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Introduction: This study explored the causal connections between gut

microbiota (GM), urinary tract infection (UTI), and potential metabolite mediators

using Mendelian randomization (MR).

Methods: We utilized summary statistics from the most comprehensive and

extensive genome-wide association studies (GWAS) available to date, including

196 bacterial traits for GM, 1,091 blood metabolites, 309 metabolite ratios,

alongside UTI data from ukb-b-8814 and ebi-a-GCST90013890. Bidirectional

MR analyses were conducted to investigate the causal links between GM and

UTI. Subsequently, two MR analyses were performed to identify the potential

mediating metabolites, followed by a two-step MR analysis to quantify the

mediation proportion.

Results: Our findings revealed that out of the total 15 bacterial traits, significant

associations with UTI risk were observed across both datasets. Particularly, taxon

g_Ruminococcaceae UCG010 displayed a causal link with a diminished UTI

risk in both datasets (ukb-b-8814: odds ratio [OR] = 0.9964, 95% confidence

interval [CI] = 0.9930–0.9997, P = 0.036; GCST90013890: OR = 0.8252,

95% CI = 0.7217–0.9436, P = 0.005). However, no substantial changes in

g_Ruminococcaceae UCG010 due to UTI were noted (ukb-b-8814: β = 0.51,

P = 0.87; ebi-a-GCST90013890: β = −0.02, P = 0.77). Additionally, variations

in 56 specific metabolites were induced by g_Ruminococcaceae UCG010, with

N-acetylkynurenine (NAK) exhibiting a causal correlation with UTI. A negative

association was found between g_Ruminococcaceae UCG010 and NAK (OR:

0.8128, 95% CI: 0.6647–0.9941, P = 0.044), while NAK was positively associated

with UTI risk (OR: 1.0009; 95% CI: 1.0002–1.0016; P = 0.0173). Mediation analysis

revealed that the association between g_Ruminococcaceae UCG010 and UTI

was mediated by NAK with a mediation proportion of 5.07%.
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Discussion: This MR study provides compelling evidence supporting the

existence of causal relationships between specific GM taxa and UTI, along with

potential mediating metabolites.

KEYWORDS

gut microbiota, urinary tract infection, blood metabolites, N-acetylkynurenine,
Mendelian randomization analysis

1 Introduction

Urinary tract infection (UTI), a prevalent inflammatory
condition affecting the urinary system, is primarily caused
by uropathogenic Escherichia coli (UPEC) (Ji, 2005). The
characteristics of the pathogen include high rates of incidence
and recurrence, and increased antibiotic resistance (Tandogdu
and Wagenlehner, 2016; Medina and Castillo-Pino, 2019; Faine
et al., 2022). More than 50% of women experience at least one
UTI during their lifetime (Foxman, 2014). Following antibiotic
treatment, 20–30% of women experience a relapse within six
months (Foxman, 2002), with approximately half of the recurrent
strains derived from the initial infection (Silverman et al., 2013).
Antibiotics, while effective in treating UTI, can also increase the
risk of recurrence, potentially by causing disruptions in the GM
(Köves et al., 2017). The existing understanding of its pathogenesis
primarily focuses on the ascending infection pathway of intestinal
bacteria. Pathogenic bacteria are excreted from the intestines into
the feces, colonize around the urethra or vagina, and then ascend
through the urethra to the bladder, triggering an infection. In
addition, it is closely associated with factors such as mucosal
immunity, estrogen levels, bacterial fimbriae and virulence factors.
However, it remains unclear whether additional mechanisms exist
through which gut bacteria can influence the recurrence of urinary
tract infections.

