 
soybean meal. Four dietary regimes were provided as follows: control 
group (basal diet, CON group), Lac-L and Lac-H groups (basal diet 
supplemented with 50 and 100 mg/kg Lactococcus G423, respectively), 
and ABX group (basal diet supplemented with 50 mg/kg narasin). The 
basal diet was divided into two phases: the starter phase from 1 to 
21 days and the growth phase from 21 to 42 days. The basal diet was 
formulated to meet the nutritional requirements according to the 
Chinese Broiler Feeding Standards (NY/T33-2004) (Table  1). 
LactococcusG423 (1 × 1010 CFU/g) and narasin (purity of narasin 
dihydrate powder 15%, Eli Lilly and Company, Indianapolis, Indiana, 
United States) were mixed in basal diet (Supplementary Figure S1).

2.2 Growth and carcass measurements

Broiler performance in terms of average daily gain (ADG), 
average daily feed intake (ADFI), survival rate, and feed conversion 
ratio (FCR) was weekly recorded, in which ADG, ADFI, and FCR 
were calculated and presented for 6-week experimental period. Breast 
muscle, thigh muscle, and abdominal fat pad (including fat 
surrounding the gizzard, bursa of Fabricius, cloaca, and adjacent 
muscles) from one bird of average BW per replicate were removed and 
weighed at week 6. To compensate for the differences in carcass 
weight, these values were expressed as a percentage of carcass weight.

2.3 Enzyme-linked immunosorbent assay

Content of high-density lipoprotein (HDL), LDL, TG, and TC was 
determined using enzyme-labeled instrument according to ELISA kit 
instruction (Nanjing Jiancheng Bio. Institute, Nanjing, Jiangsu, China).

2.4 Illumina MiSeq sequencing for the 
detection of intestinal microbial diversity

Eight ileal samples per group were randomly selected for the 
analysis of intestinal flora. The polymerase chain reaction (PCR) 
amplification of the hypervariable region V3–V4 of the 16S rRNA gene 
was performed with the universal primers set338 F (5′-ACTCCTACG 
GAGGCAGCAG-3′) and 806R (5′-GGACTACHVGGGTWTC 
TAAT-3′) (Liu et al., 2016). The quality and concentration of DNA were 
determined by 1.0% agarose gel electrophoresis and a NanoDrop® 
ND-2000 spectrophotometer (Thermo Fisher Scientific Inc., Waltham, 
MA, United States) and kept at −80°C for further experiment. All 
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samples were amplified in triplicate. The PCR products were extracted 
from 2% agarose gel and were purified using the AxyPrep DNA Gel 
Extraction Kit (Axygen Biosciences, Union City, CA, United States), 
according to the manufacturer’s instructions and were quantified using 
Quantus™ Fluorometer (Promega, Madison, WI, United States). The 
Illumina MiSeq platform (Illumina Inc., San Diego, CA, United States) 
was used for paired-end sequencing (2 × 300) of the PCR products. The 
raw sequence reads were quality-filtered and merged by FLASH (Tanja 
and Steven, 2011) before open-reference operational taxonomic unit 

(OTU) picking via UPARSE (Stackebrandt and Goebel, 1994; Edgar, 
2013) and taxonomy classification through the SILVA 16S rRNA 
database (Wang, 2007).

2.5 Quantitative PCR (qPCR)

Lactobacillus and Firmicutes were detected by qPCR. Eight ileum 
contents from broiler were collected. The primers used for qPCR are 
presented in Table 2. The conditions of PCR reaction were summarized 
as follows: (1) at 95°C for 5 min; (2) a: at 95°C for 30 s; b: at 60°C for 
30 s; c: at 72°C for 1 min, including 35 cycles; (3) a: at 95°C for 30 s; b: 
at 55°C for 30 s; c: at 72°C for 1 min. The ΔCt was calculated as follows: 
(corrected sample) = mean value of target gene–mean value of internal 
reference gene (ΔΔ Ct = ΔCt–mean value of control group).

2.6 LC–MS analysis

Eight ileal samples Con and Lac_H group were randomly selected 
for the analysis of LC–MS. The LC–MS analysis of ileal contents was 
conducted on a Thermo UHPLC-Q Exactive HF-X system equipped 
with an ACQUITY HSS T3 column (100 mm × 2.1 mm i.d., 1.8 μm; 
Waters Corp., Milford, MA, United States) at Majorbio Bio-Pharm 
Technology Co., Ltd. (Shanghai, China). The mass spectrometric data 
were collected using a Thermo UHPLC-Q Exactive HF-X Mass 
spectrometer equipped with an electrospray ionization (ESI) source 
operating in positive and negative modes. The pretreatment of LC–MS 
raw data was performed by Progenesis QI software (Waters Corp.), 
and a three-dimensional (3D) data matrix in CSV format was 
exported. This 3D matrix included the following information: sample 
information, metabolite name, and mass spectral response intensity. 
Internal standard peaks and any known false positive peaks (including 
noise, column bleed, and derivatized reagent peaks) were removed 
from the data matrix, de-redundant, and peak pooled. Moreover, the 
metabolites were identified by searching in the following databases: 
Human Metabolome Database (HMDB)1, Metlin2, and Majorbio3 
(Kong et al., 2022; Li C. et al., 2022; Li Z. et al., 2022).

