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Stenotrophomonas maltophilia is an opportunistic pathogen intrinsically 
resistant to multiple and broad-spectrum antibiotics. Although the bacterium 
is considered a low-virulence pathogen, it can cause various severe diseases 
and contributes significantly to the pathogenesis of multibacterial infections. 
During the COVID-19 pandemic, S. maltophilia has been recognized as one of 
the most common causative agents of respiratory co-infections and bacteremia 
in critically ill COVID-19 patients. The high ability to adapt to unfavorable 
environments and new habitat niches, as well as the sophisticated switching of 
metabolic pathways, are unique mechanisms that attract the attention of clinical 
researchers and experts studying the fundamental basis of virulence. In this 
review, we have summarized the current knowledge on the molecular aspects 
of S. maltophilia virulence and putative virulence factors, partially touched on 
interspecific bacterial interactions and iron uptake systems in the context of 
virulence, and have not addressed antibiotic resistance.

KEYWORDS

Stenotrophomonas maltophilia, virulence factors, biofilms, quorum sensing, iron 
uptake systems

Introduction

The global emergence of multidrug-resistant Gram-negative bacteria is the most 
challenging clinical and public health problem (Hernando-Amado et al., 2019; Antimicrobial 
Resistance Collaborators, 2022). Despite significant progress in biomedical research, many 
untreatable infectious diseases are considered the leading causes of human death worldwide. 
Nosocomial and community-acquired infections caused by opportunistic Gram-negative 
pathogens are becoming increasingly difficult to treat as both intrinsic and acquired antibiotic 
resistance has increased significantly in recent years (Theuretzbacher et al., 2020).

Among Gram-negative opportunistic pathogens, Stenotrophomonas maltophilia has been 
the subject of an increased interest and extensive research over the last two decades. The 
number of reported S. maltophilia infections has considerably risen and the bacterium has 
been classified as the most common Gram-negative carbapenem-resistant pathogen in patients 
with bacteremia in some US hospitals (Cai et al., 2020).

Stenotrophomonas maltophilia is a globally dispersed, non-fermenting Gram-negative 
bacillus frequently isolated in the environment, particularly from water sources, soil, sediment, 
plants, and animal specimens (Aznar et al., 1992; Nakatsu et al., 1995; Jakobi et al., 1996; Berg 
et al., 1999; Johnson et al., 2003; Ivanov et al., 2005; Romanenko et al., 2008; Berg, 2009). 
According to the List of Prokaryotic Names with Standing in Nomenclature,1 the genus 
Stenotrophomonas comprises at least 25 validated species exhibiting great genetic diversity and 

1 https://lpsn.dsmz.de/
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metabolic heterogeneity both within the Stenotrophomonas genus and 
within a single species (Ryan et  al., 2009; Turrientes et  al., 2010; 
Pompilio et al., 2016). Comprehensive taxonomic and phylogenomic 
studies have shown that S. maltophilia includes multiple cryptic 
species, forming the Stenotrophomonas maltophilia complex (Smc) 
and a distinction that defies conventional classification approaches 
(Ochoa-Sánchez and Vinuesa, 2017; Kumar et al., 2020; Singh et al., 
2023). Identification of phylogenetic relationships among 
Stenotrophomonas spp. based on analysis of core protein sequences 
revealed 24 species-level clades of Smc (Gröschel et  al., 2020; Li 
et al., 2024).

The bacterium demonstrates high adaptability to various 
environments, including nutrient-limited and hostile conditions. 
S. maltophilia is capable of utilizing a wide range of carbon sources 
such as trichloroethylene, toluene, chloroform, glucose, and benzene 
(Lee et al., 2002; Pompilio et al., 2011; Mukherjee and Roy, 2013).

Stenotrophomonas maltophilia is an opportunistic pathogen 
intrinsically resistant to multiple and broad-spectrum antibiotics. The 
bacterium is associated with a number of serious diseases and 
contributes significantly to the pathogenesis of multibacterial 
infections. S. maltophilia causes infections in various human organs, 
including the respiratory, gastrointestinal, and urinary tracts. It can 
cause severe pneumonia, catheter-associated bacteremia/septicemia, 
osteochondritis, mastoiditis, meningitis, and endocarditis (Denton 
and Kerr, 1998; Brooke, 2012; Chang et al., 2015). The bacterium is 
frequently recovered in the lungs of cystic fibrosis (CF) patients; 
according to various studies, the frequency ranges from 10% to 30% 
(Waters et  al., 2011; Cuthbertson et  al., 2020). During the global 
COVID-19 pandemic, S. maltophilia has been recognized as one of 
the most common causative agents of respiratory co-infections and 
bacteremia in critically ill COVID-19 patients. Furthermore, 
S. maltophilia isolates detected in sputum samples obtained from these 
patients had the highest rates of multidrug resistance among other 
bacteria infecting COVID-19 patients (Yang S. et al., 2021; Ishikawa 
et al., 2022; Langford et al., 2023).

Stenotrophomonas maltophilia is also of interest as an active 
member of polymicrobial bacterial communities: it can influence the 
metabolism of neighboring microorganisms, either through 
antagonistic suppression of other species or by symbiotic coexistence. 
A vivid example of such inter-species communication can be observed 
in CF patients, where S. maltophilia colonizes the host along with 
other major pathogens, such as Pseudomonas aeruginosa, 
Staphylococcus aureus, nontuberculous mycobacteria, or Burkholderia 
cenocepacia (Goss et al., 2004; Coutinho et al., 2008).

The pathogenesis of infections caused by S. maltophilia is 
determined by numerous virulence factors (VFs), molecules that 
facilitate bacterial colonization of the host at the cellular level, thereby 
initiating the infectious process. S. maltophilia possesses a considerable 

spectrum of VFs or putative factors associated with virulence. These 
factors include surface cell-associated structures (lipopolysaccharides, 
type IV pili, flagella, fimbriae, and nonpilus adhesins); the production 
of a wide spectrum of extracellular enzymes (e.g., proteases, esterases, 
lipases), hemolysin, siderophores, and cytotoxins; the ability to form 
biofilms on abiotic surfaces and host tissues; SmeYZ, SmeDEF, SbiAB, 
and MacABCsm efflux pumps; and the secretion of small molecules 
in the environment via Quorum Sensing (QS) intercellular 
communication system [the diffusible signal factor (DSF) and outer 
membrane vesicles (OMV); Looney, 2005; Brooke, 2012; Ferrer-
Navarro et al., 2013; Abbott and Peleg, 2015; Trifonova and Strateva, 
2019; Wu C.-J. et al., 2022].

In this review, we briefly summarize the current knowledge on 
S. maltophilia virulence and provide an overview of the literature 
introducing the virulence determinants and their regulation in 
S. maltophilia. We have limited the scope of the review to virulence, 
partially touching upon inter-species bacterial interactions and iron 
uptake systems in the context of virulence, and have not referred to 
antibiotic resistance.

Adhesins as virulence factors

Adherence of the bacterium to host tissues is a crucial step in the 
host-pathogen interaction. At this stage, the pathogen attached to the 
host cell initiates its own biochemical processes aimed at its 
proliferation, invasion of host cells, secretion of toxic molecules, and 
activation of host cell signaling cascades.

Bacterial adherence factors, also known as adhesins, are 
polypeptides or polysaccharides. Protein adhesins are cell-surface 
components or appendages that can be  divided into two groups: 
fimbrial and afimbrial. Polysaccharide adhesins are generally 
associated with the bacterial cell wall, outer membrane, or capsule. It 
should be  noted that adhesion functions in pathogenesis are not 
limited to the initial host-pathogen interaction; adhesins also play a 
significant role in subsequent stages of infection (see below). To 
provide a holistic view of the role of various VFs in the development 
of S. maltophilia infection, cell-associated and extracellular VFs are 
summarized and illustrated in Figure 1.

Cell-surface polysaccharides

Stenotrophomonas maltophilia has lipopolysaccharides (LPS) 
comprising lipid A, core oligosaccharide, and O-antigen (Neal and 
Wilkinson, 1982; Jucker et al., 1996; Zhang and Kong, 2002; McKay 
et  al., 2003). LPS is a robust inducer of TNF-α production by 
macrophages due to its lipid A moiety, that has been elegantly 
demonstrated by Waters et al. (2007) in a mouse model. Despite the 
relatively weak invasiveness of S. maltophilia, the level of TNF-α 
production after stimulating cells of macrophage cell line RAW for 4 h 
with purified lipid A isolated from S. maltophilia was significantly 
higher than the corresponding level obtained after stimulation with 
lipid A from the laboratory P. aeruginosa PAO1 control strain (Waters 
et al., 2007).