Growing evidence suggests that the interaction between the
gut and bladder, known as the gut-bladder axis, plays a crucial
role in the pathogenesis of UTI (Yang et al., 2022). The gut-
bladder axis implies that individuals with UTI often show an
imbalance in the GM composition (Vervoort et al., 2015; Paalanne
et al., 2018), and alterations in the GM can enhance susceptibility
to recurrent UTI. Studies have revealed that uropathogens from
the gut can repeatedly enter the urethra (Lee et al., 2014),
and an increased abundance of pathogenic bacteria is a risk
factor for bacteriuria after kidney transplantation (Magruder
et al., 2019). Nevertheless, Worby et al. (2022b) have yielded
conflicting conclusions, they discovered the influencing factor of
recurrent UTI is not necessarily an increase in uropathogenic
abundance, but rather a decrease in the diversity and richness of
the GM. Nonetheless, owing to the influence of antibiotics and
diet, it is challenging to ascertain whether dysbiosis of the GM
is a consequence of UTI or an indicator of increased disease
susceptibility.

The concept of gut-bladder axis also suggests that gut
microbiota indirectly influence the host immune system through
its metabolites, thereby exacerbating inflammation in the distal
bladder (Worby et al., 2022a). For example, short-chain fatty

acids (SCFAs) can modulate immune cell function and enhance
the integrity of the intestinal barrier, thereby reducing the
risk of urinary tract infections (Martin-Gallausiaux et al.,
2021). Trimethylamine-N-oxide (TMAO) promotes the release
of inflammatory factors during infection and increases the
pathogenicity of E. coli in bladder cells (Wu et al., 2023). Iron
participates in the replication of E. coli and in the host’s nutritional
immune defense (Butler-Laporte et al., 2023). In addition, blood
metabolites such as serum procalcitonin (Pecile et al., 2004),
C-reactive protein (Shaikh et al., 2020), and serum calcitonin
gene-related peptide (Lamot et al., 2022), play a crucial role in
clinical diagnosis, which can be used as biomarkers for acute
pyelonephritis in children. However, our current understanding
does not clarify how the interaction between the GM and
metabolites influences susceptibility to recurrent urinary tract
infections.

Mendelian randomization (MR) analysis uses genetic variation
as instrumental variables (IVs) to investigate the causal relationship
between exposure and outcome. This method offers better control
over confounding factors and sample size compared to clinical
research, while also being more cost-effective. Moreover, to
assess the causal relationship between GM and UTI, as well
as the potential role of blood metabolites in this relationship,
this study utilized statistical data from genome-wide association
studies (GWAS) for MR analysis to clarify their relationship.
Our study attempted to identify specific genera of bacteria or
blood metabolites that may influence the occurrence of UTI,
providing new perspectives for further mechanistic research,
clinical diagnosis, and drug treatment.

2 Materials and methods

2.1 Overall design

The overarching design of the proposed study is illustrated
in Figure 1. This investigation examined the bidirectional causal
association between GM and UTI using a two-sample Mendelian
randomization (TSMR) approach. To unravel the potential
underlying mechanisms, we performed MR analyses to examine the
relationship between the GM and serum metabolites. Subsequently,
another MR analysis was carried out to explore the link between
serum metabolites and UTI. To further probe the causal pathway
from gut microbiota to UTI, a two-step MR design was employed
for mediation analysis, specifically to investigate whether serum
metabolites act as mediators in this pathway.
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FIGURE 1

A flowchart detailing the Mendelian randomization study design.

2.2 Data sources

Genetic variants correlated with the GM in this study were
sourced from the MiBioGen Consortium’s extensive GWAS meta-
analysis (van der Velde et al., 2019; Kurilshikov et al., 2021),
encompassing 18,340 individuals across 24 cohorts, primarily of
European descent (n = 13,266). GWAS data on tract infection
were acquired by the publicly available GWAS catalog (ebi-a-
GCST90013890) (Mbatchou et al., 2021) and the UK Biobank
(ukb-b-8814). Summary-level statistical data for 1,091 blood
metabolites and 309 metabolite ratios were derived from a
comprehensive meta-analysis of the GWAS genomic atlas of the
plasma metabolome, which prioritizes the metabolites implicated
in human diseases (Chen et al., 2023). The data sources are
presented in Table 1. Given that our study relied on publicly
available summary data, there was no extra need for further ethical
approval or consent procedures.