2.7 Statistical analysis

Between-group statistical differences were compared using 
one-way analysis of variance (ANOVA), followed by post-hoc multiple 
comparisons using Fisher’s least significant difference (LSD) t-test. 
The experimental data were presented as the mean ± standard error of 
the mean (SEM), which were analyzed using SPSS 20.0 software (IBM, 
Armonk, NY, United States), and p < 0.05 was considered statistically 
significant. The 16S rRNA genes of gut microbiota were analyzed 
using an online platform (see Footnote 3) (Ren et  al., 2022). The 
multivariate statistical analysis was performed using the “ropls” 
(version 1.6.2) R package from Bioconductor on Majorbio Cloud 
Platform (see Footnote 3) (Ren et al., 2022).

1 http://www.hmdb.ca/

2 https://metlin.scripps.edu/

3 https://cloud.majorbio.com

TABLE 1 Calculated composition of basal diets and nutrient levels.

% (air-dry basis)

Composition 1–21  days 21–42  days

Ingredients

  Corn 57.50 62.22

  Soybean meal 30.50 29.00

  Corn gluten meal 5.00 1.00

  Soybean oil 3.00 4.00

  Sodium chloride 0.30 0.30

  Dicalcium phosphate 1.65 1.70

  Limestone 1.52 1.23

  Methionine 0.25 0.20

  Choline 0.15 0.15

  Multivitamin premixa 0.03 0.03

  Mineral premixb 0.10 0.10

Nutrient level

  Metabolizable energy (MJ/kg) 12.33 12.50

  Crude protein 21.75 19.72

  Lysine 1.18 1.04

  Methionine + Cysteine 0.91 0.86

  Ca 1.07 0.60

Total P 0.70 0.68

Available P 0.46 0.45

aContent per kilogram of diet: 1,750 IU of vitamin A; 3,500 IU of vitamin D3; 12 IU of 
vitamin E, 0.7 mg of vitamin K, 1.9 mg of vitamin B1, 3.8 mg of vitamin B2, 3.7 mg of vitamin 
B6, 0.02 mg of vitamin B12, 0.18 mg of biotin, 0.57 mg of folic acid, 33 mg of niacin, and 
13 mg of pantothenic acid. bContent: 8 mg of Cu (CuSO4·5H2O), 0.35 mg of I (KI), 80 mg of 
Fe (FeSO4·7H2O), 60 mg of Mn (MnSO4·H2O), 0.15 mg of Se (NaSeO3), and 40 mg of Zn 
(ZnO).

TABLE 2 Primers used for qPCR.

Gene Primer sequence Product 
size

Firmicutes
F:5′- 

GGAGYATGTGGTTTAATTCGAAGCA-3′
200 bp

R: 5′-AGCTGACGACAACCATGCAC-3′

Lactobacillus F: 5′-AGCAGTAGGGAATCTTCCA-3′ 340 bp

R: 5′-ATTYCACCGCTACACATG-3′

18sRNA F:5′-TAGATAACCTCGAGCCGATCGCA-3′ 312 bp

R:5′-GACTTGCCCTCCAATGGATCC TC-3′
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3 Results

3.1 Growth performance

Compared with control, FCR significantly decreased in the Lac_H 
group (p < 0.05) in 1–21d; ADG significantly increased and FCR 
significantly decreased in the Lac_H group (p < 0.05) in 22–42 days; 
weight body and ADG significantly increased in the Lac_H group 
(p  < 0.05) in 42 days. There were no significant changes in FCR, 

survival rate, and ADFI (p > 0.05) among Lac_H, Lac_L, and ABX 
groups in 42 days (Table 3).

3.2 Carcass characteristics

Compared with control, abdominal fat percentage was 
significantly decreased by Lactococcus G423 (p  < 0.05); however, 
dressing percentage, thigh muscle percentage, and breast muscle 
percentage had no significant changes among Lac_H, Lac_L, and ABX 
groups (p > 0.05) (Table 4).

3.3 Serum biochemical parameters

Comparing with control, the high dose of Lactococcus G423 
significantly decreased the serum of TG, TC, and LDL level (p < 0.05), 
and the low dose of Lactococcus G423 significantly decreased the serum 
of TG and TC level (p < 0.05). ABX significantly decreased the content 
of TG (p < 0.05) in serum; however, HDL content had no significant 
changes among Lac_H, Lac_L, and ABX groups (p > 0.05) (Figure 1).