Core oligosaccharides play an essential role in LPS formation and 
therefore in virulence. Defects in core oligosaccharides of certain 
bacteria (e.g., P. aeruginosa, Bordetella bronchiseptica) are associated 

Abbreviations: ARGs, Antibiotic resistance genes; c-di-GMP, Cyclic diguanosine 

monophosphate; CF, Cystic fibrosis; DGC, Diguanylate cyclase; DSF, Diffusible 

signal factor; EPS, Exopolysaccharides; GMP, Guanosine monophosphate; HGT, 

Horizontal gene transfer; LPS, Lipopolysaccharides; OMP, Outer membrane protein; 

OMV, Outer membrane vesicles; PDE, Phosphodiesterase; Smc, Stenotrophomonas 

maltophilia complex; TCS, Signal transduction system; QS, Quorum Sensing; ROS, 

Reactive oxygen species; T4P, Type IV pili; VF, A virulence factor.
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with decreased virulence or the emergence of avirulent strains 
(Goldberg et al., 1995; West et al., 2000).

The contribution of O-antigens to virulence has also been 
reported to be  significant for many bacteria. Bacteria lacking 
O-antigens or possessing defective antigen molecules due to 
disruptions in biosynthesis may exhibit decreased virulence 
properties. This phenomenon has been demonstrated, in particular, 
for the species Burkholderia pseudomallei, P. aeruginosa, and B. abortus 
(Goldberg et al., 1995; DeShazer et al., 1998; Ugalde et al., 2000). In 
S. maltophilia, defective LPS lacking the O-antigen can affect biofilm 
production, twitching motility (the ability to move on surfaces using 
type IV pili), and swimming motility (Huang et al., 2006; Brooke et al., 
2008). Stenotrophomonas maltophilia lipopolysaccharides show 
structural diversity between strains within the genus, with at least 31 
different O-antigens (Winn and Wilkinson, 2001; Waters et al., 2007).

The metabolic process of carbohydrates and their incorporation 
into LPS in S. maltophilia is regulated by several genes. The spgM gene 

involved in this process encodes a bifunctional enzyme with both 
phosphoglucomutase and phosphomannomutase activity. This gene 
is homologous to algC which controls alginate and LPS biosynthesis 
in P. aeruginosa (McKay et  al., 2003; Flores-Treviño et  al., 2019). 
McKay et  al. (2003) have shown that spgM mutants with shorter 
O-polysaccharide chains lost virulence in the rat lung model and 
exhibited increased susceptibility to complement-mediated killing.

Two operons, rmlBACD and xanAB, are involved in the synthesis 
of polysaccharides in S. maltophilia. Huang et  al. (2006) have 
conducted an SDS-PAGE analysis of purified LPS from S. maltophilia 
rmlA, rmlC, and xanB mutants and found these genes necessary for 
LPS O-antigen biosynthesis. In addition, xanB is required for the 
production of the LPS core region. The authors also suggested that rml 
and xanB are involved in the biosynthesis of exopolysaccharides 
(EPS): the rmlA and rmlC mutants exhibited decreased biofilm 
production on polystyrene and increased biofilm density on glass. 
Meanwhile, the xanB mutant displayed lower biofilm production only 
on polystyrene. Besides contributing to biofilm formation, alterations 
in LPS caused by the rmlAC and xanB mutations, may lead to changes 
in outer membrane appendages, such as flagella and type IV pili, 
thereby interfering with motility and attachment (Huang et al., 2006).

Flagella

Stenotrophomonas maltophilia possesses one or multiple polar 
flagella that confer swimming motility, swarming and chemotaxis. 
Flagella facilitate primary adherence to biotic and abiotic surfaces, 
contribute to colonization and invasion in the early stages of infection, 
and trigger specific immune responses by host cells (de Oliveira-
Garcia et al., 2002; Huang et al., 2006; Pompilio et al., 2010, 2018; 
Zgair and Chhibber, 2011).

Wu et al. have identified three flagellar genes, fliC1, fliC2, and fliC3 
which form an operon in the sequenced S. maltophilia genome. The 
authors generated single, double, and triple mutants corresponding to 
these genes and revealed that each gene contributed to swimming, 
adhesion, and biofilm formation. The ability to attach, swim, and form 
biofilms decreased proportionally to the number of deactivated genes, 
with the triple mutant losing its swimming ability and significantly 
compromising adhesion and biofilm formation. Thus, flagella in 
motile pathogens can be  considered important VFs (Moens and 
Vanderleyden, 1996; Duan et al., 2013; Wu C.-J. et al., 2022).

Pompilio et al. (2010) have constructed two S. maltophilia mutants 
in which the fliI gene was inactivated. The highly conserved fliI gene 
encodes a substrate-specific ATPase (FliI) that provides energy for the 
active translocation of flagellar structural components in a wide range 
of bacterial species (Yonekura et al., 2002; Di Bonaventura et al., 2007). 
These two flagellum-deficient S. maltophilia fliI mutants exhibited 
decreased adherence to CF-derived bronchial epithelial IB3-1 cells 
and compromised swimming motility (Pompilio et al., 2010).

Inbred BALB/c mice (commonly used as animal models for drug 
and vaccine testing) pretreated intranasally with purified S. maltophilia 
flagellin and instilled with S. maltophilia 4 h later exhibited 
significantly increased levels of pro-inflammatory cytokines IL-1β and 
TNF-α, myeloperoxidase activity, caspase-1 activity, and nitric oxide 
compared to control groups (Zgair and Chhibber, 2012). The 
pretreated mice also demonstrated elevated levels of neutrophils, 
lymphocytes, and monocytes in their bronchoalveolar lavage fluid 

FIGURE 1

Virulence and putative virulence factors in Stenotrophomonas 
maltophilia. Surface cell-associated structures include 
lipopolysaccharides (LPS), type IV pili (T4P), flagella, fimbriae (SMF-1), 
and non-pilus adhesins (not shown). Extracellular enzymes are 
secreted through type I, II, IV, V, and VI secretion systems. Small 
molecules efflux to the environment via the diffusible signal factor 
(DSF) and outer membrane vesicles (OMV). S. maltophilia produces 
extracellular polymeric substances and forms a self-secreted 
polymeric matrix, biofilms, consisting of exopolysaccharides (EPS), 
DNA, and proteins. The intracellular c-di-GMP level contributes to 
numerous virulence factors (see the text for details). Different types 
of efflux pumps revealed in S. maltophilia are shown on the right. 
The pumps involved in virulence are marked in bold.
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providing nonspecific protection for the animals against S. maltophilia 
as well as S. aureus infections (Zgair and Chhibber, 2012). In another 
study, Pompilio et al. (2018) compared the severity of disease caused 
by aerosol challenge of mice of the DBA/2 N strain with the clinical 
isolate S. maltophilia SM111 and its aflagellate isogenic mutant (ΔfliI). 
Pompilio et al. (2018) did not observe a significant trend in body 
weight changes, pulmonary persistence, lung damage, or mortality in 
mice infected with wild-type and fliI− strains. The authors suggested 
that flagella and motility might not represent S. maltophilia virulence 
traits involved in the pathogenesis of lung infection. Meanwhile, the 
expression of TNF-α in murine lungs infected with the aflagellate 
mutant was significantly reduced (Pompilio et al., 2018).

Hypothetically, in the context of a chronic infection, it is 
admissible that a bacterium lacking flagellin as a significant 
immunogenic factor may gain a survival advantage diminishing the 
host’s immune response. This hypothesis could be corroborated by 
observations in patients with CF: a substantial portion of P. aeruginosa 
isolates (39%) from chronically colonized patients were nonmotile 
and resistant to phagocytosis by macrophages (Mahenthiralingam 
et al., 1994). Nevertheless, the majority of studies have reported a 
positive correlation between motility and primary adhesion (e.g., de 
Oliveira-Garcia et al., 2002; Waters et al., 2007; Pompilio et al., 2010; 
Zgair and Chhibber, 2011; Madi et  al., 2016). Perhaps, the 
aforementioned speculation that flagella do not contribute to 
S. maltophilia virulence may be relevant only to the later (chronic) 
stage of the disease when the initial adhesion step preceding the 
infection has already occurred.

The motility of S. maltophilia and the level of flagellin gene 
expression depend on environmental conditions and are tightly 
controlled by comprehensive genetic systems that have not been fully 
investigated. In particular, cyclic diguanosine monophosphate (c-di-
GMP), the ubiquitous second messenger has been recognized as an 
important intracellular signaling molecule involved in the regulation 
of flagellin gene expression in many bacteria. c-di-GMP is also 
implicated in controlling various bacterial physiological processes, 
including the cell cycle, adherence, motility, the production of VFs, 
and biofilm formation (Ross et al., 1987; Hengge, 2009).

