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Chlamydia trachomatis is responsible for infections in various mucosal tissues,

including the eyes, urogenital, respiratory, and gastrointestinal tracts. Chronic

infections can result in severe consequences such as blindness, ectopic

pregnancy, and infertility. The underlying mechanisms leading to these diseases

involve sustained inflammatory responses, yet thorough comprehension of

the underlying mechanisms remains elusive. Chlamydial biologists employ in

multiple methods, integrating biochemistry, cell biology, and genetic tools to

identify bacterial factors crucial for host cell interactions. While numerous animal

models exist to study chlamydial pathogenesis and assess vaccine e�cacy,

selecting appropriate models for biologically and clinically relevant insights

remains a challenge. Genital infection models in animals have been pivotal in

unraveling host-microbe dynamics, identifying potential chlamydial virulence

factors influencing genital pathogenicity. However, the transferability of this

knowledge to human pathogenic mechanisms remains uncertain. Many putative

virulence factors lack assessment in optimal animal tissue microenvironments,

despite the diverse chlamydial infection models available. Given the propensity

of genital Chlamydia to spread to the gastrointestinal tract, investigations

into the pathogenicity and immunological impact of gut Chlamydia become

imperative. Notably, the gut emerges as a promising site for both chlamydial

infection vaccination and pathogenesis. This review elucidates the pathogenesis

of Chlamydia infections and delineates unique features of prevalent animal

model systems. The primary focus of this review is to consolidate and summarize

current animal models utilized in Chlamydia researches, presenting findings,

discussions on their contributions, and suggesting potential directions for

further studies.

KEYWORDS
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1 Introduction

Chlamydia, predominantly represented by Chlamydia pneumoniae (C.p) and

Chlamydia trachomatis (C.t), constitutes a significant portion of human infections.

The escalating impact of C.t-mediated diseases emphasizes the urgency for innovative

interventions alongside existing public health measures (de la Maza et al., 2017; Gottlieb

and Johnston, 2017).
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The successful transformation of C.t using recombinant

plasmids from its own endogenous plasmid has accelerated

the study of plasmid-encoded factors crucial for chlamydial

pathogenicity (Ding et al., 2013; Gong et al., 2013; Song et al., 2013).

The development of genetic tools has expanded exploration into

chromosome-encoded factors, resulting in numerous genetically

defined mutants (Brothwell et al., 2018; Putman et al., 2019). The

ongoing optimization of these genetic tools calls for a thoughtful

discussion on selecting the most suitable models for evaluating

these mutants. Despite the availability of various animal models

to study chlamydial pathogenic mechanisms and assess vaccine

efficacy, refining, and choosing the most appropriate models for

obtaining biologically and clinically relevant information remains

a challenge.

Our aim is to clarify the general pathogenic characteristics

of chlamydial infections and navigate the intricacies of selecting

appropriate model systems, recognizing their inherent limitations,

to extract biologically and clinically relevant insights. Lastly, we

will elaborate on the newly proposed hypothetical model for

Chlamydia genital-gut interaction to offer a more comprehensive

understanding of chlamydial pathogenesis and insights for

future research.

We believe in the importance of selecting robust models with

appropriate infection routes, coupled with well-matched mutants.

This strategic approach enhances our ability to identify tissue-

dependent C.t virulence determinants, unravel mechanisms driving

site-specific immunity and pathology, and pinpoint site-specific

factors that may either contribute to or impede local immunity.

2 Genital animal models of Chlamydia
infection

2.1 Non-human primate trachoma and
NHP genital tract models

After Tang successfully isolated C.t organisms from human

ocular tissues (Tang et al., 1957), attempts were made to infect

monkey eyes with human isolates to meet Koch’s postulates

criteria for trachoma causation (Wang, 1999). Various NHP

species exhibited induced ocular inflammatory pathologies similar

to those in humans, confirming causation and establishing a

valuable NHP ocular model for studying trachoma pathogenesis

and vaccine evaluation.