3.4 Intestinal microflora

To characterize the intestinal microbiota composition of broilers 
in the four groups, 16S rRNA gene sequence analysis was performed. 
With the sequence similarity of 97%, 903 OTUs were obtained. The 
average good’s coverage for samples was higher than 99%, indicating 
that the majority of the microbial species were identified. and 
sequencing depth was also adequate for the robust sequence analysis.

As shown in Table 5, alpha diversity analysis of gut microbiota 
showed that compared with the CON group, the Chao and Ace indices 
in the Lac_H, Lac_L, and ABX groups significantly increased (p < 0.05); 
however, the Simpson index exhibited an opposite trend. The Simpson 
index in the Lac_L, Lac_H, and ABX groups was significantly reduced 
compared with that in the CON group (p < 0.05). In addition, the Sob 
index in the Lac_H and ABX groups was significantly higher than that 
in the CON group (p < 0.05). The Shannon index in the Lac_L and 
Lac_H groups was significantly elevated compared with that in the 
CON group (p < 0.05). The Coverage index in the Lac_L and ABX 
groups significantly increased compared with that in the CON group 
(p < 0.05). The effects of Lactococcus on the diversity and richness of 
intestinal microbiota community in broilers were evaluated based on 
alpha diversity (Table 5).

Based on OTU abundance, principal coordinate analysis (PCoA) 
showed that points in the Lac_H and ABX groups were scattered in 
the right, which indicated that the microbial structure in the Lac_H 
and ABX groups had undergone a tremendous change versus that in 
the CON group. In the Lac_L and CON groups, points were clustered 
separately from each other in the left, which showed that the low dose 
of Lactobacillus G423 could change the structure of gut microbiota 
(Figure  2A). At the phylum level, Firmicutes, Proteobacteria, and 
Bacteroidetes were the most of species identified in all samples 
(Figure 2B). At the genus level, compared with those in the CON 
group, the abundance of Lactobacillus was higher, whereas that of 
Bacteroides was lower in the Lac_L,Lac_H and ABX groups 
(Figure 2C). As shown in Figure 2D, qPCR showed that the proportion 

TABLE 3 Effects of Lactococcus on the growth performance in broilers.

42  days

CON Lac_L Lac_H ABX

1–21 days

  21 days 

weight 

body (g)

911 ± 5.13 919 ± 4.94 919 ± 4.88 903 ± 5.40

  ADG (g) 41.5 ± 0.24 41.9 ± 0.23 41.8 ± 0.23 41.1 ± 0.26

  ADFI (g) 50.1 ± 0.09 50.7 ± 0.26 49.6 ± 0.31 49.7 ± 0.29

  Survival 

rate (%)
97.5 ± 1.02 97.5 ± 1.03 98.1 ± 1.19 98.7 ± 0.94

  FCR 1.15 ± 0.009a 1.15 ± 0.004ac 1.12 ± 0.005bc 1.14 ± 0.007a

22–42 days

  ADG (g) 74.9 ± 1.58a 76.8 ± 2.26ab 81.8 ± 1.80b 77.1 ± 1.27ab

  ADFI (g) 125.2 ± 0.93 129.3 ± 1.58 127.7 ± 1.51 126.6 ± 1.21

  FCR 1.67 ± 0.02a 1.68 ± 0.03a 1.56 ± 0.04b 1.64 ± 0.02ab

42 days

  42 days 

weight 

body (g)

2,485 ± 36.4a 2,532 ± 44.7ab 2,637 ± 40.8b 2,523 ± 35.7ab

  ADG (g) 59.17 ± 0.87a 60.30 ± 1.07a 62.80 ± 0.96b 60.08 ± 0.75a

  ADFI (g) 88.99 ± 0.77 88.28 ± 0.75 91.59 ± 3.14 88.27 ± 0.95

  Survival 

rate (%)
94.75 ± 1.18 97.75 ± 1.03 97.5 ± 1.77 95.6 ± 1.13

  FCR 1.50 ± 0.028 1.47 ± 0.018 1.46 ± 0.022 1.47 ± 0.014

In the same row, values with different superscripts represent significant differences (p < 0.05). 
Values are expressed as mean ± SEM (n = 8 for all groups).

TABLE 4 Effect of Lactococcus on carcass characteristic in broilers.