The intracellular concentration of c-di-GMP is modulated by two 
groups of enzymes with opposing activities, diguanylate cyclases 
(DGCs) and phosphodiesterases (PDEs). DGCs contain a conserved 
GGDEF domain and synthesize c-di-GMP by condensation of two 
GTP molecules. PDEs, with either EAL or HD-GYP domains, degrade 
c-di-GMP into linear guanosine dinucleotide (pGpG) or guanosine 
monophosphate (GMP) (Chan et al., 2004; Christen et al., 2005, 2006; 
Caly et al., 2014). An increased level of c-di-GMP, resulting from the 
action of DGCs, is associated with a sessile lifestyle and biofilm 
formation which is relevant to chronic bacterial infections. Conversely, 
lower concentrations of c-di-GMP due to phosphodiesterase activity, 
are found in motile bacteria during acute infection processes (Hengge, 
2009; Moscoso et al., 2011; Cheng et al., 2019). In S. maltophilia, the 
mechanisms by which c-di-GMP controls flagellar synthesis and 
flagella numbers are still poorly understood, and there is a paucity of 
studies focused on the molecular basis of its functioning.

In some bacteria, the expression of flagellar genes is activated and 
controlled by specific genetic determinants known as master 
regulators and their homologs, e.g., FlrA (FleQ) in P. aeruginosa and 
Vibrio cholerae, flaK and flaM in Vibrio parahaemolyticus (Ritchings 
et al., 1995; Stewart and McCarter, 1996; Arora et al., 1997; Klose and 
Mekalanos, 1998; Hickman and Harwood, 2008).

Yang et  al. (2014) reported that flagellar gene expression in 
S. maltophilia is controlled by FleQ (Smlt2295). This transcriptional 
regulator, an enhancer-binding protein, is homologous to the similar 
master regulator in P. aeruginosa and it is the major target for the 
c-di-GMP produced by the wrinkly spreader phenotype (Wsp) 
chemosensory system pathway (Hickman et al., 2005; Yang et al., 
2014). FleQ works together with a putative ATPase, FleN, and is 
inhibited by binding c-di-GMP. Inhibition of this complex and, 
therefore, Wsp pathway activation results in elevated expression of 
biofilm-associated pel, psl, and cdr operons and a reduction of flagellar 
gene expression (Hickman et al., 2005; Hickman and Harwood, 2008; 
Yang et al., 2014). The situation is reversed if the concentration of 
c-di-GMP is low: FleQ remains unbounded, and it leads to increased 
expression of flagellar genes, and, therefore, the ability of bacteria to 
be sessile in biofilms decreases.

Liu et al. (2017) have reported a correlation between increased 
expression of bsmR which encodes an eponymous regulatory protein, 
an EAL domain-containing PDE, and increased bacterial swimming 
and decreased cell aggregation in S. maltophilia CGMCC 1.1788. 
Therefore, bsmR is suggested to be a negative regulator of biofilm 
formation and a positive regulator of swimming motility. The bsmR 
operon controls the expression of at least 349 genes, of which 34 are 
involved in flagellar synthesis and are under positive regulation of the 
FsnR transcription factor (Liu et al., 2017). BsmR degrades c-di-GMP 
to activate the expression of FsnR. This flagellar-assembly-related 
transcription factor binds directly to the promoter regions of two 
operons, Smlt2303 and Smlt2318, initiating the transcription of 
flagella-associated genes (Kang et al., 2015; Zheng et al., 2016).

Zhang et  al. (2022) analyzed genes potentially affecting the 
c-di-GMP level in S. maltophilia, specifically those encoding proteins 
containing GGDEF, EAL, and HD-GYP domains. The authors 
identified 33 putative c-di-GMP turnover enzymes in the genome of 
S. maltophilia using the Simple Modular Architecture Research Tool 
(SMART) (Letunic and Bork, 2018) and constructed mutants of all 33 
genes via insertional inactivation. Among the mutants analyzed, 12 
bacterial strains exhibited a deficiency in swimming motility while 
one showed promotion, that suggests the 13 corresponding genes may 
contribute to the regulation of bacterial swimming motility. The 
authors also made an important observation that the mutation-
induced degeneration or inactivation of DGCs or PDEs do not 
necessarily alter the cellular c-di-GMP level and bacterial swimming 
motility. Therefore, further investigations are needed to assess the 
contribution of each gene to swimming motility.

Among all the enzymes analyzed, the authors also identified and 
characterized a novel Fe2+-dependent phosphodiesterase named SisP 
(S. maltophilia iron-sensing PDE). SisP increased its activity and 
facilitated bacterial swimming upon stimulation with ferrous iron in 
a dose-dependent manner, and the degradation of c-di-GMP led to 
FsnR-dependent transcription of flagellar genes (Zhang et al., 2022).

Fimbriae and pili

Type 1 fimbriae (SMF-1) are an important VF that confers to 
S. maltophilia the ability to adhere to various specific host epithelia (de 
Oliveira-Garcia et al., 2002; Zgair and Chhibber, 2011; Giltner et al., 
2012). In particular, it has been reported that adherence to biotic 
(epithelial cells) and abiotic surfaces (such as medical implants and 
catheters) was inhibited by anti-SMF-1 antibodies (de Oliveira-Garcia 
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et  al., 2003). Fimbriae are also involved in early stages of biofilm 
formation (de Oliveira-Garcia et al., 2003) and can agglutinate red 
blood cells (Crossman et  al., 2008). Antibodies against SMF-1 
fimbriae, but not preimmune serum, inhibited hemagglutination in a 
dose-dependent manner (de Oliveira-Garcia et al., 2003).

It is worth noting that SMF-1 fimbriae were revealed in all clinical 
isolates (n = 46) obtained from patients (de Oliveira-Garcia et al., 
2003), whereas S. maltophilia strains isolated from environmental 
sources did not possess them (Nicoletti et  al., 2011). Therefore, 
fimbriae are thought to be the significant structures involved in the 
adhesion and colonization of the lung epithelium.

Fimbrial protein production is controlled by the Smf-1 fimbrial 
operon, which includes Smlt0706-Smlt0709 (Crossman et al., 2008). 
This type of fimbriae is assembled by the bacterial chaperone-usher 
pathway (Thanassi et  al., 1998). Despite S. maltophilia fimbrin is 
closely related to fimbrial adhesins of most members of the 
Enterobacteriaceae and the CupA fimbriae of P. aeruginosa, the 
N-terminal amino acid sequences of S. maltophilia Smf-1 significantly 
differ from those belonging to other families of fimbriae (ranging from 
50% to 61%). This suggests that this family of fimbriae may extend to 
other genetically distant non-enteric bacterial genera (Vallet et al., 
2001; de Oliveira-Garcia et al., 2003).

Type IV pili (T4P) are considered a significant VF associated with 
twitching motility, adhesion to biotic and abiotic surfaces, 
colonization, and biofilm formation in various bacterial pathogens 
(Doig et al., 1988; Saiman et al., 1990; Giltner et al., 2012). T4P have 
also been reported to mediate P. aeruginosa virulence through 
interdependent action with the type III secretion system (T3SS), 
thereby promoting its effector injection into the host cell (Heiniger 
et al., 2010; Shikata et al., 2016).

To date, the role of type IV pili in S. maltophilia virulence has not 
been sufficiently studied. Kalidasan and Neela (2020) have proposed 
a theoretical model for S. maltophilia type IV pilus based on Rapid 
Annotations using Subsystem Technology (RAST) analysis that 
provided high quality genome annotations for bacterial genomes 
across the whole phylogenetic tree, and previous reports on 
P. aeruginosa.

Extensive sequence variation in the type IV pilin adhesion 
precursor gene has been revealed by Fluit et al. (2022). Meanwhile, no 
significant correlations have been reported between virulence and the 
presence of the pil gene family which is involved in pilus formation. 
An analysis of clinical and environmental S. maltophilia strains 
performed by Cruz-Córdova et al. (2020) showed that the pilU gene 
frequencies were high enough but comparable in both groups 
analyzed, regardless of origin. An increase in biofilm biomass formed 
by CF isolates with elevated swimming and twitching motility has 
been reported by Pompilio et al. (2011) and, notably, the phenomenon 
was observed only in CF isolates. Taken together, there appears to 
be no direct evidence for T4P as a significant VF in S. maltophilia, and 
further studies are needed to clarify their contribution to its virulence.

Secretion systems and extracellular 
enzymes

Clinical S. maltophilia strains produce a variety of VFs, including 
proteases (StmPr1, StmPr2, StmPr3, StmPr4), lipases (lipase and 
phospholipase C and D), nucleases, gelatinases, elastase, esterases, 

hyaluronidases, fibrinolysin/streptokinase, heparinases, hemolysins, 
siderophores, and cytotoxins (Windhorst et al., 2002; Travassos et al., 
2004; Trifonova and Strateva, 2019). These VFs contribute to bacterial 
colonization/persistence, induce cytotoxic and morphological effects 
on host cells, and play roles in various stages of the infection process 
(Karaba et al., 2013; DuMont et al., 2015).