2.3 TSMR design

In our analysis, single nucleotide polymorphisms (SNPs)
are IVs. The three core assumptions of MR that must hold,
to strengthen causal inference claims, are as follows (refer to
Figure 2; Emdin et al., 2017): (1) Relevance: the genetic variants
(SNPs) used as IVs must be associated with the exposure of
interest. The selection criteria detailed below directly address this
assumption by ensuring that only significantly associated SNPs
are selected. (2) Independence: the IVs must not be connected
to any confounders of the exposure-outcome relationship. The
use of SNPs as IVs inherently supports this assumption, since
genetic variants are randomly assorted at conception, independent
of confounders that may affect the outcome studied later in life. (3)
Exclusivity: the IVs influence the outcome exclusively through their
association with the exposure, not through other pathways. The
methodology employs various statistical methods for sensitivity
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TABLE 1 Details of the genome-wide association studies and datasets utilized in our analyses.

Trait GWAS ID Consortium Sample size Year

Urinary tract infection ukb-b-8814 MRC-IEU 463010 2018

Urinary tract infection ebi-a-GCAT90013890
aaZGGCST90013890

NA 397867 2021

Human gut microbiome NA MiBioGen 18340 2021

1,091 blood metabolites and 309 metabolite ratios NA CLSA 8299 2023

FIGURE 2

Mendelian randomization model and three key assumptions of a
Mendelian randomization analysis.

analysis to detect and adjust for pleiotropy, supporting the
exclusivity assumption. Furthermore, the robustness of the causal
inference claims is further supported by multiple MR methods
(inverse variance-weighted [IVW], MR-Egger regression, weighted
median, simple mode, and weighted mode) to assess causal
associations from different angles, providing a comprehensive
view of the causal effect. Sensitivity analyses, including Cochran’s
Q test for heterogeneity, MR-Egger intercept for horizontal
pleiotropy, and leave-one-out analysis, were performed to detect
and correct for potential biases or influential outliers. Through
this streamlined methodology and assumption verification, we
aimed to enhance the credibility and accuracy of our causal
inference, providing robust methodological backing for our
conclusions.

2.4 Selection of IVs

To obtain qualified IVs, the corresponding selection criteria
were utilized. Initially, IVs were selected relying on a significance
level of P < 1.0 × 10(−5). This threshold ensures that only
SNPs strongly associated with the exposure are considered,
reducing the risk of selecting IVs by chance. Additionally, a
linkage disequilibrium (LD) threshold of R2 < 0.001 and a
clumping distance of 10,000 kb were applied using 1000 Genomes
EUR data. This step minimizes the likelihood of selecting
SNPs that are in LD with each other, ensuring that each SNP
represents an independent source of genetic variation. Then,
F-statistics were calculated to verify the robust connection between
SNPs with an F-statistic of > 10 were considered to have a

significant association with the exposure (Palmer et al., 2012;
Gill et al., 2019; Levin et al., 2020). This criterion ensures that
the selected IVs are strong instruments, reducing the risk of
weak instrument bias, which can invalidate MR assumptions
and conclusions.

2.5 Statistical analysis

This study employed multiple methodologies, including IVW
(Burgess et al., 2015), MR-Egger regression (Bowden et al., 2015),
weighted median (Bowden et al., 2016), simple mode, and weighted
model (Hartwig et al., 2017), to assess causal associations. The
IVW method is considered the primary analysis method due to
its ability to offer accurate effect estimates and being commonly
adopted as the predominant approach in the majority of MR
analyses.

Diverse methods have been introduced for sensitivity analysis.
First, Cochran’s Q test was used to assess IV heterogeneity,
with a P-value of > 0.05 indicating no heterogeneity (Burgess
et al., 2015). Second, the MR-Egger intercept method was
used to quantify the heterogeneity effects among the genetic
instruments. A P-value of less than 0.05, indicating a potential
bias in the IVW estimate, could be attributed to horizontal
pleiotropy. Additionally, MR-PRESSO detected anomalies and
possible horizontal pleiotropy with a global P-value of less than
0.05, suggesting the existence of horizontal pleiotropy (Verbanck
et al., 2018). Third, a leave-one-out sensitivity test identified
potential heterogeneous SNPs (Burgess et al., 2017). Finally, funnel
and forest plots were created for the direct identification of
pleiotropy.

