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Biotic stresses, such as plant viruses, e.g., cotton leaf curl virus (CLCuV), can 
alter root-associated and leaf-associated microbial diversities in plants. There 
are complex ecological dynamics at play, with each microbe contributing to 
a multitude of biotic and abiotic interactions, thus deciding the stability of the 
plant’s ecosystem in response to the disease. Deciphering these networks of 
interactions is a challenging task. The inferential research in microbiome is also 
at a nascent stage, often constrained by the underlying analytical assumptions 
and the limitations with respect to the depth of sequencing. There is also no 
real consensus on network-wide statistics to identify the influential microbial 
players in a network. Guided by the latest developments in network science, 
including recently published metrics such as Integrated View of Influence 
(IVI) and some other centrality measures, this study provides an exposé of 
the most influential nodes in the rhizospheric and phyllospheric microbial 
networks of the cotton leaf curl disease (CLCuD) susceptible, partially tolerant, 
and resistant cotton varieties. It is evident from our results that the CLCuD-
resistant Gossypium arboreum possesses an equal share of keystone species, 
which helps it to withstand ecological pressures. In the resistant variety, the 
phyllosphere harbors the most influential nodes, whereas in the susceptible 
variety, they are present in the rhizosphere. Based on hubness score, spreading 
score, and IVI, the top 10 occurring keystone species in the FDH-228 (resistant) 
variety include Actinokineospora, Cohnella, Thermobacillus, Clostridium, 
Desulfofarcimen, and MDD-D21. Elusimicrobia, Clostridium-sensu-stricto_12, 
Candidatus woesebacteria, and Dyella were identified as the most influential 
nodes in the PFV-1 (partially tolerant) variety. In the PFV-2 (susceptible) variety, 
the keystone species were identified as Georginia, Nesterenkonia, Elusimicrobia 
MVP-88, Acetivibrio, Tepedisphaerales, Chelatococcus, Nitrosospira, and RCP2-
54. This concept deciphers the diseased and healthy plant’s response to viral 
disease, which may be microbially mediated.
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Introduction

Microorganisms occur in the environment in either beneficial, 
hazardous, or neutral relationships. The nature of the microbe–
microbe relationship or the host–microbe relationship is dependent 
on the ability of the microbe to withstand the external pressures 
exerted by the host or the environment it resides. As these microbes 
co-exist within a community, it is extremely difficult to decipher the 
complex ecological interactions that exist between them (Cruz et al., 
2022; Geller and Levy, 2023). The plant ecosystem is one such example 
where microorganisms co-exist and contribute to plant health and 
productivity. Niche specificity and core abundance are major factors 
that determine the stability of a microbe in the plant ecosystem (Qiao 
et al., 2024). As microbes do not exist in isolation, their co-existence 
is highly dependent on the niche type (Barber et al., 2022). The law of 
competitive exclusion formulated by Gause states that two microbial 
species with the same niche exclude each other (Faust and Raes, 2012).

The cotton crop is devastated by the lethal cotton leaf curl virus 
(CLCuV), which is transmitted by the whitefly. Insect pests account for 
37% of cotton yield losses, whereas the whitefly Bemisia tabaci is 
responsible for 50% of the total loss in cotton production (Oerke, 2006; 
Razaq et al., 2013). The genus Gossypium comprises 52 species, while 
only 4 are cultivated around the world, including Gossypium hirsutum, 
Gossypium barbadense, Gossypium arboreum, and Gossypium 
herbaceum (Ashraf et  al., 2018; Hussain et  al., 2020). Gossypium 
hirsutum accounts for 90% of worldwide cotton production, but it is 
susceptible to cotton leaf curl disease (CLCuD) (Hu et  al., 2019). 
Gossypium arboreum is completely tolerant to CLCuD, but it is 
cultivated in less than 1% of cotton-growing areas worldwide due to its 
short fiber length (Edde, 2021). Conventional breeding strategies and 
transgenic approaches have not been able to mitigate the effects of this 
deadly virus. The microbiome approach has been proven successful in 
targeting fungal and bacterial pathogens. Biotrophic pathogens, such as 
the one causing CLCuD, are known to increase salicylic acid (SA) levels 
in infected plants as this phytohormone is found to be essential for gene-
for-gene resistance, systemic acquired resistance (SAR), and reduction 
of disease development (Nawrath et al., 2006). Beneficial microbes from 
the phyllosphere can also switch on plant defense responses. Thus, plant 
immunity-boosting non-pathogenic microbiota is the new tool for 
conferring disease resistance in host plants (Legein et al., 2020).