Of the 11 known bacterial secretion systems (including outer 
membrane vesicles, OMVs), S. maltophilia possesses type I, II, IV, V, 
and VI secretion systems that have been identified through genome 
sequencing (Crossman et al., 2008; Rocco et al., 2009; Zhu et al., 2012; 
Adamek et al., 2014; Alavi et al., 2014). Albeit the role of these systems 
in virulence formation is well understood in many bacteria, only three 
types of S. maltophilia secretion systems (II, IV, and VI) have been 
described in detail.

The genome of S. maltophilia clinical strain K279a has two 
unlinked loci that are predicted to encode the double membrane-
spanning type II secretion system, T2SS (GSP and XPS). Each locus 
contains 11 T2SS genes, corresponding to the core T2SS components 
(Karaba et  al., 2013). The S. maltophilia type II secretion system 
mediates the secretion of at least seven protein effectors and three 
proteolytic activities. Proteolytic enzymes, particularly the serine 
proteases StmPr1, StmPr2, and StmPr3, are secreted in an 
XPS-dependent manner and induce structural and viability changes 
in lung epithelial cells, promoting the degradation of collagen, 
fibrinogen, fibronectin, and interleukin 8 (IL-8) (Karaba et al., 2013; 
DuMont et al., 2015; DuMont and Cianciotto, 2017). Another serine 
protease, StmPR4, has also been reported in the S. maltophilia genome 
(Windhorst et  al., 2002; Ribitsch et  al., 2012). It is thought that 
StmPR3, together with StmPR1 and StmPR2, contributes to the 
protease-mediated dysfunction of the innate immune system in cystic 
fibrosis (Molloy et al., 2019).

Lee et al. (2022) purified and identified a serine colistin-degrading 
protease (Cdp) in S. maltophilia strain Col1. Isolated from the soil, this 
strain exhibited high-level resistance against colistin (MIC value of 
32 mg/L). Coculture and coinfection assays revealed that S. maltophilia 
strain Col1, bearing the cdp gene, could inactivate colistin, thereby 
protecting susceptible P. aeruginosa. Using colistin against 
P. aeruginosa infection in Drosophila melanogaster increased fly 
survival by 41%. In contrast, coinfection of flies with S. maltophilia 
strains carrying the cdp gene, did not increase the survival rate after 
colistin treatment. The authors noted that S. maltophilia genomes 
contain genes orthologous to cdp, located in a region immediately 
adjacent to the T2SS gene cluster (Lee et al., 2022). Thus, the colistin-
degrading protease may play an important role in collective resistance 
to colistin in polymicrobial infections such as CF (Lee et al., 2022).

A type IV secretion system (T4SS) has been identified in the 
genome of both clinical and environmental S. maltophilia isolates (Nas 
et al., 2019). In S. maltophilia, the T4SS called the VirB/D4 system, is 
highly conserved within the genus and it is most similar to the T4SS 
of the Xanthomonas genus (Nas et al., 2019). T4SS typically comprises 
12 proteins (VirB1-VirB11, and VirD4; Christie et al., 2014; Ghosal 
et al., 2017; Grohmann et al., 2018) and facilitates the delivery of DNA 
and/or protein effectors into bacterial or eukaryotic targets in a 
contact-dependent manner (Gonzalez-Rivera et al., 2016; Grohmann 
et  al., 2018). The VirB10 protein, as part of the periplasm-outer 
membrane-spanning subcomplex, and the ATPase coupling protein 
VirD4 are essential for the antibacterial activity of the T4SS in 
S. maltophilia K279a (Bayer-Santos et al., 2019; Nas et al., 2019, 2021). 
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The contribution of the VirB/D4 system to interspecific antagonism 
was elegantly demonstrated by Nas et al. (2019). They reported that 
S. maltophilia was capable of killing P. aeruginosa environmental strain 
7700 and clinical isolates PAO1 and PAK when cocultured. 
Interestingly, S. maltophilia exhibited selectivity when acting on 
different species of heterologous bacteria, e.g., it killed Pseudomonas 
mendocina but not P. fluorescens, P. putida, or P. stutzeri (Nas et al., 
2019). Based on studies that highlight the contribution of the type VI 
secretion systems in various bacteria to interbacterial killing (Basler 
et al., 2012; Ma et al., 2014; Ahmad et al., 2019), the authors suggested 
that the S. maltophilia VirB/D4 T4SS effectors are akin to those 
secreted by other type VI secretion systems, e.g., lipases, peptidases, 
nucleases, and muramidases (Ho et al., 2014).

Nas et al. (2021) identified 13 putative cognate immunity proteins 
in S. maltophilia that typically provide self-protection to the organism 
encoding the T4SS, and studied the effect of their expression in 
heterologous bacteria. Using these proteins, the authors revealed two 
potential antibacterial effectors, RS14245 and RS14255, that were 
required for the ability of S. maltophilia to kill heterologous bacteria, 
especially laboratory E. coli and clinical strains of P. aeruginosa 
isolated from the lungs of CF patients. The putative lipases, RS14245 
and RS14255, when bound by cognate immunity proteins, did not 
exhibit antibacterial activity; and S. maltophilia complemented 
mutants lacking RS14245 and RS14255 significantly reduced their 
antibacterial properties (Nas et al., 2021).

The authors’ findings are intriguing from various perspectives. On 
the one hand, the secretion of effectors that suppress other bacterial 
species can be regarded as a significant VF of S. maltophilia. On the 
other hand, the isolation and study of such effectors hold the potential 
to develop novel antimicrobial drugs for the targeted therapy of 
infections caused by Pseudomonas and Escherichia.

Apart from providing a competitive advantage to S. maltophilia in 
polymicrobial communities, probably by increasing its fitness, the 
VirB/D4 T4SS effectors have another essential function: they inhibit 
apoptosis in infected lung epithelial cells but induce apoptosis in 
infected macrophages (Nas et al., 2019).

The Type VI Secretion System (T6SS) is a protein secretion 
nanomachine utilized by Gram-negative bacteria to deliver toxic 
effectors into target cells in a contact-dependent manner (Mougous 
et al., 2006; Perault et al., 2020; Crisan and Goldberg, 2022). Protein 
effectors exert their toxicity on the bacterial cell envelope and can 
degrade the peptidoglycan layer and lipid membranes, form pores and 
interfere with protein synthesis in the cytoplasm of competitor 
bacteria (Russell et al., 2011, 2013; Ahmad et al., 2019; Nolan et al., 
2021). Additionally, T6SS effectors hinder host cell functions, facilitate 
immune evasion, thereby promoting a successful infection (Hachani 
et al., 2016), and participate in bacterial metal uptake by assisting low- 
and high-affinity transport systems in scavenging metal ions from the 
environment (Wang et al., 2015; Stubbendieck and Straight, 2016; Lin 
et al., 2017; Si et al., 2017; Han et al., 2019; Yang X. et al., 2021; Li 
et al., 2022).

Although T6SS genes have been identified in some S. maltophilia 
strains early (Alavi et al., 2014; Bayer-Santos et al., 2019), there is a 
paucity of experimental evidence demonstrating the function of T6SS 
effectors in the bacterium. Crisan et  al. (2023) reported that the 
S. maltophilia STEN00241 clinical isolate possesses an active T6SS 
under standard laboratory conditions and the T6SS contributes to the 
elimination of some heterologous bacterial species. In particular, 

STEN00241 killed Burkholderia cenocepacia strain K56-2 and E. coli 
DH5α in a T6SS-dependent manner, but not P. aeruginosa PA14 
laboratory strain, the P. aeruginosa CF isolate (PA32), and the S. aureus 
JE2. This selectivity in the mode of interspecific interaction within 
multi-species communities (elimination, competitive co-existence, or 
hypothetical symbiosis) suggests that the T6SS secretory function is 
also regulated by various environmental factors. The putative T6SS 
secretion triggers may be  signals generated by the QS of the 
neighboring bacteria or their various metabolites (Lesic et al., 2009; 
Lin et al., 2017).

Concluding the chapter on S. maltophilia secretion systems, at 
least one intriguing question remains unanswered: what is the benefit 
to the bacterium of using both VirB/D4 T4SS and T6SS to produce 
functionally similar antibacterial proteins? Suggesting that it is not 
redundancy, the functions of these effectors and/or their trigger 
mechanisms are thought to be  different and need to 
be further investigated.

To summarize, it should be  noted that although five types of 
secretion systems (type I, II, IV, V, and VI) have been revealed in 
S. maltophilia genomes, further research is needed to fully comprehend 
their functional roles and potential interactions between the systems.