Statistical analyses were conducted using R version 4.2.1 (R
Foundation for Statistical Computing, Vienna, Austria). The MR
analyses were conducted using the TSMR (version 0.5.7) and MR-
PRESSO (version 1.0) R packages (Hemani et al., 2018; Verbanck
et al., 2018).

3 Results

3.1 Gut microbiota association with UTI
through two-sample bidirectional MR
analysis

A thorough evaluation was conducted within the framework
of MR analysis, and the outcomes were visually represented
in a heatmap (Gu et al., 2014; Supplementary Figure 1). The
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analysis revealed significant associations between seven bacterial
traits across diverse taxonomic levels and UTI risk in the UKB
dataset (Figures 3A–G). Among these traits, c_Clostridia (odds
ratio [OR] = 0.9966, 95% confidence interval [CI]: 0.9938–0.9993,
P = 0.016) and g_Ruminococcaceae UCG010 (OR = 0.9964, 95%
CI: 0.9930–0.9997, P = 0.036) were identified as protective factors.
In contrast, g_Ruminococcus2 (OR = 1.0026, 95% CI: 1.0001–
1.0051, P = 0.038), f_Bacteroidales S24 7group (OR = 1.0027,
95% CI: 1.0006–1.0047, P = 0.012), g_Clostridium sensu stricto1
(OR = 1.0047, 95% CI: 1.0000–1.0094, P = 0.048), and g_Bacteroides
or f_Bacteroidaceae (OR = 1.0039, 95% CI: 1.0010–1.0068,
P = 0.009, for both) were identified as risk factors. The detailed
results are presented in Supplementary Table 1. Importantly, the
P-values for pleiotropy and heterogeneity analyses consistently
exceeded 0.05, indicating the absence of significant heterogeneity
or pleiotropy issues. Moreover, these results were considered
reliable and were supported by sensitivity analyses, which ruled out
pleiotropy concerns.

The causal effects of the GM on UTI were investigated
further using an additional dataset (ebi-a-GCST90013890)
(Supplementary Figure 2), Using the IVW method, one order
and two genera exhibited positive associations, whereas six genera
showed negative associations with UTI (Supplementary Table 2).
Interestingly, g_Ruminococcaceae UCG010 was the only bacterial
trait that overlapped between the two sets of results (Figure 4),
indicating the potential involvement of specific bacterial traits in
the onset of UTI.

Additionally, reverse MR analysis was conducted. Notably,
g_Ruminococcaceae UCG010 exhibited no significant changes
attributed to UTI (ukb-b-8814: β = 0.51, P = 0.87; ebi-a-
GCST90013890: β = −0.02, P = 0.77). Furthermore, no further
evidence of a causal effect for UTI on the other taxa identified
in the above results. When analyzing the ukb-b-8814 dataset,
eight features (one class, one order, one family, and five genera)
were significantly regulated. Similarly, the analysis of the ebi-
a-GCST90013890 dataset revealed seven features with evident
changes, including one family, and six genera.

3.2 Regulation of multiple metabolites by
Ruminococcaceae UCG010

Recognizing the potential significance of metabolites in the
interplay between GM and UTI, we conducted extensive MR
analysis to unravel their intricate relationships. We discovered
that Ruminococcaceae UCG010 co-regulates 56 specific metabolites.
Among these, 24 metabolites showed an upward regulatory trend
and 32 showed a downward trend. Noteworthy metabolites,
including sulfate of piperine metabolite C18H21NO3 (P = 0.0040),
1-(1-enyl-palmitoyl)-2-oleoyl-GPE (P = 0.0029), 9,10-DiHOME
(P = 0.0061), 13-HODE + 9-HODE (p = 0.0087), N-palmitoyl-
sphinganine (P = 0.0049), and 12,13-DiHOME (P = 0.0093),
displayed a significant positive correlation with Ruminococcaceae
UCG010. In contrast, Pseudouridine (P = 0.0058), 2-hydroxy-
3-methylvalerate (p = 0.0033), and N2, N5-diacetylornithine
(P = 0.0036) were significantly negatively correlated with
Ruminococcaceae UCG010. Further details of the remaining
metabolites are displayed in Supplementary Table 3.

