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Phosphorus (P) is an important nutrient for plants, and a lack of available 
P greatly limits plant growth and development. Phosphate-solubilizing 
microorganisms (PSMs) significantly enhance the ability of plants to absorb 
and utilize P, which is important for improving plant nutrient turnover and 
yield. This article summarizes and analyzes how PSMs promote the absorption 
and utilization of P nutrients by plants from four perspectives: the types and 
functions of PSMs, phosphate-solubilizing mechanisms, main functional genes, 
and the impact of complex inoculation of PSMs on plant P acquisition. This 
article reviews the physiological and molecular mechanisms of phosphorus 
solubilization and growth promotion by PSMs, with a focus on analyzing the 
impact of PSMs on soil microbial communities and its interaction with root 
exudates. In order to better understand the ability of PSMs and their role in soil 
P transformation and to provide prospects for research on PSMs promoting 
plant P absorption. PSMs mainly activate insoluble P through the secretion of 
organic acids, phosphatase production, and mycorrhizal symbiosis, mycorrhizal 
symbiosis indirectly activates P via carbon exchange. PSMs can secrete organic 
acids and produce phosphatase, which plays a crucial role in soil P cycling, and 
related genes are involved in regulating the P-solubilization ability. This article 
reviews the mechanisms by which microorganisms promote plant uptake of soil 
P, which is of great significance for a deeper understanding of PSM-mediated 
soil P cycling, plant P uptake and utilization, and for improving the efficiency of 
P utilization in agriculture.
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Introduction

Phosphorus (P) is an essential nutrient for plant growth and development, playing an 
important role in the synthesis of DNA, cell membrane components (phospholipids), 
adenosine triphosphate (ATP), respiration, and photosynthesis (Kafle et al., 2019; Bai et al., 
2020). P in soil includes two forms: organic and inorganic P. Although soil contains a large 
amount of phosphorus, it usually exists in a form that cannot be directly utilized by plants 
(Ikhajiagbe et al., 2020; Divjot et al., 2021). P combines with Ca, Fe, and Al metals to form 
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minerals, and P is adsorbed by iron/aluminum (hydrogen) oxides, 
leading to P fixation in the soil (Ma J. et al., 2021; Zhou J. et al., 2021). 
The mobility of P is poor in soil, and plants cannot directly absorb and 
utilize P, leading to the widespread phenomenon of low P in 
ecosystems, which limits plant growth and yield. A large amount of P 
fertilizer is applied during production to meet the P demand of plants. 
Because of the adsorption and fixation effects of soil on P, the applied 
P fertilizer rapidly becomes fixed, resulting in a P fertilizer utilization 
efficiency of only 10–25% (Dejene et al., 2023; Dong et al., 2023). 
Moreover, fixed P in the soil can lead to non-point source pollution, 
resulting in large amounts of P fertilizer flowing into water bodies, in 
turn leading to groundwater eutrophication, which is not conducive 
to the sustainable development of the ecological environment (Lyu 
et  al., 2023; Wang et  al., 2023). Phosphate ore is a nonrenewable 
resource. Half of the world’s existing P reserves are predicted to 
be  depleted within 50–100 years (Zhu et  al., 2018). Therefore, 
improving the utilization efficiency of P in soil is crucial for promoting 
plant growth, reducing environmental pollution, and improving 
resource management.

Phosphate-solubilizing microorganisms (PSMs) can convert soil 
P into a form that plants can absorb and utilize, and the application of 
PSMs is currently an important measure for increasing the available 
P content in soil (Yadav et  al., 2017; Yadav, 2020). Many types of 
microorganisms dissolve P, which plays an important role in P cycling 
processes such as organic P mineralization, insoluble inorganic P 
dissolution, and P absorption (Zhu et al., 2018; Wise et al., 2021). 
Inoculating PSMs is an environmentally friendly method to promote 
crop productivity and understanding the mechanism of P 
solubilization by PSMs is of great significance for plants to adapt to 
low P stress and improve P utilization efficiency (Billah et al., 2019). 
This article discusses the types and functions of PSMs, P-solubilization 
mechanisms, main functional genes, and the impact of composite 
inoculation of PSMs on plant P partitioning, emphasizing the role of 
PSMs in plant P acquisition and utilization, and—based on this—
proposes issues and corresponding measures that need to 
be considered in future research and applications of PSMs.

Types and functions of PSMs

PSMs are widely distributed in nature, and microorganisms with 
P-solubilizing functions include bacteria, fungi, actinomycetes, and 
cyanobacteria, among which P-solubilizing fungi account for 0.1–0.5% 
of PSMs, and P-solubilizing bacteria account for 1–50% of the total 
(Fatima et  al., 2022). P-solubilizing bacteria included 34 genera, 
including Bacillus, Pseudomonas, Escherichia, and Burkholderia. Of 
these, Bacillus, Pseudomonas, and Acinetobacter have been studied 
extensively (Divjot et al., 2021; Timofeeva et al., 2022). P-solubilizing 
fungi include Arbuscularmy sp., Aspergillus, Penicillium, among which 
Aspergillus is the most reported, followed by Penicillium (Jiang et al., 
2020; Divjot et al., 2021; Etesami et al., 2021). P-solubilizing fungi 
produce 10 times more organic acids than P-solubilizing bacteria and 
can increase the contact area with the soil through the mycelium, 
thereby increasing the application potential of P-solubilizing fungi 
(Jiang et  al., 2020). The main P-solubilizing actinomycetes are 
Streptomyces and Micromonospora (Aallam et al., 2021; De Zutter 
et al., 2022). Microorganisms not only promote the conversion of 
difficult-to-utilize P to available P but also assist plants with absorbing 

P outside the rhizosphere, thus playing an important role in the 
process of plant P acquisition (Castagno et al., 2021).