Items Control Lac_L Lac_H ABX

Dressing 

percentage 

(%)

92.28 ± 0.27 92.18 ± 0.41 91.35 ± 0.44 91.93 ± 0.02

Breast 

muscle (%)

30.04 ± 0.48 31.08 ± 1.70 32.28 ± 0.42 30.24 ± 0.88

Thigh  

muscle (%)

31.61 ± 0.56 32.04 ± 0.70 32.19 ± 0.56 32.10 ± 1.98

Abdominal 

fat (%)

2.51 ± 0.11a 1.65 ± 0.11b 1.04 ± 0.16b 2.19 ± 0.14a

In the same row, values with different superscripts represent significant differences (p < 0.05). 
Values are expressed as mean ± SEM, and n = 8 for all groups.
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of Lactobacillus in the Lac_L and Lac_H groups was significantly 
elevated compared with that in the CON and ABX groups (p < 0.05). 
Additionally, the proportion of Firmicutes was significantly risen after 
treating with Lac_H (p < 0.05). The different effects of Lac_L and 
Lac_H on microbiota might justify their different number of 
microorganisms. Subsequent linear discriminant analysis effect size 
(LEfSe) revealed substantial differences in Lactobacillus_salivarius and 
Lactobacillus_johnsonii in the Lac_H and ABX groups (Figure 2E).

The function of the ileum microbiome was predicted using the 
phylogenetic investigation of communities by the reconstruction of 
unobserved species 2 (PICRUSt2). Then, the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway analysis was used to divide the 
predicted metabolic pathways into six functional groups. The 
microbial communities in the CON, Lac_L, Lac_H, and ABX groups 
were mainly related to metabolism, genetic information processing, 
cellular processes, environmental information processing, human 
diseases, and organic systems. Their main functions were concentrated 
in the metabolism of amino acids, carbohydrate, vitamins, terpenoids, 
polyketides, and lipids (Table 5).

As shown in Figure  2F, the global and overview maps and 
membrane transport in the Lac_L, Lac_H, and ABX groups 
significantly changed compared with those in the CON group 
(p < 0.05). Functional predictions of differences in the mean 
relative abundance among groups are shown in Figures 2G,H and 
Table 6.

3.5 Intestinal metabolites

A total of 6,612 and 5,851 metabolites in ileal contents were 
determined in positive and negative ion modes, respectively, using 
LC–MS-based non-targeted metabolomics. A total of 228 metabolites 
were identified and named based on the HMDB and KEGG databases. 
Furthermore, orthogonal projection to latent structures-discriminant 
analysis (OPLS-DA) was employed to select the most predictive and 
discriminative features to assist classify cation. The loading plot 
showed a clear separation in metabolites between the Lac_H and 

FIGURE 1

Effect of Lactococcus on serum biochemical parameters in broilers. Values with different superscripts represent significant differences (p < 0.05).

TABLE 5 Alpha diversity of intestinal microbiota based on OTU levels.

Index CON Lac_L Lac_H ABX

Coverage 0.99986 ± 0.00011a 0.99914 ± 0.00013b 0.99934 ± 0.00043a 0.99929 ± 0.00027b

Sobs 15.00 ± 4.000a 120.00 ± 65.483a 230.33 ± 69.601b 177.33 ± 82.008b

Shannon 0.7808 ± 0.11812a 1.2905 ± 0.20873b 2.3078 ± 0.84541b 2.0740 ± 1.08200ab

Simpson 0.60533 ± 0.06405a 0.40857 ± 0.07641b 0.20462 ± 0.08412c 0.24308 ± 0.13222bc

Ace 44.60 ± 28.67a 173.16 ± 50.96b 253.89 ± 75.98b 197.65 ± 75.66b

Chao 32.00 ± 22.07a 154.38 ± 68.31b 255.83 ± 79.42b 201.12 ± 76.12b

In the same row, values with different superscripts indicate significant differences (p < 0.05). Values are expressed as mean ± SEM (n = 8 for all groups).
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FIGURE 2

Effects of Lactococci on gut microbiota of broilers. Principal coordinate analysis (PCoA) based on the weighted UniFrac distance (A); column chart of 
community difference at the phylum level (B) and the genus level (C); relative abundance of discriminative gut microbiota at the genus level (D); LEfSe 
analysis (E); KEGG pathway analysis (F–H); * and ** represent p  <  0.05 and p  <  0.01, respectively.
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CON groups (Figure 3A). The results revealed that the metabolite of 
broiler significantly changed after treating with Lactococcus. Then, the 
heat map tree of cluster analysis of metabolites (Figure  3B) was 
constructed, which visualized 50 significantly different metabolites. 
Overall, there were significant differences in metabolites between the 
CON and Lac_H groups.