Integrative metagenomics provides insights into the microbial 
community networks and ecological processes involved in biogeochemical 
cycles. It is still unknown how, under viral pathogen attack, the complex 
microbial communities interact with one another in the plant 
microbiome. The fields of genomics and ecology are brought together by 
network inference strategies, which aid in deciphering the relationships 
between more than two nodes involved in a particular network based on 
abundance data (Veiga et al., 2010). Furthermore, network topologies are 
useful for identifying the keystone species, i.e., those that play a pivotal 
role and, if perturbed, lead to maximum disruption in that network. In 
general, the keystone species were identified using a network property 
called the hubness score (Layeghifard et al., 2019), which seemed to 
correlate better with the properties of the ecosystem under study than 
looking at either the abundant or the prevalent species. A recent 
advancement in terms of incorporating local, semi-local, and global 
centrality measures, under the framework of integrated value of influence 
(IVI) (Salavaty et al., 2020) that also implicitly incorporates the hubness 
score, is shown to produce promising properties of the network while 

reducing the analytical biases. Therefore, we  have incorporated the 
network statistics to explore how disease susceptibility correlates with 
some of these properties. We  have employed the 16S rRNA gene 
amplification to unravel the spatial distribution patterns and complexities 
of the cotton microbiome in the CLCuD susceptible, partially tolerant, 
and resistant cotton varieties infected with CLCuV.

Materials and methods

Sample collection

Three cotton varieties were selected for the study: PFV-2 (CLCuD-
susceptible Gossypium hirsutum), PFV-1 (CLCuD partially tolerant 
Gossypium hirsutum), and FDH-228 (CLCuD-resistant Gossypium 
arboreum). The Gossypium hirsutum plants (5 each variety: PFV-2 and 
PFV-1) were sampled from Four Brothers Research Farm (31.399043° 
N, 74.175621° E) and the Gossypium arboreum (FDH-228) plants were 
sampled from the greenhouse at Forman Christian College (A 
Chartered University) (31.523565 N, 74.335380 E). Both sites 
(Figure 1) are located in Lahore, which has a semi-arid climate with 
an annual average rainfall of 628.8 mm. Leaf samples were collected in 
autoclave bags and were stored in ice until they were brought to the 
lab. Roots with adhered rhizospheric soil were stored in 50 mL falcon 
tubes and stored in ice until they were brought to the lab. The samples 
were stored at −80°C until further processing.

DNA extraction from soil, root, and leaf 
compartments

The study was aimed at the analysis of four plant compartments, 
namely the leaf endophytic, leaf epiphytic, root endophytic, and 
rhizospheric region. For DNA extraction from the leaf epiphytic region, 
the leaves were washed with 1X T.E. buffer containing 0.2% Triton X. The 
wash was filtered through a 0.2 μM sterile filter paper, and the filter paper 
was used for DNA extraction. The leaf was washed with 70% ethanol 
followed by 3% bleach, and multiple washings were given with sterile 
distilled water (SDW) to get rid of the leaf epiphytes. The leaf sample 
(100 mg) was crushed in PBS buffer using a pestle and mortar. The 
resultant solution was collected in a falcon tube and used for DNA 
extraction. Rhizospheric soil (up to 3 mm around the root surface area) 
was separated by sonication of roots in PBS buffer. The roots were 
separated and sterilized by washing with 70% ethanol and 3% bleach 
once and SDW several times to eliminate rhizospheric bacteria. The root 
(100 mg) was macerated in PBS buffer using a pestle and mortar and was 
collected in a falcon tube. Total DNA was extracted using the FastDNA 
Spin Kit for Soil (MP Biomedicals, California, USA) according to the 
manufacturer’s instructions. Samples were homogenized in the FastPrep 
instrument for 40 s at a speed setting of 6.0. The DNA was eluted in 30 μL 
of elution buffer.