PSMs not only have P-solubilizing effects but can also produce 
organic acids and iron carriers, regulate plant hormone levels, and fix 
nitrogen to promote the acquisition and growth of rice nutrients 
(Ribeiro et al., 2018; Unnikrishnan and Binitha, 2024). PSMs can 
secrete plant hormones such as auxins, cytokinins, and gibberellins, 
produce antifungal compounds and volatile bactericidal metabolites, 
and synthesize 1-aminocyclopropane-1-carboxylate (ACC) deaminase 
to improve phosphorus absorption and disease resistance, thereby 
increasing plant growth and yield (Hakim et al., 2021; Rawat et al., 
2021). PSMs can also secrete antibiotics, iron carriers, and lyases to 
protect plants from various soil-borne pathogens and promote plant 
growth (Toscano-Verduzco et  al., 2020; Kumawat et  al., 2021). 
Moreover, inoculation with PSMs can significantly affect the diversity 
and abundance of soil microbial communities and enhance the 
interactions between microorganisms, ultimately resulting in 
improved organic matter degradation and soil nutrient quality (Zhang 
X. et  al., 2021). PSMs also have different functions in different 
ecological environments and can enhance crop resistance to certain 
abiotic stresses, including cold, salt, heavy metals, and drought 
(Table 1). The P-solubilizing bacterium Bacillus atrophaeus GQJK17 
S8 can tolerate 11% NaCl, which can improve the germination rate, 
seedling biomass, and growth vitality index of quinoa plants (Mahdi 
et al., 2021). In addition, there are strains with different abiotic stress 
tolerance abilities, Such as Pseudomonas PGERs17, which is resistant 
to cold stress (Rizvi et al., 2021), Bacillus YMX5, which is resistant to 
high salt stress (Jiang et  al., 2020), and Streptomyces laurentii 
EU-LWT3-69, which is resistant to drought stress (Toscano-Verduzco 
et al., 2020). This type of PSMs not only promotes plant P absorption 
but also helps plants grow in extreme environments.

The P removal mechanism of PSMs

P in soil includes two forms: inorganic and organic P. Inorganic P 
usually exists as phosphates, divided into soluble and insoluble 
P. Insoluble P mainly includes phosphates such as aluminum 
phosphate, iron phosphate, magnesium phosphate, and calcium 
phosphate (Aliyat et  al., 2022), while soluble P mainly exists as 
hydrogen phosphate and dihydrogen phosphate ions (HPO4

2− and 
H2PO4

−) (Hao et al., 2020; Divjot et al., 2021; Li et al., 2021). Organic 
P mainly includes P-containing organic compounds, such as 
orthophosphate monoesters, orthophosphate diesters, organic 
polyphosphates, and phosphonates (Li C. et al., 2019). Organic acids 
and phosphatases produced by microorganisms are crucial for the 
cycling of inorganic and organic phosphorus in soil (Rasul et  al., 
2021). Insoluble inorganic P is mainly dissolved by organic acids, and 
enzymatic hydrolysis is the main method used to dissolve the organic 
forms of P (Figure 1). The mechanisms of microbial P solubilization 
can be divided into the following types:

Secretion of organic acids

Organic acids secreted by PSMs transform insoluble inorganic P 
into plant-usable P. Microorganisms produce organic acids in two 
ways: physiological secretion and decomposition of organic matter 
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(Schneider et al., 2019). The organic acids secreted by PSMs include 
gluconic, lactic, citric, and oxalic acids (Kalayu, 2019; Azaroual et al., 
2020). Organic acids mainly dissolve insoluble inorganic P as follows: 
organic acid anions compete with phosphate ions for binding sites on 
soil particles, reducing soil adsorption of phosphate ions; complex 
metal ions such as iron, aluminum, and calcium in soil to release 
bound phosphate ions; and reduction of the pH of the medium 
promotes the dissolution of insoluble inorganic P (Adeleke et al., 2017; 
Rawat et  al., 2021). The organic acids secreted by PSMs not only 

enhance the solubility of insoluble P, such as apatite and calcium 
phosphate, but also chelate with cations such as Ca2+, Fe3+, Al3+, and 
Mg2+, and organic acid anions compete with inorganic P physically or 
electrostatically for the same adsorption sites in the soil, releasing 
phosphate ions and increasing the effective P content (Rawat et al., 
2021). The organic acids produced by microorganisms chelate with 
cations through hydroxyl and carboxyl groups, transforming 
phosphates into soluble forms and increasing the effective P content 
(Bhattacharyya et  al., 2016). Many bacteria secrete organic acids 

TABLE 1 The effect of PSMs in abiotic stress, the application of PSMs to improve crop performance.