Biofilms

The ability of S. maltophilia to form biofilms on abiotic surfaces 
and host tissues is an important VF that plays a crucial role in HAI 
and multibacterial infections and dramatically decreases the 
therapeutic efficacy of important antibiotics, including 
aminoglycosides, fluoroquinolones, and tetracycline (Di Bonaventura 
et al., 2004, 2007; Pompilio et al., 2010; Sun et al., 2016). Biofilms 
provide protection to the members of bacterial communities from 
exposure to antibiotics by reducing their diffusion (Tseng et al., 2013) 
and increasing their inactivation (Amanatidou et al., 2019). Besides, 
the biofilm polymer matrix gives bacteria protection from various 
forms of environmental stress, such as dehydration, UV exposure, 
salinity, and toxic metals (Hall-Stoodley et al., 2004). High cell density 
within biofilms and increased oxidative stress result in an elevated 
mutation rate and enhanced horizontal gene transfer (HGT) (Driffield 
et al., 2008). Compared to their planktonic counterparts, bacteria in 
biofilms exhibit greater resistance to nutrient starvation, pH 
fluctuations, and oxygen radicals (Jefferson, 2004). Biofilms may also 
increase the level of resistance by altering the expression of pre-existing 
antibiotic resistance genes (ARGs) (Høiby et al., 2010) as well as the 
proportion of tolerant or persister cells within the population due to 
a reduction in bacterial metabolic activity within the biofilm interior 
(Walters et al., 2003; Wood et al., 2013).

The formation of persister cells is also hypothetically possible due 
to a reduction in antibiotic concentration within biofilms, since it has 
been demonstrated that sub-MIC (minimum inhibitory 
concentration) levels of various antibiotics can induce persister cell 
formation (Dörr et al., 2009; Johnson and Levin, 2013; Kwan et al., 
2013). Nutrient limitation within biofilms perhaps also affects the 
bacterial stringent response, where (p)ppGpp (alarmone) levels lead 
to slower bacterial growth and promote the formation of persister cells 
(McCall et al., 2019; Ro et al., 2021). In addition, biofilms protect 
bacteria from the host’s immune response by acting as a physical 
barrier, helping bacteria avoid detection and phagocytosis, and by 
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activating response regulators, genetic switches, or suppressors that 
affect the activity of immune cells (Hall-Stoodley et al., 2004; González 
et al., 2018).

The initial stage of the biofilm formation process occurs within the 
first 30–60 min when planktonic cells adhere to a surface through weak 
and reversible interactions mediated by semiflexible fimbriae and 
flagella filaments. The second stage typically begins 4 h later, during 
which bacterial cells irreversibly attach to and colonize a surface using 
flagella, pili, and other surface appendages. After adhering to a surface, 
the cells initiate the production of extracellular polymeric substances, 
thereby forming a self-secreted polymer matrix of exopolysaccharides, 
DNA, and proteins (Flores-Treviño et al., 2019). The first microcolonies 
are generated by the aggregation of cells after approximately 10 h. The 
third stage occurs in 18–24 h when the biofilm turns into a mature 
phase. A mature biofilm possesses microchannels to transport water, 
nutrients, and debris; and bacterial cells within the biofilm express 
specific genes involved in QS (see below), EPS, and protein production. 
In mature biofilms, individual or clustered biofilm cells can detach, 
disperse, and colonize new niches within less than 24 h (de Kievit, 
2009; Sun et al., 2016; Flores-Treviño et al., 2019).

At least several putative genes related to S. maltophilia biofilm 
formation have been identified. These biofilm-associated genes 
include: spgM (a biofunctional enzyme with phosphoglucomutase and 
phosphomannomutase activity); rmlA (glucose-1-phosphate 
thymidylyltransferase); rmlC (an epimerase RmlC, also named RfbC); 
xanB (a bifunctional enzyme, phosphomannose isomerase-GDP-
mannose pyrophosphorylase); and rpfF (cis-11-methyl-2-dodecenoic 
acid, or synthase for the diffusible signal factor, DSF) (Köplin et al., 
1992; Di Bonaventura et al., 2004; Huang et al., 2006; Pompilio et al., 
2011; Zhuo et  al., 2014). In addition to the genes listed above, 
numerous genes associated with the synthesis of LPS, fimbria, flagella, 
and pili, as well as the intracellular c-di-GMP level contribute to 
biofilm formation (see the corresponding chapters). For instance, 
almost all (30/31; 97%) S. maltophilia isolates harboring smf-1, which 
encodes the fimbrial protein Smf-1, were able to form biofilms (Gallo 
et al., 2016). The macABCsm and smeYZ genes, encoding pumps, have 
also been identified as essential for biofilm formation (Huang et al., 
2006; Lin Y.-T. et al., 2014; Lin et al., 2015). An extended list of genes 
potentially associated with biofilm production can be found in the 
review by Flores-Treviño et al. (2019).

Recently, Strateva et al. (2023) analyzed 220 S. maltophilia strong 
biofilm producers and found the overall frequency of three biofilm-
associated genes as follows: spgM—98.6%, rmlA—86%, and rpfF—
66.5%. Meanwhile, Zhuo et al. (2014) have noted that, although the 
rmlA, spgM, or rpfF are closely related to biofilm formation, they do 
not significantly affect the average amount of biofilm.

Ramos-Hegazy et al. (2020) analyzed a transposon mutant library 
for mutations leading to altered biofilm formation. The authors 
identified the gpmA gene, which encodes a glycolytic enzyme, 
phosphoglycerate mutase, mediating the initial stages of S. maltophilia 
attachment to abiotic surfaces as well as immortalized CF-derived 
bronchial epithelial (CFBE) cells. The S. maltophilia isogenic mutant 
ΔgpmA exhibited a significant decrease in initial attachment and early 
biofilm formation on polystyrene plates compared to the wild type 
within the first 2–4 h. Interestingly, after 6 h, there was no difference 
in biofilm formation between the wild and mutant strains, suggesting 
that gpmA is involved only in the early phase of adhesion and biofilm 
formation (Ramos-Hegazy et al., 2020; Di Bonaventura et al., 2023).

Pompilio et  al. (2020) have analyzed 85  S. maltophilia strains 
isolated from patients with CF and other infections and revealed that 
over 88% of the isolates were able to form biofilm, with non-CF strains 
being significantly more efficient compared to CF strains. Meanwhile, 
the prevalence of the multidrug-resistant phenotype was higher in CF 
isolates in contrast to non-CF ones (90% vs. 67%). S. maltophilia 
strains susceptible to piperacillin/tazobactam or meropenem 
produced significantly increased biofilm biomass compared to 
resistant strains. The authors suggested that susceptible bacteria may 
utilize biofilms as an alternative defense strategy to evade antibiotic 
action and to survive within the host (Pompilio et al., 2020).

Liu et al. (2017) have demonstrated the role of a regulatory protein 
mentioned above, BsmR, an EAL-domain-containing 
phosphodiesterase, in controlling biofilm formation and swimming 
motility in S. maltophilia. An increase in BsmR expression led to a 
significant increase in bacterial swimming motility and a decrease in 
cell aggregation. Thus, BsmR was identified as a negative regulator of 
biofilm development that degrades c-di-GMP through its EAL 
domain, thereby activating the expression of a transcriptional 
regulator, FsnR (see above), which positively controls the transcription 
of flagellar genes involved in swimming motility (Liu et al., 2017; 
Zhang et al., 2022).

An outer membrane protein, Ax21, secreted within OMVs and 
associated with a VF related to QS, is also implicated in biofilm 
formation (Ferrer-Navarro et al., 2013; An and Tang, 2018). Deletion 
of ax21 (Smlt0387) has been shown to reduce motility, biofilm 
formation, virulence to larvae of Galleria mellonella, tolerance to 
tobramycin, as well as alter the expression of some genes associated 
with virulence or antibiotic resistance (Ferrer-Navarro et al., 2013; An 
and Tang, 2018).

Most interestingly, the analysis of transcriptome profiles of seven 
clinical S. maltophilia isolates, combined with differential gene 
expression of biofilm vs. planktonic cells, revealed that a relatively 
small set of shared and commonly regulated genes is involved in the 
biofilm lifestyle: only about 9.5% of all genes were differentially 
regulated. On average, approximately 7.5% of all genes were 
upregulated, and about 2% of all genes were downregulated in biofilms 
compared to planktonic cells (Alio et al., 2020).

A comprehensive analysis of all available data on the role of 
various factors in the transition of bacterial cells from a planktonic to 
a sessile lifestyle in biofilms shows that this transformation is initiated 
and regulated by many mechanisms that require further study.

Efflux pumps and virulence

Historically, efflux pumps have been considered to be among the 
mechanisms that provide bacteria with resistance to antimicrobials. 
Efflux pumps significantly contribute to the intrinsic antimicrobial 
resistance of S. maltophilia. However, as noted and discussed below, 
some types of efflux pumps possess an extended range of functions 
beyond the scope of “antibiotic resistance”, and these pumps are 
involved in the molecular mechanisms of bacterial virulence.