The levels of several metabolites such as 6-hydroxy-5-
methoxyindole glucuronide, 3-{3,4-dihydroxy-2-[(2Z)-4-hydroxy-
3-(4-methylpent-3-en-1-yl)but-2-en-1-yl]phenyl} propanoic acid, 
indoxylsulfuric acid, Cinerin II, carbamazepine-O-quinone, and 
4-(1-hydroxy-3-phenylpropyl)-5-methoxy-2,6-dimethylbenz 
ene-1,3-diol were upregulated in the Lac_H group, while the levels 
of 9,10-DiHOME, seryltryptophan, seryltryptophan dihydroferulic 
acid 4-O-glucuronide, 2,6-dimethoxy-1,4-benzoquinone, and 
kynurenine were downregulated (Figure  3C). Metabolites 
discriminated among different groups were screened using the 
variable importance in projection (VIP) scores obtained from the 
OPLS-DA model, and the ileal contents of metabolic profiles were 
determined. The metabolites were statistically significant if VIP 
score ≥ 1 and p < 0.05, and p-value was calculated by the t-test. 
Metabolites with VIP score > 1.0 and p < 0.05 were considered to 
be  significantly influenced by the Lac_H. Thirty significantly 
affected metabolites were identified in the CON and Lac_H groups, 
respectively; the top 30 metabolites with the highest VIP scores are 
presented in Figure 3D.

Metabolic pathway enrichment analysis was performed based 
on the KEGG database for the differential metabolites between the 
CON and Lac_H groups, and the metabolic pathway with p < 0.05 
was significantly enriched for the differential metabolites, including 
bile secretion, linoleic acid metabolism, drug metabolism-
cytochrome P450, phenylalanine metabolism, tryptophan 
metabolism, and matching metabolites. Lactococcus G423 could 
significantly improve the levels of certain metabolites (6-hydroxy-
5-methoxyindole glucuronide, 9,10-DiHOME, N-acetyl-l-
phenylalanine, and kynurenine), and these metabolites were 
involved in four metabolic pathways (Table 7). Among them, the 
pathways of linoleic acid metabolism, phenylalanine metabolism, 
and pentose and glucuronate interconversions significantly varied 
(p < 0.05) (Figure 3E).

3.6 Correlation analysis between 
metabolites and intestinal microbiota

The variations in the intestinal microbiota could be related to 
the metabolic phenotype. As shown in Figure 4, correlation analysis 
was performed between 34 different metabolites and 44 bacteria 
with significantly different relative abundances at the genus level. 
There was a significant correlation between 2(R)-hydroxyicosanoic 
acid, 2(R)-hydroxydocosanoic acid, l-beta-aspartyl-l-glutamic 
acid, 9,10-DiHOME, TMPD (hydrochloride), kynurenine, 
6-hydroxy-5-methoxyindole glucuronide, seryltryptophan, and 
N-acetyl-l-phenylalanine and Parabacteroides, Romboutsia, 
Sellimonas, Subdoligranulum, Turicibacter, Tuzzerella, Bacteroides, 
Lachnospiraceae, Butyricicoccus, Candidatus_Arthromitus, 
Eisenbergiella, Escherichia-Shigella, Faecalibacterium, Alistipes, 
Marvinbryantia, Monoglobus, and Negativibacillus (all p < 0.05).

4 Discussion

4.1 The effect of Lactococcus G423 on 
growth performance and carcass 
characteristics in broilers

The diversity and relative abundance of intestinal microbes play 
an important role in the health of host by participating in metabolism 
and immunomodulation (Zheng et  al., 2021). The findings of the 
present study suggested that Lactococcus G423 could significantly 
increase ADG in broilers, which were similar to previously reported 
results (Faseleh et al., 2016; Chen et al., 2018). Supplementation of 
broilers’ diet with antibiotics could increase body weight gain 
(Rahman et  al., 2012); however, our results showed that Lac_H 
significantly increase ADG compared with ABX in broiler. This 
improvement was explained by improved feed conversion efficiency 
and increased vitality and regulation of the intestinal microflora.

Different from mammals, chickens synthesize fatty acids 
predominantly in the liver and then export to other tissues including 
muscle and adipose tissue by the peripheral vascular system. 
Therefore, the blood lipid index is related to the carcass characteristics. 
The carcasses from 42-day-old Ross 308 chickens of both sexes, which 
received the multicomponent probiotics Pro-Biotyk (Em-15) and 
EMFarmaTM, did not differ significantly in the percentage of dissected 
carcass characteristics (Stęczny and Dariusz, 2020). The study by Ding 
et  al. (2021) reveals that lactobacillus reduced abdominal fat 
deposition in broilers. Our results showed that abdominal fat 
percentage was lowered by Lactococcus G423, and dressing percentage, 
thigh muscle percentage, and breast muscle percentage had no 
significant changes among Lac_H, Lac_L, and ABX groups compared 
with CON groups in broilers. The current results are supported by 
previous studies on the effect of probiotics on carcasses (Liu et al., 
2016; Rybarczyk et al., 2020).