Phosphate-solubilizing 
microorganisms

Plant
Abiotic 
stress

Effect Reference

Lysinibacillus fusiformis YJ4

Lysinibacillus sphaericus YJ5

Maize Cold Increased the lignification, osmolytes, phenolic content, 

phytohormones, the enzymatic antioxidant defenses and 

mineral contents

Jha and Mohamed (2023)

Pseudomonas sp. CIBEA71

Pseudomonas sp. CIBEB51

Wheat Cold Produce phosphorus-solubilization halos and increase 

root length

Yarzábal et al. (2018)

Acinetobacter rhizosphaerae EU-KL44 Wheat Cold Increase the shoot length and root length, and improve 

plant physiological and growth parameters

Kour and Yadav (2023)

Pseudomonas sp. GBPI_506

Pseudomonas palleroniana GBPI_508

Pseudomonas proteolytica GBPI_Hb61

Pseudomonas azotoformans GBPI_CDB143

Arabidopsis 

thaliana

Cold Promoted plant rosette diameter, leaf area, and biomass 

growth

Adhikari et al. (2021)

Bacillus subtilis TPB4

Bacillus halotolerans TPB19

Bacillus pumilus TPB30

Cotton Heat Increased seedling growth and improve cotton yield and 

biomass

Shah et al. (2022)

Streptomyces laurentii EU-LWT3-6

Penicillium sp. EU-DSF-10

Millet Drought Increased plant chlorophyll content, and decreased lipid 

peroxidation

Kour et al. (2020)

Pseudomonas helmanticensis B30

Pseudomonas baetica B21

Wheat Drought Increase wheat growth indices, grain yield, and shoot 

phosphorus uptake

Karimzadeh et al. (2021)

Enterobacter ludwigii SH-6 Maize Drought Improve seeds germination performance and increase 

seedling drought tolerance

Shaffique et al. (2022)

Microbacterium sp., Streptomyces sp. Quercus brantii Drought Increase root length and weight, and enhance growth and 

physiological traits of seedlings

Zolfaghari et al. (2021)

Bacillus Y8 Sugarcane Drought Enhanced plant biomass and root length Wang et al. (2020)

Paenibacillus polymyxa IA7

Bacillus subtilis IA6

Cotton Drought Improve seedlings growth and change root architecture Ahmad et al. (2021)

Pseudomonas azotoformans N76 Wheat Salt Increase seed germination percentage, shoot and root 

length, fresh and dry weights

Belkebla et al. (2022)

Penicillium funicuiosum P1 Quinoa Saline-alkali 

stress

Promoted the antioxidant system and photosynthesis Jin et al. (2022)

Bacillus cereus WGT1

Bacillus thuringiensis WGT11

Wheat Salt Produce plant growth promoting substances and enhance 

wheat grain yield

Aliyat et al. (2022)

Kocuria rhizophila Y1 Maize Salt Improved plant growth performance, biomass production, 

seed germination rate, and antioxidant levels

Li et al. (2020)

Bacillus megaterium PSB1

Staphylococcus haemolyticus PSB2

Bacillus licheniformis PSB3

Mung beans Heavy metals Increased seeds germination rate and growth Biswas et al. (2018)

Bacillus atrophaeus GQJK17 S8 Quinoa Heavy metals 

and salt

Enhanced seedling growth and biomass, and improved the 

germination rate

Mahdi et al. (2021)

Burkholderia sp. N3 Watermelon Heavy metal Restore bacterial structure and improve the total dry 

weight

Zhang J. et al. (2022)
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(carboxylic acids) that can increase the solubility of calcium phosphate 
(Jayakumar et al., 2019). In addition, organic acids can promote the 
dissolution of insoluble inorganic phosphate compounds, such as 
tricalcium phosphate, dicalcium phosphate, hydroxyapatite, and 
phosphate rock, thereby improving the utilization rate of phosphate 
fertilizers (Oteino et  al., 2015; Cheng et  al., 2017). PSMs secrete 
various organic acids to convert insoluble inorganic phosphorus into 
soluble orthophosphates that are easily absorbed by plants 
(Venkiteshwaran et al., 2021; Campos et al., 2023). The types, contents, 
and phosphate solubility of organic acids produced by PSM vary, such 
as of Enterobacter sp. strain 15S, can produce organic acids such as 
citric, fumaric, ketoglutaric, malic, and oxalic acids (Zuluaga et al., 
2023). However, Trichoderma sp. produce different types of organic 
acids, including lactic acid, fuzzy acid, ascorbic acid, isocitric acid, 
malic acid, citric acid, and phytic acid (Bononi et al., 2020).

Gluconic acid is considered a common and important organic 
acid, and is one of the many organic acids produced by microorganisms 
that have been extensively studied (Kaur et al., 2021). Glucose can 
form gluconic acid through the synergistic effects of pyrroloquinoline 
quinine (PQQ) and glucose dehydrogenase (GDH), which dissolves 
insoluble phosphate (Jaiswal et  al., 2021). Pseudomonas produces 
gluconic acid to increase phosphate solubility, which has become an 
important technology for improving phosphate fertilizer management 
in modern agriculture (Wang et al., 2022; Rai et al., 2023). Inoculation 
of Pseudomonas fluorescens and Pseudomonas putida under soluble 
phosphate-restricted conditions can produce a large amount of 
gluconic acid, which promotes plant growth (Jin et al., 2022).