A whole C.t organism-based vaccine induced protective

immunity against conjunctivitis in monkeys, but immunity waned

within a year. Notably, C.t serovar A, capable of inducing robust

inflammatory pathology in monkeys, failed when deficient in the

chlamydial plasmid (Kari et al., 2011). The plasmid’s role in human

ocular infection and pathogenesis needs further investigation, but

its correlation with high antibody titers to plasmid-encoded Pgp3

suggests potential contributions to chlamydial pathogenicity in

human ocular tissue (Winstanley et al., 2017; Wiegand et al., 2018).

The primate trachoma model revealed persistent live organism

shedding from serovar A-infected monkeys’ ocular tissue for up

to 7 weeks, with inflammatory pathologies lasting up to 15 weeks

(Kari et al., 2011). In contrast, plasmid-free serovar A-infected

monkeys experienced brief shedding, clearing infection within 3

weeks without significant pathology. This underscores the plasmid’s

necessity for C.t colonization and pathogenicity in ocular tissue,

consistent with its prevalence in human C.t isolates. Moreover,

plasmid-free serovar A-inoculated monkeys were protected against

both infection and pathology induced by wild-type serovar A,

demonstrating the feasibility of developing a live attenuated C.t

vaccine (de la Maza et al., 2017; Zhu et al., 2018). Interestingly,

ocular protective immunity in macaques was found to be CD8+ T

cell-dependent, though its role against C.t infections at other sites

remains undetermined (Olivares-Zavaleta et al., 2014).

Over the years, various NHP species, including pigtail and

rhesus macaques, have been employed to model C.t genital tract

infections (Bell et al., 2011). The genital tracts of female pigtail

macaques share many similarities with those of women, including

the length of the menstrual cycle, reproductive tract anatomy,

cervical tissue cellular structure, and vaginal microflora. In a

recent study of C.t pathogenicity in pigtail macaques, six macaques

received a cervical inoculation of C.t and were observed and

sampled at weekly intervals (Patton et al., 2018). These macaques

developed mild to moderate infection and disease. Remarkably,

parallel animals inoculated with the same strain of C.t but deficient

in the plasmid developed similar infection and disease endpoints

(Patton et al., 2018), and these results were reproducible in rhesus

macaques (Qu et al., 2015). Evidently, the plasmid is not essential

for C.t infection in primate genital tracts, contrasting with its

requirement in the ocular C.t challenge model. A baboon cervical

infection model exists but may face limitations due to cost and

availability issues (Bell et al., 2011).

2.2 Mouse model of C.t genital infection

Despite C.t not naturally infecting rodents, mice serve as

essential models for exploring chlamydial pathogenic mechanisms

(Zhong, 2018) and evaluating vaccine candidates (de la Maza et al.,

2017). The efficiency of creating mutations in C.t serovar L2 has led

to extensive assessments in mice, including L2 mutants; other C.t

organisms, such as serovar D with or without genetic mutations,

have also been studied in the murine model (Sturdevant et al.,

2010).

However, C.t encounters challenges overcoming murine

innate immunity, resulting in its swift elimination from the

mouse genital tract (Sturdevant and Caldwell, 2014). In contrast,

intravaginal inoculation with Chlamydia muridarum (C.m)

effectively establishes productive infection and induces upper

genital tract pathology, resembling observations in C.t-infected

women during laparoscopy (Sun et al., 2015). This robust model,

along with genetic manipulation of C.m, has significantly advanced

our understanding of chlamydial pathogenesis.

Following Tang’s isolation of C.t from human ocular tissues

(Tang et al., 1957), mice immunized with killed C.t prevented

toxicity from intravenous injection of live C.t, aiding in

classifying ’trachoma virus strains’ and studying IFNγ’s role in

chlamydial infection. However, this model lacked relevance to C.t

pathogenicity in humans.

To gain more pertinent information on C.t pathogenicity,

intravaginal inoculation into mice was deemed necessary.
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Unfortunately, C.t fails to induce lasting pathology in the

mouse upper genital tract, despite lower genital tract infections

(Sturdevant et al., 2010; Eko et al., 2014). This is partly due to

C.t’s inability to overcome innate immunity in the mouse genital

tract. Female C3H/HeJ mice, with a natural toll-like receptor 4

gene mutation, show increased susceptibility to C.t in the genital

tract (Sturdevant et al., 2010). Improving the mouse intravaginal

infection model by genetically increasing susceptibility to C.t

colonization is desired.