4.2 Effect of Lactococcus G423 on serum 
biochemical parameters in broilers

Lipids mainly include triglyceride (TG), phospholipids, and 
cholesterol (CHO), and the contents of TG and CHO are key 
indicators of lipid metabolism. The administration of Paenibacillus 
polymyxa up to 0.4 mg/kg diet significantly reduced plasma TC, LDL, 
and TG (Alagawany et al., 2021).

Ding et al. (2021) found that Lactobacillus participated in the lipid 
metabolism of broilers by reducing the content of TC and TG. Other 
studies also showed that LAB had effects of blood serum levels TC, 
HDL-C, LDL-C, and TG on rat (An et al., 2011; Wang et al., 2023). 
Our results showed that Lac_H significantly decreased the content of 
TG, TC, and LDL, and Lac_L significantly decreased the content of 
TG and TC in serum, which was similar to previous studies 
(Abramowicz, 2019; Abdel-Moneim et al., 2020).

4.3 Effect of Lactococcus G423 on 
intestinal microflora in broilers

The gut microbiota community is consisted of diverse types of 
microbes. In the present study, it was found that Lactococcus G423 and 
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TABLE 6 Functional prediction of colonic microbiota in broilers.

Pathway level1 Pathway level2 ABX CON Lac_H Lac_L

Metabolism Global and overview maps 25453165 25209771 32812686 22747869

Metabolism Carbohydrate metabolism 8027842 8296218 9459116 7362105

Metabolism Amino acid metabolism 3727261 3505550 5108916 3255079

Metabolism Energy metabolism 2772159 2959623 3509201 2687047

Metabolism Nucleotide metabolism 2337797 2471719 2856356 2138305

Metabolism
Metabolism of cofactors and 

vitamins
2118528 1949155 2856380 1844675

Metabolism Lipid metabolism 1660032 1863905 2096791 1617754

Metabolism
Metabolism of other amino 

acids
1042572 1039656 1262152 915605.6

Metabolism
Glycan biosynthesis and 

metabolism
956051.8 949022.1 1256285 841718.6

Metabolism
Biosynthesis of other 

secondary metabolites
831607.5 750127.1 1141571 696283.5

Metabolism
Xenobiotics biodegradation 

and metabolism
788123.3 775451.7 965045.2 680400.6

Metabolism
Metabolism of terpenoids 

and polyketides
697175.4 606856.4 837099.5 537757.8

Genetic Information 

Processing
Translation 3066636 3226340 3675862 2842519

Genetic Information 

Processing
Replication and repair 2707168 2879987 3182682 2538806

Genetic Information 

Processing

Folding, sorting and 

degradation
1085844 1068083 1308536 971930.5

Genetic Information 

Processing
Transcription 179590.6 196478.2 205977.1 168491.3

Environmental Information 

Processing
Membrane transport 3083471 3210148 3247480 2901880

Environmental Information 

Processing
Signal transduction 1800463 1766267 2086185 1568141

Environmental Information 

Processing

Signaling molecules and 

interaction
6.32 0.632 0.632 0.632

Cellular Processes
Cellular community – 

prokaryotes
1378514 1479321 1616860 1391040

Cellular Processes Cell growth and death 504428.8 478711.9 639126.7 436497.3

Cellular Processes Cell motility 267078 7688.8 270773.6 146903.1

Cellular Processes Transport and catabolism 77755.92 52705.91 111201.6 52032.33

Human Diseases Immune disease 59503.81 69803.56 59246.48 61839.77

Human Diseases Infectious disease: parasitic 42683.45 46098.18 47490.29 39832.27

Human Diseases Cancer: specific types 43063.22 39260.36 56304.34 35104.08

Human Diseases Substance dependence 2590.83 24.03 4711.17 457.89

Organismal Systems Digestive system 7943.82 3907.5 22622.11 6326.37

Organismal Systems
Development and 

regeneration
1949.11 115.35 4802.86 3465.62

Organismal Systems Circulatory system 1074.84 8.01 2037.17 211.05

Organismal Systems Sensory system 10.68 0.632 0.632 0.632
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ABX altered microbiome diversity in the ileum of broilers and 
changed the relative abundance rates of Firmicutes, Bacteroidetes, 
Proteobacteria, and other species. At the phylum level, Firmicutes, 
Bacteroidetes, and Proteobacteria were the most common phyla in the 
poultry intestinal samples, which is consistent with the previous 

findings (Shaufi et al., 2015; Qiao et al., 2018; Zheng et al., 2021). This 
study indicated that Firmicutes was the dominant phylum (>50%) in 
broilers, and similar results have been previously reported (Danzeisen 
et al., 2011; Mohd Shaufi et al., 2015). Moreover, this study revealed 
that the abundance rates of Firmicutes were relatively higher in the 