Enzymatic hydrolysis

Organic P cannot be directly absorbed by plants but needs to 
be mineralized into inorganic P before it can be utilized by plants. 

Enzymatic hydrolysis is the main way to mineralize organic P 
under conditions of low available P content, PSMs can hydrolyze 
organic P through biological enzymes, such as phosphatase, 
phytase, and C-P lyase (Stefanoni Rubio et al., 2016; Prabhu et al., 
2019). Two hydrolytic enzymes, phytase and phosphatase, play 
important roles in PSM mineralization (Liu et al., 2022). Phytase 
is an extracellular enzyme involved in the mineralization process 
of soil P, and phytase produced by microorganisms can release 
orthophosphate from phytate organic compounds, converting P 
into a form that can be utilized by plants (Ortega-Torres et al., 
2021; Timofeeva et al., 2022). Microbial phytase activity is closely 
related to its ability to dissolve phosphorus (Ben Zineb 
et al., 2020).

PSMs not only secrete phytase, but also produce phosphatase to 
mineralize organic P. Phosphatases are divided into acid 
phosphatase (ACP) and alkaline phosphatase (ALP), and their 
existence is greatly influenced by the acidity and alkalinity of the 
environment. ACP is more abundant in acidic soils, while ALP 
dominates in neutral and alkaline soils (Borges et al., 2021; Cheng 
et al., 2023). The activity of ALP is inhibited by inorganic phosphates 
in the environment, while ACP activity is not inhibited by high 
levels of phosphates (Li et al., 2021; Xie et al., 2021). In addition, 
temperature can affect phosphatase activity, and an increase in 
temperature can enhance the activity of phosphatases secreted by 
PSMs (Hessen et  al., 2017; Jiang et  al., 2018). Phosphatases are 
responsible for mineralizing approximately 90% of the organic P in 
soils, except phytates (Alori et  al., 2017; Chen and Arai, 2023). 
Many microorganisms, including Aspergillus, Bacillus, and 
Pseudomonas, produce phosphatases (Shrivastava et al., 2018; Kaur 
and Chatli, 2019; Zaborowska et  al., 2020). Purified ALP from 
Bacillus licheniformis MTCC 2312 has been added to sterilized soil, 
which improved the phosphate content in the roots and stems of 
maize (Singh and Banik, 2019).

FIGURE 1

PSMs promote the production of available phosphorus and plant absorption through multiple pathways. AMF, arbuscular mycorrhizal fungi; PSMs, 
phosphate solubilizing microorganisms; EPS, extracellular polysaccharides.
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The role of mycorrhizal symbiosis

Mycorrhizal fungi can form mutualistic symbioses with plant 
roots and help plants absorb mineral elements and water from the 
soil, while plants provide carbohydrates to the fungi (Chiu and 
Paszkowski, 2019; Genre et al., 2020). Arbuscular mycorrhizal fungi 
(AMF) can form mycorrhizal fungi in symbiosis with 70–80% of 
terrestrial plants, which is an effective way for plants to obtain P (Shi 
et al., 2021). The symbiotic interface between AMF and plants is an 
important site for material exchange between plants and fungi, which 
can increase the range of plant P absorption and the transport of P to 
root cells (Bao et  al., 2022). Plants absorb P through a series of 
morphological changes to expand the surface area of the roots and 
improve the exchange interface between the roots and soil when 
subjected to low P stress. Examples of this include increasing the 
number and length of root hairs; increasing the root-to-shoot ratio; 
adjusting the angle of root growth; increasing the number of lateral 
roots, adventitious roots, and young roots; increasing root length, 
shallow roots; and increasing root length and density in the soil 
surface layer (Hammelehle et al., 2018; Lynch, 2019; Zhang Z. et al., 
2021). Mycorrhizal plants can obtain P from the soil through the root 
pathway absorbed by root hairs and root epidermal cells, as well as 
the hyphal pathway absorbed by arbuscular mycorrhizal fungi, which 
synergistically promote nutrient absorption (Ferrol et al., 2019; Chu 
et al., 2020; Zhou J. et al., 2021). In the hyphal pathway, arbuscular 
mycorrhizal fungi improve plant P nutrient status through the 
hyphae. Hyphae not only penetrate soil pores smaller than root hairs 
but also extend further from the root surface to obtain a larger range 
of P in the soil (Ma X. et al., 2021; Gregory, 2022). While expanding 
the absorption range, AMF can stimulate the secretion of organic 
acids and ACP by host plant roots; their own mycelia can also secrete 
organic acids and ACP, reduce the pH of the surrounding soil, and 
convert insoluble phosphates into available P, which has the similar 

function as phosphate-solubilizing bacteria (Zhang L. et al., 2022; 
Xing et al., 2023). Organic acids, carbohydrates, amino acids, plant 
hormones, and other substances have been found in the mycelial 
secretions of AMF (Rhizophagus clarius and Rhizophagus irregularis) 
(Luthfiana et  al., 2021). Plants are likely to form mycorrhizal 
symbioses with mycorrhizal fungi to enhance their ability to obtain 
P under P-deficient conditions (Raven et al., 2018). The absorption 
of soil P through mycorrhizal fungi is an effective way for plants to 
supplement P (Figure 2).