3.3 Association of N-acetylkynurenine
(NAK) with increased risk of UTI

To delve into the relationship of causality between the 56
metabolites and UTI, we conducted MR analysis using the GWAS
dataset (ukb-b-8814). IVW analysis revealed that only NAK acid
(OR: 1.0009, 95% CI: 1.0002–1.0016, P = 0.0173) was significantly
associated with an increased risk of UTI (Figure 5). This finding
suggests that the increased risk of UTI associated with elevated
levels of Ruminococcaceae UCG010 may be partly attributed to the
upregulation of NAK.

3.4 Mediation analysis of gut
microbiome, NAK, and UTI

To explore the mediating role of N-acetylkynurenine, we
calculated its indirect effects and proportions. The overall effect
size was indicated by the β value between Ruminococcaceae
UCG010 and UTI, determined through TSMR. The indirect effect
was derived by multiplying the β value of Ruminococcaceae
UCG010 to NAK with the β value of NAK to UTI. The direct
effect was calculated by subtracting the indirect effect from
the overall effect. Following these computations, the mediation
effect manifested as −0.00018 (95% CI: −0.0419–0.0415), with a
mediated proportion of 5.07%.

4 Discussion

In light of our awareness, this study emerges as the primary
instance of being the first to delve deeply into the potential causal
association between GM, blood metabolites, and urinary tract
infections. Additionally, for the first time, we discovered a negative
correlation between N-acetylkynurenine and Ruminococcaceae
UCG010. These findings suggest that Ruminococcaceae UCG010
plays a protective role against UTI and that the onset of
UTI does not alter the abundance of this specific bacterial
group. Our observations identified 56 metabolites associated with
Ruminococcaceae UCG010. Further analysis revealed that this
bacterium downregulated N-acetylkynurenine levels, subsequently
contributing to UTI development. This finding provides theoretical
support for the existence and mechanism of the gut-bladder axis
from a genetic perspective.

In our study, the genus Ruminococcaceae UCG010, a member
of the Ruminococcaceae family, emerged as a potential risk factor
for UTI. Consistent with prior studies (Worby et al., 2022b),
the abundance of Ruminococcaceae decreased in patients with
recurrent UTI, suggesting that Ruminococcus could serve as a
potential marker for dysbiosis in recurrent cystitis (Graziani et al.,
2022). The f_Ruminococcaceae is also known to be significantly
affected by chronic infections (Martinez et al., 2022; Tran et al.,
2023) and the administration of antibiotics (Ross et al., 2016).
Although direct evidence linking Ruminococcaceae UCG010 to
UTI remains elusive, some studies have proposed that a higher
abundance of this bacterium in the GM may correlate with
decreased risks of type 2 diabetes (Lyu et al., 2023), non-alcoholic
fatty liver disease (Tsai et al., 2020), and obesity (Nseir et al.,
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FIGURE 3

Mendelian randomization analyses show causal effects of gut microbiota on urinary tract infection using the ukb-b-8814 dataset. (A–G) Forest plots
of 7 bacterial traits with P-value < 0.05 by IVW method. (A) genus Ruminococcaceae UCG010; (B) genus Ruminococcus2; (C) class Clostridia; (D)
family Bacteroidales S24 7group; (E) genus Clostridium sensu stricto1; (F) genus Bacteroides; (G) family Bacteroidaceae.