PCR amplification and high-throughput 
sequencing

A total of 60 DNA samples (5 replicates of 3 varieties x 4 plant 
compartments) were amplified using the primer pair 341F 
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(5′-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACG 
GGNGGCWGCAG-3′) and 805R (5′-GTCTCGTGGGCTCGGA 
GATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC-3′) 
(Herlemann et al., 2011). The primer pair contained Illumina adapter 
overhang sequences for the amplification of 16S rRNA hypervariable 
region V3-V4. The PCR reaction mixture contained 12.5 μL of KAPA 
HiFi HotStart ReadyMix (Roche), 1 μL from 10 μM of each primer, 
1 μL of each mPNA and pPNA blocker, 2 μL of metagenomic DNA 
template (10 ng/μl), and remaining volume was made up to 25 μL with 
nuclease-free water. The PCR conditions were set as follows: 95°C for 
5 min (initial denaturation), followed by 35 cycles of 94°C for 1 min 
(denaturation), 55°C for 1 min (annealing), 72°C for 1 min, and 30 s 
(extension) with a final extension of 10 min at 72°C. PCR reactions 
were cleaned up with AMPure® XP beads. The samples were sent to 
Macrogen, Inc. Seoul, South Korea, for amplicon sequencing on an 
Illumina MiSeq platform.

Network inference

The 16S rRNA sequences were processed with the QIIME2 
pipeline with the dataset given by Aqueel et al. (2023) and revisited in 
this study. In brief, the Deblur algorithm (Amir et al., 2017) within the 
QIIME2 platform (version 2019.7.0) was used to recover 38,120 
amplicon sequence variants (ASVs). The sequencing reads were 
imported to QIIME2 format and were quality trimmed with a 
minimum Phred quality score of 20. This was followed by using the 
qiime deblur denoise-other plugin with parameters --p-trim-length 
280 --p-min-size 2 --p-min-reads 2 to generate ASVs. As a 
preprocessing step, the Deblur method also filters out any sequences 
that are not found in the reference SILVA SSU Ref NR database v138 
(Quast et  al., 2012), which is additionally used in qiime feature-
classifier plugin to assign taxonomy to each ASV. This yielded a n = 59 
(sample) X 38,120 (ASV) abundance table with summary statistics of 
sample-wise reads matching to ASVs as follows: [1st Quartile:7,979; 
Median:15,522; Mean: 14;565; 3rd Quartile:21,387; and Maximum: 
27,839]. The detailed statistics from different bioinformatics steps are 

given in Supplementary Table S6. Using the SILVA taxonomy, the 
ASVs were collated at the genus level (849 genera), with three tables 
extracted for each of the varieties, FDH-228 (n = 17), PFV-1 (n = 17), 
and PFV-2 (n = 16), respectively. To find the relationship between the 
genera, rather than using the traditional correlation analyses, we have 
used a recent approach by Lovell et al. (2015), which showed that 
variables that have nearly constant ratios in all samples are highly 
correlated. Therefore, Phi statistics is calculated where the 
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for two taxa x and y is essentially constant. clr(x) is the

 

centralized log-ratio transform of the abundance table. Before using 
the phi statistics, we  preprocessed the abundance tables for each 
variety using the standard protocols given at1, where the R package 
zComposition (Palarea-Albaladejo and Martín-Fernández, 2015) is 
applied (cmultRepl() function with the argument method = “CZM”) 
to replace 0 s in the abundance table with an estimate of the probability 
that the zero is not 0. Afterward, from the CoDaSeq package, codaSeq.
clr() function is applied to calculate the centralized log transform, and 
then propr.phisym() function is used to calculate the phi statistics and 
retain those taxa pairs where the phi statistics is <0.1 as recommended 
by the authors. For comparing network-wide statistics, we  have 
employed the standard ANOVA using aov() function available in R.

Network-wide statistics

Having obtained the network topology for all three varieties, 
we have calculated several network-wide statistics using numerous 
R packages, including igraph (Csardi and Nepusz, 2006), influential 
(Salavaty et al., 2020), and centiserve (Jalili et al., 2015). We have 
used the statistics with the definitions given in the 
Supplementary materials.

1 https://github.com/ggloor/CoDaSeq

FIGURE 1

Cotton plant sampling sites along with satellite and location imagery.
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Results

The most influential co-occurring species 
among CLCuD susceptible, partially 
tolerant, and resistant varieties