Other functions

Compared with organic acids, the efficiency of inorganic acids 
(such as sulfuric acid and nitric acid) produced by PSMs in dissolving 
phosphates is lower. Nitrobacter and Thiobacillus spp. produce 
inorganic acids, such as nitric acid and sulfuric acid, to dissolve P and 
increase the available P content in the soil (Shrivastava et al., 2018; 
Dipta et al., 2019). PSMs also produce extracellular polysaccharides 
(EPS) that can form complexes with metal ions and enhance the 
solubilization of P (Naseem et al., 2018; Thampi et al., 2023). The 
combined action of EPS and organic acids can dissolve Ca3(PO4)2, 
which adds EPS to the culture medium and increases the solubilization 
of tricalcium phosphate by organic acids (Mendoza-Arroyo et al., 
2020; Liu et al., 2024). Ammonium (NH4+) present in soil is absorbed 
by PSMs to synthesize amino acids. Proton efflux caused by 
ammonium ion assimilation is another P-solubilization mechanism 
in microorganisms. Bacillus marisflavi FA7 is accompanied by 
ammonium ion assimilation, which decreases the pH of the culture 
medium and dissolves insoluble phosphates (Prabhu et al., 2018). 
PSMs can also promote P absorption by increasing root weight, root 
length, projection area, surface area, tip, and branch number (Liu 
X. et al., 2019; Galindo et al., 2022).

FIGURE 2

AMF recruiting PSBs or directly activating phosphorus elements to enhance plant phosphorus absorption. AMF, arbuscular mycorrhizal fungi; PSB, 
phosphate solubilizing bacteria.
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Main P cycling functional genes of 
PSMs

With the continuous development of molecular biology, 
researchers have explored the mechanism of P solubilization from a 
genetic perspective. The specific molecular genetic mechanisms 
underlying mineral phosphate dissolution have not been clearly 
elucidated to date (Timofeeva et al., 2022). Research on the functional 
genes of PSMs has mainly focused on genes related to the microbial 
secretion of organic acids and phosphatase production.

Organic acid-related genes

Gluconic acid is the main organic acid secreted by PSMs (Zhang 
et al., 2023). Genes related to gluconic acid synthesis are key for the 
regulation of P-solubilization ability. Gluconic acid is synthesized by the 
oxidation of glucose by GDH, which requires pyroquinoline quinone 
(PQQ) as a cofactor to participate in the reaction (Karagoz et al., 2020; 
Wu et al., 2022). PQQ synthesis involves six core genes (pqqA, pqqB, 
pqqC, pqqD, pqqE, and pqqF) associated with dehydrogenase activity 
and mineral phosphate dissolution in microorganisms (Wan et al., 
2020; Dudeja et al., 2021; Joshi et al., 2023). The pqqA gene plays an 
important role in PQQ biosynthesis and P solubilization. Mutations in 
pqqA in Rahnella aquatilis HX2H significantly reduce the gluconic acid 
content in the culture medium, leading to a significant decrease in the 
solubility of mineral phosphates (Li et al., 2014). In addition, pqqE is 
highly conserved and crucial for the biosynthesis of PQQ (Ludueña 
et al., 2017; Lo et al., 2023). Pantoea sp. and Pseudomonas sp. carrying 
pqqE can solubilize P and increase crop yields (Tahir et al., 2020). The 
expression level of the pqq gene in Serratia sp. S119 increases under 
P-deficient growth conditions, catalyzing the oxidation of glucose to 
gluconic acid and alleviating P deficiency (Ludueña et al., 2017).

The membrane-bound quinoprotein glucose dehydrogenase 
(PQQGDH) is an important enzyme that regulates the synthesis of 
gluconic acid and dissolution of insoluble phosphate and is encoded by 
the gcd gene (Jha et al., 2019; Wu et al., 2022). The genes related to 
gluconic acid production include gabY and mps (Zhao et al., 2014; 
Rawat et  al., 2021). Pseudomonas sp. MS16 was isolated from the 
rhizosphere soil of wheat and its P-solubilization activity was further 
validated through amplification, sequencing, and phylogenetic analysis 
of gcd gene (Suleman et al., 2018). The abundances of gcd genes were 
significantly correlated with environmental factors such as dissolved 
oxygen, phosphorus hydrochloride, and dissolved total phosphorus (Li 
Y. et al., 2019). The gcd gene can serve as a genetic marker to evaluate 
the potential of microorganisms to dissolve inorganic phosphorus. 
Acinetobacter sp. MR5 and Pseudomonas sp. MR7 carrying the gcd gene 
have the effect of promoting plant P absorption and growth, and rice 
plants treated with bacteria exhibited an increase in P content and grain 
yield of approximately 67 and 55%, respectively, compared with control 
plants (Rasul et al., 2019). However, the expression of gcd is inhibited by 
an increase in the soluble phosphate concentration (Zeng et al., 2016).