The genome of S. maltophilia contains a formidable arsenal of 
pumps belonging to various families. This includes ATP-binding 
cassette (ABC) pumps, MacABCsm (Lin C.-W. et al., 2014) and SmrA 
(Al-Hamad et  al., 2009); Major Facilitator family (MFS) pumps, 
EmrCAB (Huang et  al., 2013) and MfsA (Srijaruskul et  al., 2015; 
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Dulyayangkul et al., 2016); a fusaric acid efflux pump, FuaABC (Hu 
et al., 2012); and eight Resistance Nodulation Division (RND) pumps 
[SmeABC (Li et al., 2002), SmeDEF (Alonso and Martínez, 2000; 
Zhang et al., 2001; García-León et al., 2014), SmeGH (Blanco et al., 
2019; Li et al., 2019), SmeIJK (Huang et al., 2014), SmeMN (Crossman 
et al., 2008), SmeOP (Lin C.-W. et al., 2014), SmeVWX (Chen et al., 
2011; García-León et al., 2015), and SmeYZ (Lin et al., 2015)].

The efflux pumps encoded in the S. maltophilia genome are 
involved in the removal of a wide spectrum of toxic substances, 
including antibiotics. The ABC multidrug efflux pump, SmrA, 
contributes to the elimination of fluoroquinolones, tetracycline, and 
doxorubicin (Al-Hamad et  al., 2009) while MacABCsm, another 
member of the same family, removes aminoglycosides, macrolides, 
and polymyxins (Lin C.-W. et  al., 2014). The MFS efflux pump, 
EmrCABsm, facilitates the removal of nalidixic acid, erythromycin, 
carbonyl cyanide 3-chlorophenylhydrazone, and 
tetrachlorosalicylanilide (Huang et  al., 2013). The fusaric acid 
tripartite efflux pump, FusA, is involved in the elimination of fusaric 
acid (Hu et al., 2012). The role of seven out of the eight RND efflux 
pumps (SmeABC, SmeDEF, SmeGH, SmeIJK, SmeOP, SmeVWX, and 
SmeYZ) in the antibiotic resistance has been also identified, except for 
SmeMN (Gil-Gil et al., 2020). Additionally, some RND pumps are 
involved in the efflux of chloramphenicol, tetracycline, macrolides, 
quinolones, sulfamethoxazole, trimethoprim, and trimethoprim–
sulfamethoxazole (Alonso and Martínez, 2000; Sánchez and Martínez, 
2018; Wu et al., 2019). The contribution of pumps to antimicrobial 
resistance is considered in detail in some comprehensive reviews (e.g., 
Menetrey et al., 2021; Chauviat et al., 2023).

It is noteworthy that efflux pumps SmeYZ, SmeDEF, and 
MacABCsm, besides their primary function of removing xenobiotics 
from bacterial cells, also impact motility, flagella formation, and 
biofilm development (Lin Y.-T. et al., 2014; Lin et al., 2015; Kim et al., 
2018). Lin Y.-T. et al. (2014) demonstrated that a ΔsmeYZ mutant was 
unable to form flagella, resulting in a lack of motility, and exhibited 
reduced biofilm formation. The SmeYZ pump has been reported to 
contribute to a number of other physiological functions, including 
oxidative stress susceptibility, swimming, and, along with the SmeDEF 
pump, protease secretion (Lin et al., 2015; Wu et al., 2016; Kim et al., 
2018). Blanco et al. (2019) reported that SmeGH is also involved in 
biofilm formation: a ΔsmeH mutant exhibited an elevated ability to 
produce a biofilm.

SmeYZ and SmeDEF are thought to be utilized by S. maltophilia 
against eukaryotes. Overexpression of SmeDEF in the S. maltophilia 
strain D457R led to reduced virulence against the social amoeba 
Dictyostelium discoideum (Alonso, 2004), and the loss of SmeYZ 
decreased in vivo virulence in a murine model and increased 
susceptibility to human serum and neutrophils (Lin et al., 2015). The 
above evidence significantly supports the suggestion that these RND 
pumps contribute to the S. maltophilia virulence.

The S. maltophilia MacABCsm differs from the MacAB homologs 
of other bacteria (Lin Y.-T. et  al., 2014). In particular, the pump 
possesses its own cognate outer membrane protein (OMP), MacCsm; 
and the macABCsm operon is intrinsically expressed. Additionally, 
MacABCsm has a wider substrate range for extruding macrolides, 
aminoglycosides, and polymyxins compared to MacAB-TolC of E. coli 
(Lin Y.-T. et al., 2014).

Another noteworthy function of efflux pumps was described by 
Wu C.-J. et al. (2022). They revealed that the SmeYZ, SmeDEF, and 

SbiAB pumps along with other mechanisms, impact the secretion of 
the siderophore stenobactin and the utilization of iron ions (see 
below) (Wu C.-J. et al., 2022).

The SmeIJK efflux pump of S. maltophilia has been reported to 
be involved in cell envelope integrity and the envelope stress response. 
Huang et al. (2014) demonstrated that a smeIJK-deleted mutant has 
increased sensitivity to membrane-damaging agents (MDAs) 
compared to the wild-type strain and exhibited an increased RpoE-
mediated envelope stress response. In addition, sublethal MDAs 
concentrations induced smeIJK expression in an RpoE-
dependent manner.

Summarizing the above, the analysis of current data on efflux 
pumps suggests that the historically held belief regarding their main 
functions should be reevaluated, and bacterial efflux pumps are much 
more than antibiotic resistance determinants. Since pumps are 
revealed in both clinical and environmental strains (Youenou et al., 
2015) and considering the environmental origin of S. maltophilia, the 
functions of efflux pumps may be linked to bacterial physiology and 
adaptation to various niches and environments, as well as coexistence 
within complex multi-species communities.

Virulence and iron

Iron is vital for the growth and proliferation of non-fermenting 
Gram-negative bacilli, including S. maltophilia. Competition for iron 
ions between bacteria and the host during chronic infections can 
be detrimental to the host. Bacterial iron uptake may lead to local tissue 
damage and systemic dysfunction, e.g., anemia of inflammation, also 
known as anemia of chronic disease, observed in infectious, 
inflammatory, autoimmune, neoplastic, and chronic kidney diseases 
(Jurado, 1997). Iron plays a role in bacterial pathogenicity and host 
defense mechanisms, which is often underestimated. In S. maltophilia, 
iron limitation induces biofilm formation, increases EPS production, 
and reduces the generation of reactive oxygen species (ROS) (Kalidasan 
et  al., 2018). Therefore, bacterial systems aimed at acquiring and 
transferring iron ions into bacterial cells are considered significant VFs.

While a basic understanding of iron uptake in Gram-negative 
bacteria has been achieved, many molecular mechanisms involved in 
this process in S. maltophilia remain unclear. Similar to other bacteria, 
S. maltophilia possesses a number of iron acquisition mechanisms that 
exhibit functional redundancy (Figure 2).

Two distinct iron uptake pathways are encoded by the 
S. maltophilia genome. These pathways include a siderophore- and a 
heme-mediated acquisition system (Kalidasan et  al., 2018). The 
entAFDBEC operon controls the synthesis of the siderophore 
enterobactin, which belongs to the class of catecholamines, binding 
and transporting Fe3+ into the bacterial cell. The heme-mediated 
uptake system is under the control of the hgbBC and probably also the 
hmuRSTUV operons (Adamek et al., 2014; Kalidasan et al., 2018).

The simplest and least efficient absorption system is based on the 
diffusion of iron ions across OMPs (Liao et  al., 2022). A more 
advanced iron uptake system employs siderophores, high-affinity 
iron-chelating molecules, to capture iron ions from the environment. 
These iron-siderophore complexes are recognized by specific OMPs 
and transported to the cytoplasm. S. maltophilia strains can produce 
at least two catecholate siderophores, stenobactin and an EntC-
dependent catecholate siderophore which is sufficiently similar to, but 
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distinct from, enterobactin of enteric bacteria (Nas and Cianciotto, 
2017; Zhang et  al., 2021; Wu C.-M. et  al., 2022). Although one 
previous study (Jurkevitch et al., 1992) reported that S. maltophilia 
produces pseudobactin for iron uptake, this finding has not yet been 
confirmed. The export of siderophores is mediated by a system of 
membrane transport proteins (EntS, SmeY, SbiA, SmeD) of the inner 
membrane and TolC-exporter (SmeF for stenobactin) of the outer 
membrane (Wu C.-M. et al., 2022).

The ferric-enterobactin complex is recognized and taken up by the 
TonB-dependent FepA (ferric enterobactin protein), the enterobactin 
receptor on the outer membrane. Subsequently, FepB, the periplasmic 
binding protein, transports the iron-siderophore complex from the 
periplasm to the cytoplasm via the FepCDG transporter (Faraldo-
Gómez and Sansom, 2003; Kalidasan et al., 2018).

Interestingly, while competing for iron, S. maltophilia can 
demonstrate cheating by using exogenous siderophores of xenogeneic 
origin. It has been reported that S. maltophilia can facilitate the uptake 
of ferri-pyochelin from P. aeruginosa in an iron-depleted condition 
(Pan et al., 2022).