Based on the hubness score, we have listed the top 10 keystone 
species in the network of the three cotton varieties. 
Supplementary Table S2 depicts the top 10 co-occurring bacterial 
species in color. The resistant variety (FDH-228) has fewer interacting 
phyla with very strong interactivity and hegemony, while the partially 
tolerant and susceptible varieties (PFV-1 and PFV-2) had 
preponderances of different unique phyla, more than the resistant 
variety. Phylum Actinobacteriota, Firmicutes, and Proteobacteria were 
observed in the network of FDH-228, where the abundantly occurring 
phylum was Firmicutes in the top 10 keystone species (Figure 2). In 
PFV-1, phyla including Patescibacteria, Elusimicrobiota, Firmicutes, 
and Proteobacteria were observed (Figure 3). Interestingly, there was 
an abundance of many unique phyla in the susceptible variety PFV-2, 
which included Actinobacteriota, Bacteroidota, Bdellovibrionota, 
Dependentiae, Gemmatimonadota, Latescibacterota, Proteobacteria, 
RCP2-54, SAR 324 clade (Marine_group_B), Firmicutes, 
Elusimicrobiota, Chloroflexi, and Acidobacteriota (Figure  4). It is 
important to note that only the network of FDH-228 shows Firmicutes 
in abundance, whereas the top  10 keystone bacterial genera of 
Gossypium hirsutum varieties have very little abundance of this 

phylum. According to the three selected network statistics (hubness 
score, spreading score, and IVI) based on which the top 10 occurring 
keystone species were identified, Actinokineospora, Cohnella, 
Thermobacillus, Clostridium, Desulfofarcimen, and MDD-D21 were 
observed to be  the most influential nodes of the network of the 
CLCuD-resistant variety FDH-228. The keystone species for the 
partially tolerant variety were identified as Elusimicrobia, Clostridium-
sensu-stricto_12, Candidatus woesebacteria, and Dyella. Finally, 
Georginia, Nesterenkonia, Elusimicrobia MVP-88, Acetivibrio, 
Tepedisphaerales, Chelatococcus, Nitrosospira, and RCP2-54 were 
characterized as the most influential nodes in the network of the 
susceptible variety.

Compartment-wise differences of 
influential nodes within a particular variety

To explore the positive and negative associations of the microbiota 
with the selected phyllospheric and rhizospheric plant compartments, 
we used the generalized linear latent variable model (GLLVM) model 
approach (Figure 5). As compared to the leaf endophyte, the top 10 
keystone species were positively correlated with the leaf epiphytic 
compartment in FDH-228, whereas they were negatively correlated 
and followed the same decreasing trend in the Gossypium hirsutum 
varieties, PFV-1 and PFV-2. Compared to the leaf endophyte, the 
keystone species in the rhizosphere have a similar pattern in the 

FIGURE 2

Network inferred for Gossypium arboreum FDH-228 samples using the phi statistics. (A) The complete networks highlighting the regions with the most 
influential nodes colored by their taxonomic assignment at the phylum level; (B) The top 10 important nodes along with their scores based on hubness 
Score, Spreading Score, and their composite measure IVI. The plate shows the bacterial diversity of microbes extracted from the plant.
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FIGURE 3

Network inferred for Gossypium hirsutum PFV-1 samples using the phi statistics. (A) The complete networks highlighting the regions with the most 
influential nodes colored by their taxonomic assignment at the phylum level. (B) The top 10 important nodes along with their scores based on hubness 
Score, Spreading Score, and their composite measure IVI. The plate shows the bacterial diversity of microbes extracted from the plant.

FIGURE 4

Network inferred for Gossypium hirsutum PFV-2 samples using the phi statistics. (A) The complete networks highlighting the regions with the most 
influential nodes colored by their taxonomic assignment at the phylum level. (B) The top 10 important nodes along with their scores based on hubness 
Score, Spreading Score, and their composite measure IVI. The plate shows the bacterial diversity of microbes extracted from the plant.

https://doi.org/10.3389/fmicb.2024.1381883
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Aqueel et al. 10.3389/fmicb.2024.1381883

Frontiers in Microbiology 06 frontiersin.org

resistant (FDH-228) and partially tolerant (PFV-1) varieties, as they 
show a negative correlation. The keystone species in PFV-1 were 
positively associated with the root endophytic compartment.

Network-wide statistics associated with 
CLCuD susceptibility

Network statistics are the fundamental way to understand the 
underlying nature of the most influential nodes in the network, and 
we have revealed the positive/negative trends associated with CLCuD 
susceptibility for 29 different network statistics (Figure 6) with their 
definitions given in the Supplementary materials. The most influential 
nodes in the three networks for FDH-228 (resistant), PFV-1 (partially 
tolerant), and PFV-2 (susceptible) were identified using the 
Integrative Value of Influence (IVI) measure, and the statistics 
revealed that PFV-1 has the highest IVI value where two networks 
were identified to have the most influential nodes (Figure 3). Hubness 