Phosphatase genes

Phosphatases are important enzymes for mineralizing organic P 
and include ACP and ALP. ACP is mainly secreted by plants and 

fungi, whereas ALP is mainly produced by bacteria (Fraser et al., 
2017). ALP and gluconic acid are important factors that affect the 
availability of P in soil (Liang et al., 2020; Wang et al., 2021). Among 
the enzymes involved in organic P mineralization, bacterial ALP has 
been extensively studied in terms of its biosynthesis, genetic control, 
and catalytic properties (Drozd et al., 2011; Kageyama et al., 2011; 
Sebastián and Ammerman, 2011; Park et al., 2022; Wijeratne et al., 
2022). ALP is primarily encoded by PhoA, PhoD, and PhoX (Liu et al., 
2018; Wang et  al., 2021; Zhou Y. et  al., 2021). PhoA hydrolyzes 
phosphate monoesters, whereas phoD and phoX decompose 
phosphate monoesters and phosphate diesters (Chen et  al., 2019; 
Srivastava et al., 2021; Yuan et al., 2023). Among the genes encoding 
ALP, phoD is a key gene in soil microorganisms (Tan et al., 2013; Sun 
et  al., 2019; Huang et  al., 2020). The abundance of phoD in soil 
correlated positively with ALP activity and the available P 
concentration (Fraser et al., 2015; Wang et al., 2021; Xu et al., 2022). 
The phoD gene is used as a marker gene to estimate the abundance and 
community composition of organic P-mineralization microorganisms, 
thereby allowing investigation of the microbial regulatory mechanisms 
of phosphorus cycling (Hu et al., 2020; Azene et al., 2023). In addition 
to the ALP genes, the ACP genes mainly include phoC, whereas the 
phytase genes include phyA, appA, etc. The phoC gene is an important 
gene encoding acid phosphatase (Apel et al., 2007; Fraser et al., 2017). 
In neutral or low-pH soils, the phoC gene is more dominant than the 
phoD gene (Fraser et al., 2017). After genetic transformation of maize 
using the phytase gene (phyA2) of Aspergillus ficuum, the growth and 
ability to obtain P from phytates were significantly improved (Jiao 
et al., 2021). In addition, a large number of studies have reported the 
isolation of various genes with P-solubilization ability from different 
species, such as mMDH from Penicillium oxalicum C2 (Lü et  al., 
2012), vgb from Vitreoscilla hemoglobin (Yadav et al., 2014), Eno from 
Burkholderia cenococcia 71-2 (Liu C. et al., 2019), Zymomonas mobility 
(invB), and Saccharomyces cerevisiae (suc2) (Kumar et al., 2016).

The use of metagenomic methods to analyze soil microbial 
P-cycling functional genes lays a solid foundation for the study of 
P-cycling genes, which helps us explore the potential functions of 
PSMs from a more comprehensive perspective. The P-cycling 
functional genes are mainly divided into three categories and seven 
functional groups, including those involved in P activation (including 
phosphate ester mineralization and inorganic phosphate dissolution), 
P absorption (phosphate ester transport and inorganic phosphate 
transport), and regulation of P-deficiency-induced responses (Liu 
et al., 2018; Dai et al., 2020; Siles et al., 2022). With the development 
of omics technologies and improvement of functional gene reference 
databases, researchers will more comprehensively reveal the functions 
and molecular mechanisms of microorganisms involved in plant soil 
P cycling.

The effect of co-inoculation of PSMs 
on plant P acquisition

P-solubilizing bacteria and fungi on their own have a limited 
ability to mineralize organic P and solubilize inorganic 
P. Co-inoculation of plants with two or more strains promotes P 
absorption and plant growth (Table 2). The interaction between AMF 
and phosphate-solubilizing bacteria is more effective than inoculation 
alone for promoting P absorption and plant growth (El Maaloum 
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et al., 2020; Wahid et al., 2020). The combination of bacteria and fungi 
has a synergistic effect, and mixed inoculation of AMF and 
P-solubilizing bacteria increases the root dry weight of plants by up to 
58% compared with a single inoculation (Sharma et al., 2020). Mixed 
inoculation of AMF and PSMs not only improves soil fertility but also 
significantly increases crop yield. Inoculation with Azospirillum 
brasilense and Bacillus subtilis can improve the efficiency of P fertilizer 
utilization in sugarcane and positively affect the quality and yield of 
sugarcane crops (Rosa et al., 2020). Co-inoculation with Trichoderma 
viride, Humicola spp., Paecilomyces lilacinus, Gluconacetobater 
diazotropicus, Azospiriillum brasilense, and Bacillus subtilis can 
improve nutrient cycling and soil fertility, thereby promoting 
sugarcane root development (Tayade et al., 2019). Co-inoculation with 
phosphate-solubilizing bacteria and AMF significantly increases the 
soil enzyme activity and rhizosphere microbial count, and both 
synergistically promote nitrogen and P nutrient uptake (Varinderpal-
Singh et al., 2020; Cozzolino et al., 2021). The composite inoculation 
of Bradyrhizobium japonicum 5038 and Paenibacillus mucilaginosus 
3016 on soybeans resulted in a significant increase in the abundance 
of phosphorus cycle genes, as well as an increase in soil available 
phosphorus and phosphatase activity (Xing et al., 2022).