An alternative to the catecholate siderophore is the citrate 
siderophore, which can be produced by S. maltophilia or obtained 
from exogenous sources. The Fe3+-citrate-siderophore complex is 

transported into the cytoplasm through a system of specific outer and 
inner membrane proteins (Figure  2). FciA (Smlt1148) has been 
reported as the main receptor for ferric citrate acquisition in 
S. maltophilia KJ (Liao et al., 2022).

Another pathway of iron acquisition in S. maltophilia is the heme-
mediated uptake system, which utilizes its specific transporters. The 
putative outer membrane receptor for hemin is HemA, which is under 
negative control of the predicted transcriptional factor HemP (Shih 
et al., 2022). Hemin uptake is controlled by the hemP-hemA-smlt0796-
smlt0797, hgbBC, and potentially hmuRSTUV operons (Kalidasan 
et al., 2018; Shih et al., 2022). The hemP-hemA-smlt0796-smlt0797 
operon, in turn, is negatively regulated by the ferric uptake regulator 
Fur (see below) (Shih et al., 2022).

Iron uptake in S. maltophilia is balanced by the opposite function 
of iron export. Excess free iron ions in the cytoplasm, which can 
be toxic to bacterial cells and potentiate ROS toxicity, are removed 
from the cell by the inner membrane iron exporter, AmpI (Huang 
et al., 2019). In an iron-depleted condition, AmpI function is inhibited, 
resulting in iron storage in the S. maltophilia cytoplasm. Notably, 
AmpI also allows S. maltophilia to reduce β-lactam-induced stress: the 
expression of ampI increases significantly upon exposure to β-lactams 
(Huang et al., 2019).

FIGURE 2

Iron acquisition and iron export systems in Stenotrophomonas maltophilia. IM, inner membrane; P, periplasm; PG; peptidoglycan; OM, outer 
membrane. AmpI, the inner membrane iron exporter; EFC, exogenous ferric citrate; ESP, an exogenous siderophore (siderophores produced by other 
bacteria, e.g., Pseudomonas aeruginosa); FciA, the outer membrane receptor for ferric citrate uptake; FciT (inner membrane protein) and FciC 
(cytoplasmic protein), putative proteins for citrate-mediated iron acquisition; FCS, the ferric citrate siderophore complex; FeoA, a cytoplasmic protein; 
FeoABI, the inner membrane transporter system of ferric citrate; FepA, the ferri-siderophore uptake system; FepB, a protein delivering ferric 
siderophore from the periplasm; FepCDG, the inner membrane transporter system for ferric siderophores; HemA, the TonB-dependent outer 
membrane receptor for hemin; HM, hemin; HmuT, a hemin-transporting protein; HmuUV, the inner membrane hemin transporter; IMSE, the inner 
membrane siderophore exporters (EntS for enterobactin, SmeY, SbiA, and SmeD for stenobactin); SmeF, the outer membrane exporter for siderophore; 
SP, S. maltophilia siderophore (stenobactin or enterobactin).
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The iron uptake system in Gram-negative bacteria is under the 
control of many regulators. The key iron-dependent regulator of iron 
acquisition is the ferric uptake regulator protein (Fur) (Escolar et al., 
1999), which is also involved in virulence and protection against 
oxidative stress (Carpenter et al., 2009). In the presence of Fe2+, Fur 
forms a complex with Fe2+ ions that binds to the Fur boxes of bacterial 
DNA, thereby inhibiting the transcription of iron transport genes 
(Bagg and Neilands, 1987; Escolar et al., 1999; Lee and Helmann, 
2007). In the absence of iron, Fur releases its repressor effect, and 
genes involved in iron transport are expressed.

Interestingly, impairing Fur in S. maltophilia may increase its 
virulence. The spontaneous fur mutant, derived from the wild-type 
strain S. maltophilia K279a exhibited increased virulence in the 
G. mellonella killing assay compared to the parental wild-type K279a 
strain (García et al., 2015).

Other iron-regulating systems and putative regulators have also 
been identified in S. maltophilia. The FciTABC and FeoABI systems 
are responsible for ferric citrate utilization under iron-depleted 
conditions. Ferric citrate is taken up by FciA, a TonB-dependent OMP, 
and then transported across the inner membrane through the FeoABI 
pathway. The genes fciA, fciT, and fciC contribute to ferric citrate 
acquisition and are under the control of the fciTABC operon (Liao 
et  al., 2022). AmpR, a transcriptional regulator in S. maltophilia, 
regulates stenobactin synthesis in an iron-depleted condition, 
however, its contribution to the acquisition and utilization of ferri-
stenobactin and ferric citrate is thought to be insignificant (Liao et al., 
2020). The uptake of hemin (as mentioned above) is under the control 
of the hemP-hemA-smlt0796-smlt0797, hgbBC, and potentially 
hmuRSTUV operons (Kalidasan et al., 2018; Shih et al., 2022). RNA 
polymerase sigma factors may also be involved in iron regulation in 
S. maltophilia (Kalidasan et al., 2018).

The iron uptake system is considered not only a virulence factor, 
but also a regulator of other VFs. Specifically, S. maltophilia K279a 
produced denser biofilms, and higher levels of EPS and DSF in an iron-
depleted condition. In addition, the strain exhibited greater virulence 
than that cultivated under normal nutritional or iron-rich conditions 
(García et al., 2015; Kalidasan et al., 2018). Clinical and environmental 
S. maltophilia isolates grown under iron-limited conditions 
demonstrated increased nematocidal activity against Caenorhabditis 
elegans and increased siderophore production (Azman et al., 2019). 
There have also been contradictory observations: in particular, Jurado 
(1997) has reported that excess iron can enhance virulence in bacteria. 
Surplus iron ions have also been shown to upregulate RTX family toxin 
genes, including the putative virulence gene frpA, and downregulate 
frpC in S. maltophilia (Adamek et al., 2014).

Probably, fully understanding the influence of high/low levels of 
iron on S. maltophilia virulence requires further research, and the 
complexity of the iron regulatory system as well as its potential 
interaction with other bacterial metabolic global regulators should 
be taken into account. One potential avenue for further research could 
be the identification of the iron impact on virulence in the context of 
the development of a novel class of antibiotics, conjugates of a 
synthetic cephalosporin with an artificial siderophore. In response to 
the introduction of the new antibiotic, it has been reported the 
emergence of resistance to cefiderocol is associated with mutations in 
the iron uptake system genes (Werth et al., 2022). In this regard, the 
question arises: how will virulence change in cefiderocol-resistant 
isolates? An experimentally confirmed answer to this question may 
have clinical relevance.

Quorum sensing system

Similar to most Gram-negative bacteria, S. maltophilia possesses 
quorum sensing (QS), a signaling mechanism through which bacterial 
cells communicate to exchange information about cell density and 
adjust their gene expression accordingly (Huang and Lee Wong, 
2007b). The system is responsible for the production of extracellular 
signaling molecules known as autoinducers, their detection, and 
initiating the bacterial response to the appearance of these molecules 
in the environment. Autoinducers accumulate in the environment, 
and when their concentration reaches a certain threshold, nearby 
bacteria are able to detect them. Through the exchange of signaling 
molecules, cells regulate their metabolic mechanisms related to 
colonization and virulence, including alterations in motility, biofilm 
formation, production of extracellular effectors, competition, and 
resistance properties (Huedo et al., 2014; Papenfort and Bassler, 2016; 
Paul et al., 2018; Yero et al., 2020).

Genome analyses have revealed that S. maltophilia does not 
synthesize N-acyl homoserine lactones (N-AHLs) or autoinducer 2 
(AI2), signaling molecules typically found in other Gram-negative 
bacteria (Zhu et al., 2001; Vfselova et al., 2003). The main QS signaling 
molecule produced by S. maltophilia is known as DSF, represented by 
cis-Δ2-11-methyl-dodecenoic acid, an unsaturated fatty acid, and 
seven of its structural derivatives. The synthesis of DSF molecules is 
controlled by the rpfF and rpfB genes (Huang and Lee Wong, 2007b). 
The rpf (regulation of pathogenicity factors) gene cluster encodes RpfF 
synthase, fatty Acyl-CoA ligase, and the two-component RpfC/RpfG 
system responsible for the perception and transduction of DSF 
(Huang and Lee Wong, 2007a; Bi et al., 2014). Activated RpfF synthase 
converts c-di-GMP into a linear nucleotide pGpG or two GMP 
molecules, thereby regulating the expression of genes related to 
motility, biofilm formation, and virulence in rpfF-1 strains (Huedo 
et al., 2019).

Two variants of the rpf gene cluster, rpf-1 and rpf-2, have been 
found in S. maltophilia (Huedo et al., 2014). Notably, strains belonging 
to different rpf types exhibit distinct genotypic and phenotypic 
characteristics. Rpf-1-type S. maltophilia strains can produce DSF in 
response to various environmental signals, while rpf-2-type strains, 
with a truncated sensory region in the N-terminus of RpfF synthase, 
activate their DSF production only after detecting exogenous DSF 
(e.g., from other bacteria or S. maltophilia strains of the rpf-1 type). 
Therefore, only rpf-1-type strains can control biofilm formation, as 
well as the motility and virulence in surrounding bacteria (Huedo 
et al., 2014, 2015).