FIGURE 3

Effects of Lac_H on ileal metabolites of broilers. Multivariate statistical analysis of blank control group and Lac_H group (A). The heat map of cluster 
analysis of metabolites (B). Volcanic diagram of differentially expressed metabolites (C). Variable importance in projection (VIP) scores of the CON 
group versus Lac_H group (D). Bubble diagram of metabolic pathway enrichment analysis (E); *, **, and *** represent p  <  0.05, p  <  0.01, and p  <  0.001, 
respectively.
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Lac_L, Lac_H, and ABX groups compared with those in the CON 
group (p < 0.05). Wang et  al. (2017) reported that Lactobacillus 
significantly aided in altering the abundance of Firmicutes and 
decreased the content of TG and LDL. Firmicutes were associated with 
lipid metabolites (Turnbaugh et al., 2009). The phylum Bacteroidetes 
has influences on dissolving lipids (Kumar et al., 2018; Chen et al., 
2020). Bacteroides are also positively correlated with several lipid 

metabolites (Saxena et  al., 2016; Shulpekova et  al., 2022). In the 
present study, it was revealed that the abundance of Bacteroides in the 
Lac_L, Lac_H, and ABX groups was markedly lower than that in the 
CON group. Meanwhile, considering the TG, LDL, and TC in this 
experiment, our findings also showed that Lactococcus G423 regulated 
lipid metabolism though regulating intestinal microflora. Although 
ABX has an effect on the abundance of the Firmicutes and Bacteroides, 

TABLE 7 Effects of Lactococcus on the changes in intestinal metabolic pathway in broilers.

First 
Category

Second 
Category

Pathway 
Description

Metabolite HMDB 
Superclass

HMDB Class Pathway_ID

Human Diseases
Infectious disease: 

parasitic

African 

trypanosomiasis
map05143

Organismal Systems Digestive system Bile secretion

6-Hydroxy-5-

methoxyindole 

glucuronide

Organic oxygen 

compounds

Organooxygen 

compounds
map04976

Metabolism Lipid metabolism
Linoleic acid 

metabolism
9,10-DiHOME

Lipids and lipid-like 

molecules
Fatty Acyls map00591

Metabolism
Amino acid 

metabolism

Phenylalanine 

metabolism

N-Acetyl-l-

phenylalanine

Organic acids and 

derivatives

Carboxylic acids and 

derivatives
map00360

Metabolism
Amino acid 

metabolism

Tryptophan 

metabolism
Kynurenine

Organic oxygen 

compounds

Organooxygen 

compounds
map00380

Metabolism
Carbohydrate 

metabolism

Pentose and 

glucuronate 

interconversions

map00040

FIGURE 4

Correlation analysis of “metabolites-intestinal flora” in broilers. Horizontal coordinates indicate metabolites and vertical coordinates indicate gut 
microbiota; R values are shown in different colors in the graph, in which red indicates positive correlation and blue indicates negative correlation; *, **, 
and *** represent p  <  0.05, p  <  0.01, and p  <  0.001, respectively.
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there is no effect on the level of LDL, TC, and abdominal fat 
percentage. Firmicutes and Bacteroidetes can also contribute to host 
metabolism through several mechanisms, including increased energy 
harvested from the diet and modulation of lipid metabolism (Greiner 
and Bäckhed, 2011). Some studies have suggested that a lower 
abundance of Bacteroidetes was associated with increased body weight 
(Ley et  al., 2006; Arumugam et  al., 2011). Previous studies also 
demonstrated that the Firmicutes/Bacteroidetes ratio and the growth 
performance were positively correlated, and this ratio could 
be indicative of the status of the intestinal bacteria (Haas et al., 2011; 
Xu et al., 2016). The results of the present study revealed that the 
Firmicutes/Bacteroidetes ratio was relatively higher in the Lac_L, 
Lac_H, and ABX groups compared with that in the CON group. 
Lactococcus G423 significantly increased ADG by changing the 
Firmicutes/Bacteroidetes ratio. Additionally, the levels of Proteobacteria 
phylum, including some pathogens, such as Escherichia, Salmonella, 
Helicobacter, and Vibrio, were slightly lower in the Lac_L group than 
those in the CON group, indicating that Lactococcus significantly 
aided in altering the abundance of opportunistic pathogens. However, 
at the genus level, Lactobacillus, Candidatus_Arthromitus, Romboutsia, 
and Bacteroides were identified as the dominant species in the ileum 
microbiome. Lactobacillus, belonging to the phylum of Firmicutes, had 
markedly higher level in the Lac_L and Lac_H groups than that in the 
CON group, and the abundance of Lactobacillus in the Lac_H group 
reached the highest rate. Lactobacillus is involved in digestive and 
metabolic processes and in the regulation of local and systemic 
immune response (Fernández et al., 2016). Moreover, Lactobacillus 
altered lipid metabolism (Wang et  al., 2017). Similar effects were 
observed by Zhou et al. (2016), who studied that Bacillus licheniformis 
and Lactobacillus had an effect on the growth and fat deposition in 
broilers (Gerritsen et al., 2014). L. fermentum TSI reduces abdominal 
fat and improves blood lipid metabolism in HD-induced obese rats 
(Cho et al., 2020). Therefore, Lactococcus G423 significantly aided in 
altering the abundance of Lactobacillus, which participated in gut 
microbiota, growth, and lipid metabolism in animals (Wu et al., 2019).