2015), each being a risk factor for UTI. The mechanism involved
in UTI could be that Ruminococcaceae UCG010 produces SCFAs
(Balmer et al., 2020). Hess discovered that acetate accumulates at
the site of infection and regulates the inflammatory process by
encoding the metabolic and functional reshaping of memory CD8+
T cells. Supplementation with acetate improved the symptoms of
bladder inflammation and immune suppression caused by UPEC
infection (Sturov et al., 2022). The production of butyrate in the
intestine promotes the differentiation of Tregs, enhances epithelial
barrier integrity, and inhibits proinflammatory responses (Siddiqui
and Cresci, 2021). Decreased butyrate abundance is connected to
heightened susceptibility to infections (He et al., 2022). In addition,
Ruminococcaceae are involved in bile acid (BA) metabolism
(Pickard et al., 2017), they can decompose cholesterol, generate

FIGURE 4

Mendelian randomization analyses show causal effects of
g_Ruminococcaceae UCG010 on urinary tract infection using the
ebi-a-GCST90013890 dataset.

secondary bile acids, and influence the formation of urinary
stones (Zhou et al., 2023). A humanized dyslipidemia mouse
model demonstrated that Ruminococcaceae UCG010 reduced BA
synthesis (Xu et al., 2023). Interestingly, we also discovered that
Ruminococcus2, which belongs to the Ruminococcaceae family, is
a risk factor for UTI. This indicates that despite their taxonomic
similarity, different genera or species within the same family can
have different functions and characteristics. These factors may
be influenced by the genomic and metabolic capabilities. Further
experiments and observations are required to obtain a more
detailed understanding of the functions of these microorganisms
and their effects on human health.

As a major degradation product of N-acetyl tryptophan
(Agus et al., 2018), NAK has been found to be an activator
of aryl hydrocarbon receptor (AhR) (Rael et al., 2018). NAK
inhibits macrophage activation by activating AhR, thereby
reducing the secretion of interleukin-6 (IL-6) and chemokine-
10 (CXCL-10). Macrophages, IL-6, and CXCL-10 are closely
related to inflammatory responses. M1 macrophages primarily
mediate tissue damage and initiate inflammatory responses,
whereas M2 macrophages principally inhibit granulation and
scar formation (Han et al., 2019; Kuhn et al., 2023). Transition
from M1 to M2 can be observed during the progression of
acute to chronic urinary tract infection (Hreha et al., 2020).
However, premature inhibition of M1 could compromise the
bactericidal function of the bladder. IL-6 is an early marker
that rapidly increases during inflammation (Rashid et al., 2021).
Furthermore, IL-6 deficient mice demonstrated heightened UPEC
load, decreased antimicrobial peptide release, and heightened
mortality (Khalil et al., 2000). Clinical investigations have
documented a considerable rise in CXCL-10 in the urine of
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FIGURE 5

Causal effects of g_Ruminococcaceae UCG010 on N-acetylkynurenine (A–D) and N-acetylkynurenine on UTI (E–H). (A) Forest plot. (B) Funnel plot
to assess heterogeneity. (C) Scatter plots of genetic associations with g_Ruminococcaceae UCG010 against the genetic associations with
N-acetylkynurenine. (D) Leave-one-out sensitivity analysis of SNPs associated with g_Ruminococcaceae UCG010 and their risk of
N-acetylkynurenine. (E) Forest plot. (F) Funnel plot to assess heterogeneity. (G) Scatter plots of genetic associations with N-acetylkynurenine against
the genetic associations with UTI. (H) Leave-one-out sensitivity analysis of SNPs associated with N-acetylkynurenine and their risk of UTI.

patients with UTI, with levels decreasing following antibiotic
administration. CXCL-10 drives inflammation by activating T cell
chemotaxis and endothelial adhesion, as well as by enhancing cell
lysis mediated by natural killer cells (Platten et al., 2019). This
suggests that NAK may inhibit the body’s inflammatory response
and thereby affect pathogen clearance.