The interactions between microorganisms to form complexes help 
plants absorb P. Fructose secreted by AMF can stimulate the 
expression of PSMs phosphatase genes, promote phosphatase 
synthesis and secretion, and increase the mineralization of organic P 
(Zhang et al., 2018). The mycelia of AMF can secrete compounds such 
as sugars, carboxylates, and amino acids, which can be utilized by 
phosphate-solubilizing bacteria (Cartabia et al., 2021; Weng et al., 
2022). The exudate of AM fungi can serve as a source of carbon for 
bacteria as well as a signal and effector molecule that stimulates 
bacterial growth and activity (Zhang et al., 2016; Zeng et al., 2018; 
Zhang et  al., 2018). In addition, bacteria on the surface of the 
mycelium can move along the mycelium and migrate to nutrient 
patches to activate organic P, thereby improving the utilization 
efficiency of the P in the soil by plants (Jiang et al., 2021). Bacteria 
colonize the surface of AMF mycelia to facilitate the acquisition of 
mycelial exudates (Emmett et al., 2021). Cooperation between AMF 
and bacteria is a manifestation of the symbiotic relationship between 
AMF and plants.

The symbiotic relationship between AMF and terrestrial plants is 
one of the most representative examples of microbial–plant 
cooperation (Brundrett and Tedersoo, 2018). The interaction between 
AMF and phosphate-solubilizing bacteria can affect the P exchange 
between plants and mycorrhizal fungi because the interaction between 
AMF and phosphate-solubilizing bacteria increases the secretion of 
phosphatase and gluconic acid, promoting the absorption and 
transport of P by extraradicular hyphae. P is transferred to plant roots 
by AMF, and plants, in turn, provide carbon sources to AMF, 
improving C-P exchange between plants and AMF (Duan et al., 2023). 
Under natural conditions, close cooperation between microorganisms 
is scientifically more effective for completing ecological functions than 
the independent actions of a single microorganism. Suillus grevillea 
synergistically mineralizes phytic acid by recruiting Cedecea lapeti and 
stimulates the upregulation of its own P-solubilization-related gene 
expression and growth of Cedecea lapeti, thereby promoting plant 
uptake of organic P (Mei et al., 2024). Ectomycorrhizal fungi recruit 
specific bacterial colonies by providing carbon sources, such as 
trehalose, mannitol, and organic acids (Deveau et al., 2010; Haq et al., 

2017). These recruited bacteria can perform various ecological 
functions, such as promoting mycelial growth and assisting 
ectomycorrhizal fungi in absorbing nutrients (Tarkka et al., 2018; Pent 
et al., 2020). The co-inoculation of phosphate-solubilizing bacteria 
and fungi has shown good results in promoting plant growth, nutrient 
absorption, mycorrhizal symbiosis, and microbial biomass. In 
addition, the co-inoculation of PSMs with other functional 
microorganisms can achieve various goals to promote plant growth. 
For example, the co-inoculation of PSMs with nitrogen-fixing bacteria 
can increase the utilization of phosphorus and the fixation of nitrogen 
in the atmosphere, thereby improving soil fertility and crop yield, and 
promoting the development of sustainable agriculture (Zveushe et al., 
2023). The co-inoculation of PSMs with biocontrol bacteria not only 
improves plant absorption of phosphorus, but also significantly 
reduces the incidence and severity of diseases, which is more effective 
than the single inoculation of PSMs (Nepomuceno et al., 2019).

Conclusion and perspective

The low available P content in the soil and the low efficiency of P 
fertilizer utilization limit plant growth and yield. PSMs increase the 
soil available P content, improve the P fertilizer utilization efficiency, 
and promote plant growth. Therefore, the use of biological pathways 
to improve the utilization efficiency of P in soil has attracted the 
attention of scientists in various countries. Domestic and foreign 
scholars have identified many microorganisms with P-solubilization 
abilities through screening and conducted research on them. However, 
owing to factors such as the microbial P-solubilization ability, the 
colonization ability in the plant rhizosphere, and stability, relatively 
few strains have been applied in production practices to date. Many 
studies have focused on the effects of PSMs on plant growth under 
conventional cultivation conditions; however, little attention has been 
paid to their effects on plant growth under abiotic stress conditions. 
With the continuous development of molecular technologies and 
genomics, related P-solubilizing genes are constantly being explored; 
however, gene research mainly focuses on functional verification, and 
the interaction mechanism between P-solubilizing genes is still 
unclear. AMF and phosphate-solubilizing bacteria originate from 
different sources, and combining the two is not a natural correlation 
and may result in an unstable synergistic effect. The mechanism by 
which compound inoculation with PSMs causes microbial community 
changes in plant roots is not yet fully understood. Unlike the extensive 
research on the interactions between microorganisms and plant roots, 
there is currently limited research on the impact of microbial 
interactions on plant P-uptake efficiency.