It is noteworthy that rpf-1-type S. maltophilia strains, particularly 
those in genogroup C, exhibit higher resistance to colistin and 
increased virulence against G. mellonella. Meanwhile, this association 
was not revealed in another model using the nematode C. elegans 
(Yero et al., 2020).

Thus, genotyping and identifying the rpf type appear to be useful 
and important tools for epidemiologic surveillance, considering the 
potential exchange of rpf clusters among S. maltophilia strains through 
recombination during horizontal gene transfer (Huedo et al., 2015).

Stenotrophomonas maltophilia has been found to possess a 
two-component signal transduction system (TCS) called BfmA–BfmK 
(Smlt4209–Smlt4208). The BfmA transcription factor, a component 
of the TCS, binds to the bfmA–bfmK promoter region and Smlt0800 
(acoT), a gene encoding acyl-coenzyme A thioesterase, associated 
with biofilm formation (Zheng et al., 2016).
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Coves et al. (2023) reported a putative TetR-like transcriptional 
regulator (locus tag SMLT2053) involved in biofilm formation in the 
K279a strain. The regulator controls its own β-oxidation operon 
(Smlt2053-Smlt2051) and is capable of sensing free long-chain fatty 
acids from the environment, including the QS signal DSF.

The transcriptional regulator AmpR, previously mentioned as a 
regulator of stenobactin synthesis under iron-deficient conditions, 
also affects the production of DSF and QS-dependent VFs. Alcaraz 
et al. (2022) have reported the negative impact of AmpR on biofilm 
production, as well as on architecture and matrix polysaccharides 
production in S. maltophilia. The ampR deficient mutant K279a 
ampRFS exhibited the highest adherence in tubes, the highest biomass 
production in microplates, and formed biofilms with improved 
thickness. In contrast, the strain with a constitutively active AmpR, 
K279aM11, was the least efficient in biofilm formation (Alcaraz et al., 
2022). Given that AmpR is a positive regulator of β-lactam-induced 
β-lactamase expression (Okazaki and Avison, 2008) and iron 
depletion-mediated stenobactin synthesis (Liao et  al., 2020), it is 
hypothetically possible that S. maltophilia may compensate for the loss 
of AmpR activity by enhancing biofilm and polysaccharides 
production to survive under adverse conditions.

It is worth noting that, in contrast to P. aeruginosa, S. maltophilia 
lacks a complete canonical LuxI/LuxR QS system utilizing acyl-
homoserine lactones (AHL) as signaling molecules (see above). 
However, Martínez et  al. (2015) revealed through comparative 
genomic analysis that S. maltophilia has a LuxR-like gene, Smlt1839, 
encoding the SmoR regulator (Stenotrophomonas maltophilia orphan 
regulator), which in vitro binds the synthetic lactone 3OC8-HSL, a 
natural analog of which is produced by P. aeruginosa. Adding 
concentrated supernatant from the medium on which lactone-
producing P. aeruginosa was cultured provided an impetus to increase 
the swarming motility of S. maltophilia on Petri dishes. In other words, 
although S. maltophilia lacks the canonical LuxI/LuxR system, it is 
able to recognize QS signaling molecules of other species with the 
LuxI/LuxR system through its homologous intercellular exchange 
system. It is hypothetically possible that this system is linked to the 
T6SS and can, under certain conditions, induce the secretion of 
effectors to inhibit competitor growth (see above).

At the same time, S. maltophilia and P. aeruginosa can coexist and 
grow together in polymicrobial biofilms, e.g., in the lungs of CF 
patients (Ryan et al., 2008). Such a symbiotic (temporarily symbiotic 
or deferred competitive?) coexistence affects their susceptibility to 
antibiotics. Within two-species biofilms, S. maltophilia produced the 
DFS that was detected by the two-component sensor BptS in 
P. aeruginosa. As a result, the latter decreases its susceptibility to 
polymyxin B and colistin compared to P. aeruginosa monospecies 
biofilms (Ryan et al., 2008).

In considering the DSF system in S. maltophilia, it is worth 
noting the phenomenon of secretion through OMVs (Ferrer-
Navarro et al., 2013). OMVs are small nanostructures secreted by 
bacteria, that can transport nucleic acids, proteins, and various small 
molecules, such as β-lactamases, to the surrounding environment. 
Devos et  al. (2015) have found that S. maltophilia dramatically 
increased its vesicle secretion in the presence of imipenem. Of 
particular interest was the composition of the molecules transported 
by the OMVs: two types of β-lactamases encoded by chromosomes, 
OMPs, and flagellins Smlt0387 and Smlt0184 (Devos et al., 2015). 
These flagellins are homologous to Ax21, a protein involved in 
motility and biofilm formation in Xanthomonas oryzae. The 

functional role of this protein in S. maltophilia has not been 
determined, but it is thought that its secretion is initiated by 
DSF. Recently, the secretion system via OMVs is considered a 
potential VF, based on data demonstrating its effect on motility and 
biofilm formation in X. oryzae (Park et al., 2014).

Virulence and bacteriophages

The association between virulence and the presence of filamentous 
phage genes in the S. maltophilia genome was initially reported in 
2006 (Hagemann et al., 2006). Among 47 S. maltophilia strains of 
clinical and environmental origin, Hagemann et al. (2006) identified 
five isolates bearing the pI gene of the filamentous phage phiLf, which 
was identical to the zot-like gene encoding the zonula occludens toxin 
in V. cholerae. In addition to the zot-like gene, six other genes related 
to a phage life cycle were identified in the S. maltophilia genomes. The 
authors suggested that phage genes could be  transferred between 
strains via mobile genetic elements, potentially increasing the 
virulence of S. maltophilia.

Another mechanism through which filamentous phages 
vicariously increase the virulence of Gram-negative bacteria has been 
reported. It has been observed that the extracellular matrix produced 
by P. aeruginosa self-assembles into a liquid crystalline structure 
together with filamentous Pf bacteriophages in CF sputum (Secor 
et  al., 2016). These liquid crystals enhance biofilm function by 
increasing adhesion and preventing the diffusion of antibiotics 
through biofilms, thereby contributing to increased antibiotic 
tolerance (Secor et al., 2015, 2016).

No previous studies have reported a similar virulence mechanism 
in CF respiratory S. maltophilia isolates, and confirmation of this VF, 
as well as a putative novel form of symbiosis between bacteria and 
phages, holds potential for further research.

The role of phages in increasing bacterial virulence has been 
extensively studied (Wagner and Waldor, 2002; Brüssow et al., 2004), 
however, bacteriophages may also provide a selective pressure against 
bacteria expressing specific VFs (León and Bastías, 2015). If the phage 
receptor coincides with a VF, such as lipopolysaccharide or type IV 
pili, its modification through mutations results in decreased virulence 
and reduced fitness (León and Bastías, 2015). McCutcheon et  al. 
(2018) have reported that the type IV pilus is the primary receptor for 
DLP1 and DLP2 bacteriophages that are able to infect both 
S. maltophilia and P. aeruginosa. Deletion of the primary pilin subunit 
by inactivation of pilA in S. maltophilia prevented phage binding and 
subsequent lysis by both bacteriophages, while the mutant strain 
exhibited reduced virulence. This phenomenon can be thought of as 
a fitness cost: when a bacterium acquires properties that are beneficial 
for its specific living conditions, it must compensate for the loss of 
other, less important properties.

Conclusion

In recent decades, there has been considerable interest in 
understanding the mechanisms underlying the virulence of 
S. maltophilia. The intrinsic multidrug resistance of the bacterium, its 
ability to rapidly adapt to unfavorable environmental conditions and 
new habitat niches, and its sophisticated switching of metabolic 
pathways are features that are attracting the attention of experts 
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studying the fundamental mechanisms of virulence as well as 
clinical researchers.

When considering the virulent properties of S. maltophilia, it is 
important to keep in mind that the bacterium is characterized by high 
intraspecific variability: strains isolated in the same hospital and even 
from the same patient may belong to relatively distant phylogenetic 
groups and have different phenotypes (Valdezate et al., 2004; Pompilio 
et al., 2016; Chung et al., 2017). The fast accumulation of adaptive 
mutations occurring under the selective pressure of hospital conditions 
or the host cells, as well as horizontal gene transfer, are thought to 
be  possible reasons for such heterogeneity. Understanding the 
molecular processes that ensure rapid adaptation and, consequently, 
the survival of the microorganism under adverse conditions will allow 
the identification of potential targets for the development of novel 
antibacterial drugs, as well as a better understanding of interspecific 
interactions in polymicrobial infections and the mechanisms of 
metabolic switching during the transition of opportunistic pathogens 
from “natural” lifestyle to infectious intervention.
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