Our mediation analyses further supported the genetic evidence
for a link between GM and UTI. To the best of our knowledge,
no prior study has directly linked Ruminococcaceae UCG010 to
N-acetylkynurenine. Furthermore, it is imperative to acknowledge
the inherent limitations and potential sources of bias within MR
studies, including our own. MR analyses rely on several key
assumptions: the genetic variants employed as IVs are associated
with the exposure but not with any confounders of the exposure-
outcome relationship, and these variants influence the outcome
solely through the exposure. While we have strived to select
IVs with strong associations and minimal linkage disequilibrium
to mitigate pleiotropy and bias, residual confounding due to
unmeasured or inadequately measured variables, and potential
violation of these assumptions may still affect the interpretation
of our findings. However, a growing number of research have
explored the involvement of the GM in tryptophan metabolism
pathways, including indole-uracil, serotonin, and aromatic amino
acid metabolism pathways (Xue et al., 2023). Recently, the
involvement of Ruminococcus species in tryptophan metabolism
has been confirmed (Coletto et al., 2022). Ruminococcaceae
UCG010 is a major producer of SCFAs, and its metabolite butyrate
can influence the activity of intestinal epithelial cells (IELs)
indoleamine 2,3-dioxygenase (IDO) (Martin-Gallausiaux et al.,
2018). During UPEC infection, local IDO levels in the bladder
increase, promoting indole-uracil production, and inhibiting

neutrophil chemotaxis (Loughman et al., 2016). Studies have shown
that kynurenine, a product of Try degradation, can serve as a
key signaling molecule to activate AhR and promote the Treg-
macrophage axis in suppressing T-cell dysfunction (Campesato
et al., 2020). Additionally, research has found associations between
Try metabolites and infectious diseases. Kynurenines exhibit
antimicrobial activity and directly influence the proliferation of
gut microbiota (Notarangelo et al., 2014). Experiments have
demonstrated that the host’s AhR receptor can qualitatively
and quantitatively perceive the quorum sensing signal molecules
secreted by Pseudomonas aeruginosa at various stages of infection
and coordinate host defense functions based on the infection
status (Moura-Alves et al., 2019). N-acetylkynurenine is an AhR
agonist. AhR participates in inflammatory responses and immune
tolerance, regulates the mucosal barrier function, and maintains
intestinal homeostasis (Su et al., 2022). Deficiency of the AhR
repressor leads to fewer IELs, which can cause intestinal infection
and inflammation (Gao et al., 2022). By virtue of our findings and
previous literature, we speculate that Ruminococcaceae UCG010
may reduce the production of N-acetyl-kynurenine through the
tryptophan acid pathway, inhibiting AhR-mediated inflammatory
responses in macrophages and other cells, thereby affecting the
occurrence and progression of tract infections.

Our MR analysis revealed that more than 30 gut microbial
taxa were causally associated with UTI. Similar to other
studies, patients with UTI exhibit gut dysbiosis, such as
decreased levels of Lactobacillus and Bifidobacteria, along with an
increased abundance of conditionally pathogenic enterobacteria
and Clostridium (Stepanova et al., 2018). However, most of the gut
microbial taxa identified in our study have rarely been reported
to be associated with UTI in previously published literatures. To
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investigate the mechanism underlying this causal relationship, we
interpreted it from several perspectives. (1) An imbalance in the
GM facilitates the colonization of pathogenic bacteria (Bowden
et al., 2016), enhancing their adhesion and toxicity. During UPEC
infection, the TLR4/NF-κB cell pathway is activated and the
expression of the host cell phosphatase transporter protein Pituitary
specific transcription factor 1 is upregulated. This mediates the
escape of UPEC from the vacuoles to the cytoplasm, thereby
evading a systemic immune response (Pang et al., 2022). (2) In this
study, the bacterial genera that had causal relationships were mostly
those that produced SCFAs, such as Bacteroidales, Turicibacter,
and so on. The metabolic products of fatty acids produced by gut
microbiota also exert direct antibacterial effects. They suppress
the expression of virulence genes in E. coli, thereby decreasing
the adhesion and motility of extraintestinal pathogenic E. coli
(ExPEC). In contrast, SCFAs can freely diffuse inside and outside
bacterial cell membranes, causing pH disturbances between cells
and thus inhibiting bacterial growth (Buffie and Pamer, 2013). In
patients with recurrent UTI, gut dysbiosis is often accompanied
by a reduction in SCFAs levels. In particular, the absence of
bacteria that produce butyrate, an important component of SCFAs,
is notable (Worby et al., 2022b). Butyrate plays a critical role in
maintaining the intestinal barrier integrity, improving intestinal
inflammation, and promoting immune regulation (Sturov et al.,
2022). Therefore, dysbiosis of the gut microbiota, which results
in a decrease in SCFAs, may increase the risk of urinary tract
infections. (3) Urinary tract infection is closely relevant to the
intestinal barrier function, which is to prevent the entry of
harmful substances, such as bacteria, toxins, and antigens, from the
intestine into the bloodstream. ExPECs have been demonstrated
to establish specific interactions with the epithelial barrier of the
intestine (Poole et al., 2017), and to induce dysfunction of the
intestinal barrier prior to the onset of disease (Nagpal and Yadav,
2017). antibiotic treatment can disrupt the structure and function
of tight junction proteins, leading to tight junction dysfunction
and increased intestinal permeability (Feng et al., 2019), which
facilitates the translocation of antigens and toxic substances into
systemic circulation, thereby contributing to the development of
chronic inflammation (Sharapatov et al., 2021).