Regarding the research direction of inoculating PSMs to improve 
the utilization efficiency of plant P, the current focus is to (1) expand 
the application scope of PSMs, combine functional research such as 
nitrogen fixation and soil remediation, and increase the application of 
composite microbial fertilizers to better serve agricultural 
development. (2) Continuously explore P-solubilization-related genes 
using a combination of genomics, proteomics, and metabolomics to 
further explain the mechanisms of soil P dissolution. Single-cell 
Raman D2O technology and high-throughput P-cycling functional 
gene chips can determine the corresponding functional genes, groups, 
and activities of PSMs, thereby improving our understanding of the 
types and functions of PSMs. (3) Strengthening research on microbial 
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interactions and mixed inoculation, which combines AMF with 
naturally related bacteria, may provide advantages over artificially 
combined microorganisms. Moreover, by using molecular biology 
techniques and isotope labeling methods to explore microbial 

interactions at a deeper level, the optimal effect of microbial 
interactions in the soil can be achieved, thereby playing an important 
role in improving soil fertility. (4) Further research is being conducted 
on the effects of specific chemical substances related to different stages 

TABLE 2 The positive effect of co-inoculation PSMs on the plant growth and yield.

Phosphate-solubilizing 
microorganisms

Host
Growth 
condition

Impact on plant performance Reference

Rhizoglomus irregulare QS69

Pseudomonas fluorescens PSB1

Pseudomonas koreensis PSB11

Pseudomonas fluorescens PSB18

Solanum 

lycopersicum

Pot Increased the shoot dry weight and the root dry 

weight

Sharma et al. (2020)

Rhizophagus irregularis

Rahnella aquatilis HX2

Medicago 

truncatula

Pot Promoted the C-P exchange between plant and 

arbuscular mycorrhizal fungi

Duan et al. (2023)

Suillus grevillea

Cedecea lapagei

Pinus 

massoniana

Pot Increase soluble phosphorus content and 

promote phytate uptake

Mei et al. (2024)

Azospirillum brasilens Ab-V5

Azospirillum brasilens Ab-V6

Bacillus subtilis CCTB04

Pseudomonas fluorescens CCTB03

Sugarcane Field Improved dry matter, total phosphorus 

accumulation and stalk production, and reduced 

phosphorus fertilization

Rosa et al. (2020)

Azospirillum brasilense

Bacillus subtilis

Pseudomonas fluorescens

Sugarcane Farm Increased stalk yield and sugar, and reduced 

phosphate fertilization

Fernandes et al. (2023)

Rhizophagus irregularis

Talaromyces flavus

Talaromyces helicus L7B

Talaromyces helicus N24

Talaromyces diversus

Wheat Pot Enhanced soil alkaline phosphatase activity and 

increased the symbiotic efficiency

Della Mónica et al. (2020)

Rhizobium sp. LSMR-32

Enterococcus mundtii LSMRS-3

Mungbean Farm Improved seed germination, plant height, 

biomass, chlorophyll content

Kumawat et al. (2021)

Burkholderia vietnamiensis KKUT8-1

Rhizophagus aggregatus

Sunchoke Greenhouse Increased plant water status, reduced electrolyte 

leakage, and reduced malondialdehyde and 

proline concentration

Nacoon et al. (2022)

Bacillus licheniformis PSB1

Pantoea dispersa PSB2

Staphylococcus sp. PSB3

Rice Field Curtailed phosphorus fertilizer dose and 

increased grain yield

Rawat et al. (2022)

Funneliformis mosseae

Bacillus megaterium 10011

Alfalfa Pot Promoted mycorrhiza growth and the plant 

production performance

Liu et al. (2020)

Bradyrhizobium japonicum 5038

Bacillus aryabhattai MB35-5

Paenibacillus mucilaginosus 3016

Soybean Pot Increased the phosphorus metabolism-related 

genes abundance, phosphatase activities, the 

phosphorus content and soybean biomass.

Xing et al. (2022)

Enterobacter asburiae BFD160

Pseudomonas koreensis TFD26

Pseudomonas linii BFS112

Barattiere Pot Improve fruit yield, maturity, chlorophyll 

content, photosynthetic capacity, and gas 

exchange

Murgese et al. (2020)

Azospirillum brasilens Ab-V5

Azospirillum brasilens Ab-V6

Bacillus subtilis CCTB04

Pseudomonas fluorescens CCTB03

Sugarcane Farm Increased leaf phosphorus concentration and 

sugar yield

Rosa et al. (2022)

Funneliformis mosseae

Apophysomyces spartima

Palm Pot Increased nutrient uptake and improved the 

gas-exchange and root growth

Zai et al. (2021)

Bacillus megatherium

Compost tea

Sugar beet Field Enhanced the antioxidant system Osman et al. (2022)

Enterobacter ludwigii AFFR02

Bacillus megaterium Mj1212

Alfalfa Pot Increase total phenolic content, total flavonoid, 

and superoxide dismutase

Kang et al. (2021)

https://doi.org/10.3389/fmicb.2024.1383813
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Pang et al. 10.3389/fmicb.2024.1383813

Frontiers in Microbiology 09 frontiersin.org

of microbial interactions through a combination of transcriptomics 
and metabolomics. (5) More attention should be paid to the isolation 
of indigenous microorganisms, screening for higher-quality and 
multifunctional PSMs, enhancing plant uptake of soil P, and enhancing 
their resistance to different stress conditions, which is of great 
significance for promoting plant growth.
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