score is indicative of how powerful those nodes are in their ecosystem. 
The hubness score and H-index also depicted an increase in trend 
from FDH-228 to PFV-2. Laplacian, Local H (LH) index, Mean 
Neighborhood Connectivity (MNC), and the Lobby index showed 
the highest value for susceptible variety PFV-2. The spreading 
potential of a node in each network was explained by the spreading 
score, where the PFV-1 network had the highest spreading score, 
followed by the networks for PFV-2 and FDH-228. The closeness 
residual statistic specifies how close the influential nodes are within 
a network. The influential nodes were closest in the network of the 
susceptible variety PFV-2, with the order decreasing from PFV-1 to 
FDH-228. A connection between the local and semi-local 
characteristics of a node is indicated via the cluster rank statistic, and 
it shows an increasing trend from resistant to susceptible variety. 
Collective influence is focused on highlighting the minimum set of 
influential nodes in the network, where PFV-2 only shows a minimal 
increase as compared to PFV-2 and PFV-1. A larger coreness value is 
indicative of the fact that the nodes are more centrally located in the 

FIGURE 5

𝜷− coefficients returned from the GLLVM procedure for covariates considered in this study and the top 20 most influential nodes returned for different 
varieties (from left to right, these are FDH-228, PFV-1, and PFV-2, respectively). Those coefficients that are positively associated with the microbial 
abundance of particular genera are represented in red color while those that are negatively associated are represented in blue color, respectively. Non-
significant associations, if any, are represented in gray color. For categorical variables, one level acts as a reference and is annotated with “REF.”
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FIGURE 6

A comparison of network-wide statistics for the networks obtained for FDH-228, PFV-1, and PFV-2 varieties. Lines for panels A and B connect two 
sample groups at statistically significant levels (according to ANOVA) indicated by asterisks as * (p  <  0.05), **(p  <  0.01), or ***(p  <  0.001). The raw statistics 
are available as Supplementary Table S3 (FDH-228), Supplementary Table S4 (PFV-1), and Supplementary Table S5 (PFV-2), respectively.
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network: networks of PFV-2 and PFV-1 have larger coreness values 
than those of FDH-228. The degree and diffusion degree have the 
same trend, with the value of networks in PFV-2 being the highest. 
Entropy in network statistics aims to explain the degree of disorder 
or complexity of the network. Higher entropy values indicate lesser 
information gain from the networks, as are indicated by values for the 
networks of FDH-228 and PFV-1. Topocoefficient indicates how 
many nodes are shared with the neighboring nodes, and this statistic 
is observed to be the highest for the FDH-228 network, followed by 
the networks for PFV-1 and PFV-2.

Discussion

The term “microbiome influencer” holds prime importance in 
microbial ecology (Paul et al., 2022). It is the most influential node in 
an ecosystem that contributes to crop vigor and resilience as opposed 
to its most abundant species. The core community does hold 
primordial significance (Toju et  al., 2018), but the stability of the 
microbial influencers is a major factor in the plant’s response to biotic 
or abiotic stressors (Qiao et al., 2024). Viruses are a major threat to 
plants worldwide, and the cotton leaf curl virus (CLCuV) is one of the 
deadliest viruses affecting the cotton crop (Mahmood-ur-Rahman 
et al., 2012). Crop phenology is majorly dependent on the microbiomes 
and mycobiomes that inhabit the internal and surrounding 
environment (Sharma et al., 2019; Ginnan, 2020). Rather than existing 
in isolation, microorganisms co-occur in ecological networks that 
determine the stability of the entire ecosystem and thus the plant’s 
response to biotic/abiotic stresses (Afridi et al., 2022). The drivers of 
these networks are the taxa termed the “most influential nodes” 
(Mukhtar et al., 2023).

In the FDH-228 network, more nodes have an IVI of 100, whereas 
in the PFV-2 network, only Chloroflexi has an IVI of 100. Members of 
the phylum Chloroflexi possess anaerobic fermentation potential and 
have been discovered in diverse habitats such as hot springs, 
sediments, and anaerobic sludge digesters (Hug et al., 2013; Xia et al., 
2016; Petriglieri et al., 2018; Bovio et al., 2019). If the influential node 
stands prominent against all other nodes, i.e., if the difference is huge, 
then any perturbation in that influential node should propagate and 
disrupt the network far more, which is evident for PFV-2. On the 
contrary, in the FDH-228 resistant variety, on average, there are many 
influential nodes, with authority predominantly shared among 
firmicutes. We  hypothesize that the community is robust against 
perturbations and should manage challenges better as a result of the 
decentralization of authority.