This study encompasses several limitations that warrant
careful consideration for a comprehensive understanding of
its scope and implications of its findings. Firstly, the GWAS
analysis conducted leveraged data primarily derived from a
European demographic, inherently limiting the extrapolation of
our findings to diverse populations, including those characterized
by distinct genetic compositions and environmental exposures.
This demographic focus raises questions about the universality
of our conclusions and underscores the imperative for inclusive
research involving a broader spectrum of ethnicities to ensure
global applicability. Secondly, the reliance on aggregated summary
data for UTI cases in our study precluded the possibility of
subgroup analyses, notably those differentiated by sex and age.
This reliance significantly hampers our understanding of UTI
dynamics across different demographics, as it masks potential
variations in disease susceptibility and progression that are crucial
for personalized medical management approaches. Thirdly, our
investigation into the gut microbiome was restricted to the
genus level, constrained by the taxonomic resolution provided
in the GM dataset. This limitation prevented us from delving

into the potentially more informative specie-level analysis, which
could offer finer insights into microbiota-UTI interactions. The
ability to analyze at the species level could reveal nuanced
microbial behaviors and their specific roles in urinary tract
infections, marking a critical area for future exploration. To
address these limitations and advance our comprehension of
the intricate interplay among GM, their metabolites, and UTI,
future research should aim for a more inclusive and detailed
approach. This includes expanding the genetic and environmental
diversity of study populations, enhancing the taxonomic resolution
of microbiome analysis, and implementing rigorous methods to
control for confounders and biases. Furthermore, a more nuanced
application and critical evaluation of MR methods are essential
to refine our causal inferences. Such comprehensive efforts are
pivotal for unraveling the intricate mechanisms underlying UTI
and tailoring effective prevention and treatment strategies across
varied population segments.

Previous clinical studies have revealed a correlation between
GM and UTI. It is challenging to establish a causal relationship,
due to various confounding factors. Our research finds that gut
microbiota and blood metabolites can influence the onset and
progression of UTI. With the increasing prevalence of antibiotic
resistance, there is an urgent demand for novel approaches to
treating UTI. Besides conventional treatments targeting pathogens,
our study proposes a new investigation of possibility, namely the
microbial therapy. Gut microbiota can serve as potential biological
markers for UTI and directly affect their recurrence and prognosis.
Focusing on gut microbiota and blood metabolites, we can delve
into deeper mechanism studies and drug intervention clinical
trials. Biological therapies such as fecal microbiota transplantation
(FMT) and probiotics have initiated preliminary clinical studies,
but these treatments possess limitations. FMT is a non-targeted
therapy and commercially available probiotics consist mostly of
single strains or a mixture of several strains, none of which were
specifically developed for the characteristics of UTI pathology.
Notably, our study identified protective commensal bacterial
groups against UTI, paving the way for the development of
personalized microbiome-based therapeutic strategies.

5 Conclusion

Our findings, obtained through mediation analysis, indicated
that Ruminococcaceae UCG010 can act as a direct protective
agent against UTI and indirectly reduce the occurrence of
UTI by reducing N-acetylkynurenine levels. Consequently, this
study provides independent evidence supporting the association
between the composition of the gut microbiota and the risk
of developing UTI.
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