Romboutsia have been identified in the human gut (Ricaboni 
et al., 2016), the rat gastrointestinal tract (Gerritsen et al., 2014), and 
the fecal of hens (Qiao et al., 2018). In the present study, a novel genus 
Romboutsia was found in ileum samples of broilers. However, the 
abundance of Romboutsia was inconsistent among the four groups. 
Meanwhile, it was revealed that ABX altered the relative abundance 
rates of other bacteria in ileum contents of broilers, negatively 
influencing the gut microbiota. Previous studies reported that 
improper uses of antibiotics have been increased antimicrobial-
resistant bacteria as a public health threat (Nhung et al., 2017; Christy 
et al., 2018; Oniciuc et al., 2018). The results revealed that Lactobacillus 
G423 had more noticeable health benefits compared with antibiotics.

4.4 Effect of Lactococcus G423 on 
intestinal metabolites in broiler

The Lactococcus-regulated gut microbiota led to alterations in the 
contents of ileum metabolites. Several significantly altered metabolites 
were identified in the present study, such as 6-hydroxy-5-
methoxyindole glucuronide, 9,10-DiHOME, N-acetyl-l-
phenylalanine, and kynurenine, which were regulated, and they were 
involved in four metabolic pathways (Table 7).

Among them, the bile secretion and linoleic acid metabolism 
were the important metabolic pathways of lipid (Hamilton and Klett, 
2021; Shulperkova et al., 2022). It was revealed that 6-hydroxy-5-
methoxyindole glucuronide was related to the pathway of bile acid 
metabolism. Bile acids are also signaling molecules and inflammatory 
agents that rapidly activate nuclear receptors and cellular signaling 
pathways, regulating lipid, glucose, and energy metabolism. To a 
large extent, bile salts are (>95% per cycle) absorbed in the terminal 
ileum, the final section of the small intestine. The bile salt hydrolase 
activity has been widely detected in several bacterial genera, including 
Bacteroides, Clostridium, Lactobacillus, and Bifidobacteria. In 
addition, bile acids have been found to affect glucose metabolism by 
activating FXR and TGR5 receptors, as well as intestinal flora (Jung 
et  al., 2007). Lactococcus G423 upregulated 6-hydroxy-5-
methoxyindole glucuronide level, suggesting that it may have some 
regulatory effects on the bile acid metabolism.

Linoleic acid could have beneficial effects on maintaining healthy 
squabs, as reflected by improved antioxidant capacity and lipid 
metabolism (Xu et al., 2020). Linoleic acid has shown a correlation 
with lipid metabolic diseases (Choque et al., 2014). Previous studies 
have demonstrated that linoleic acid content was associated with 
probiotics (Hossain et al., 2012; Sahoo et al., 2015). The metabolized 
product of linoleic acid is 9,10-dihydroxy-12-octadecenoic acid 
(9,10-DiHOME) (Felipe et  al., 2023). More recent research has 
suggested that DiHOMEs may be important lipid mediators (Hildreth 
et  al., 2020; Zhou et  al., 2023). Propionibacterium acnes and 
Lactobacillus plantarum have been reported to convert linoleic acid 
into conjugated linoleic acid (Bo et al., 2017). In the present study, 
Lactococcus G423 downregulated 9,10-DiHOME level, suggesting 
that it may have some regulatory effects on the linoleic 
acid metabolism.

Lactococcus G423 regulated 9,10-DiHOME and-hydroxy-5-
methoxyindole glucuronide by effecting the abundance of Bacteroides 
and Lactobacillus, which effected the lipid metabolic pathway of bile 
secretion and linoleic acid.

5 Conclusion

In conclusion, the results of the present study showed that the 
gut microbiota and the ileum contents of metabolites were 
significantly correlated, and the metabolites might be considered as 
mediators in the association between the intestinal microbiota and 
lipid metabolism. Lactococcus G423 could reduce abdominal fat 
percentage of broilers through the gut microbiota, regulating the 
pathways of lipid metabolism and bile acid metabolism. Lactococcus 
G423 could ameliorate the lipid metabolism of broilers by integrating 
the microbiome and metabolome data. Thus, the above-mentioned 
Lactococcus G423 strains can be  utilized as a new probiotic 
combination for animals.
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