From GLLVM, it is quite apparent that the influential nodes all 
have consistently similar signs, whether all positive or all negative, 
which are associated with a particular compartment as compared to 
the reference. This seems to suggest that these species form part of a 
cohort that is increasing or decreasing globally as a cohort rather than 
exhibiting local changes in a few members. Compartment-wise 
network analysis revealed that drought stress disrupted the microbial 
network in the root endosphere, which contained the most influential 
nodes, compared to the phyllosphere and rhizosphere (Gao 
et al., 2022).

Microbial communities inhabiting different plant compartments 
exhibit varying capabilities owing to selection pressures associated 
with the compartment type. As this research aims to identify 

bacteria that could serve as biocontrol agents, it was necessary to 
screen all plant compartments for microbes that may possess 
disease-suppressing abilities. The recruitment of root-associated 
microbes relies heavily on the root exudates secreted by the plant 
roots (Massalha et al., 2017) and also the environmental factors such 
as soil pH, salinity, soil type, soil structure, soil moisture, and soil 
organic matter (Sindhu et  al., 2022). Conversely, leaf-associated 
bacteria exhibit a low species richness as the phyllosphere is 
relatively nutrient-poor compared to the highly fertile rhizosphere. 
The leaf surface constitutes an inhospitable environment that is 
characterized by fluctuations in temperature, moisture level, and 
nutrient availability (Thapa and Prasanna, 2018). Phyllospheric 
bacteria, therefore, possess the ability to maintain environmental 
homeostasis by producing secondary metabolites or exogenous 
polysaccharides to aid in the survival of the host plant (Jackson 
et al., 2015).

It is interesting to note that in the partially tolerant PFV-1 
network, the most influential nodes are root and leaf endophytic 
bacteria. It can be  observed that the microbial influencers are in 
abundance in the network of the highly susceptible variety’s 
rhizosphere. The rhizosphere is known to harbor commensals and 
recruits them from the surrounding environment (Bulgarelli et al., 
2013; Müller et al., 2016). In a previous study, rhizospheric microbial 
taxa and influential nodes were enriched in plants infected with the 
soil-borne yellow mosaic virus. The presence of beneficial taxa, 
including nitrogen fixers, such as members of Bradyrhizobiaceae, 
Xanthomonadaceae, Sphingomonadaceae, and Comamonadaceae, in 
the co-occurrence networks of infected wheat plants reveals that the 
pathogen is interdependent on the beneficial microbes that have 
maintained the ecological niche in the presence of disease (Wu et al., 
2021). Azospirillum, one of the top influential nodes in the FDH-228 
co-occurrence network, is a gram-negative nitrogen fixer capable of 
IAA, CK, and GA3 production (Cassán and Diaz-Zorita, 2016). 
Georgenia, one of the influencers in the susceptible PFV-2 network, is 
a heterotroph capable of aerobic denitrification and has been 
previously isolated from deep-sea sediments and forest soils (Li et al., 
2007; Wang et al., 2015; Rajta et al., 2022). Acetivibrio is an obligate 
anaerobe (Charoensuk et al., 2019) and Nitrosospira is an ammonia 
oxidizer (Koike et  al., 2022), and both belong to the PFV-2 
co-occurrence network.

In the resistant variety, the phyllosphere is home to the most 
influential nodes present in the network. The leaf epiphytic region is 
dominated by the top influencers, which is in accordance with our 
previous findings, where the SA-producing bacteria isolated from the 
phyllosphere of the FDH-228 variety conferred disease resistance 
against CLCuD in the susceptible variety (Aqueel et al., 2023). The 
phyllosphere microbiota are the most selected microbes and partake 
in nutrient cycling due to their specialized adaptations to climate 
change (Dorokhov et al., 2018; Cavicchioli et al., 2019; Koskella, 2020). 
They are also crucial for immune priming and pathogen elimination 
(Bell et al., 2019; Chen et al., 2020).

Conclusion

Our co-occurrence network analyses of the CLCuD-infected 
cotton plants with varying levels of susceptibility have revealed that 
the microbiome influencers show a consistent response in different 
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compartments. The network of the resistant Gossypium arboreum 
possesses many influential taxa from the phylum Firmicutes. The 
revelation of these networks can help us understand the crosstalk 
between the plant genotype and microorganisms inhabiting various 
plant compartments under pathogenic attack. This will aid in the 
utilization of these ‘influential ecological drivers’ for viral disease 
suppression in cotton.
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