The intrabursal model, requiring survival surgery and

overcoming physiological barriers, contrasts with the preferred

transcervical inoculation with C.t due to its less invasiveness.

Transcervical inoculation with an inactivated C.t vaccine strain

showed protection against live C.t challenge infection (Stary

et al., 2015). Additionally, transcervical inoculation with live C.t

serovar D induced tubal infertility in C57 wild-type and HLA-DR4

transgenic mice, serving as a potentially useful model for studying

C.t pathogenesis and evaluating human-relevant chlamydial

vaccines (Pal et al., 2018).

Following the successful transformation of the C.t LGV L2

strain, a series of L2 mutants deficient in plasmid genes were

created and assessed in mice (Ramsey et al., 2014). Pgp3-deficient

L2 showed attenuation in infecting the mouse lower genital tracts

and inducing inflammatory pathology. An L2 strain deficient in

expressing the chlamydial protease-like activity factor (CPAF) was

isolated from L2 mutagenesis libraries. CPAF-deficient L2 revealed

the critical role of CPAF in chlamydial survival in mice. However,

the L2 genital infection model has limitations for modeling C.t

infection in humans, as both the infection and pathology were

transient even with wild-type L2.

2.3 Mouse model of genital C.m infection

The mouse cervicovaginal infection model with C.m has

been crucial for unraveling chlamydial pathogenic mechanisms

and host immune responses (Cheng et al., 2008). Utilizing C.m,

chosen for its genomic similarity to C.t, has mirrored upper

genital tract pathology observed in women infected with C.t.

Evaluation of mouse genital tracts revealed gross pathologies,

such as hydrosalpinx (Sun et al., 2015), aligning with medically

relevant endpoints seen in C.t-infected women (Budrys et al.,

2012).

Upon intravaginal inoculation, C.m ascends the mouse genital

tract, triggering acute inflammation manifesting as pyosalpinx

detectable macroscopically between 2 and 3 weeks. Some

pyosalpinxes transform into hydrosalpinx by the 4th week,

potentially leading to long-lasting infertility (Zhang et al., 2014).

Long-lasting hydrosalpinx in the C.m mouse model mirrors

fibrotic pathologies seen in women with tubal factor infertility

(Budrys et al., 2012). The chlamydial plasmid, particularly Pgp3,

plays a pivotal role in inducing hydrosalpinx. Deficiency in

Pgp3 mirrors plasmid-deficiency effects, emphasizing its major

contribution to the overall pathogenic process (Zhong, 2018).

And Chromosomal proteins TC0237/TC0668 also contribute to

hydrosalpinx induction in themouse genital tract (Chen et al., 2015;

Conrad et al., 2016).

With these models, various mechanisms have been identified

that influence chlamydial induction of upper genital tract

pathology (Murthy et al., 2011; Frazer et al., 2013). Despite these

advancements, our understanding is still incomplete, particularly

regarding the mechanisms sustaining the persistence of long-

lasting pathogenic tubal fibrosis afterChlamydia clearance from the

oviduct infection site in animal genital models.

3 Gastrointestinal Chlamydia infection
model

While Chlamydia is primarily recognized as a genital tract

pathogen, its regular detection in the human gastrointestinal (GI)

tracts (Peters et al., 2014; Craig et al., 2015) introduces a layer of

complexity. This finding aligns with observations of C.t infecting

human enteroendocrine cells (Dlugosz et al., 2014). Remarkably,

individuals engaging in oral/anal sex or those abstaining from such

behaviors both show C.t presence in their rectal swabs (Peters et al.,

2014), suggesting potential routes of C.t transmission from genital

to GI tracts beyond sexual behavior.

The mechanism by which C.t enters the GI tract, whether

through sexual behaviors or alternative pathways, raises a critical

question: can GI tract C.t influence C.t pathogenicity in the

genital tract (Bavoil et al., 2017).This inquiry becomes essential

due to the frequent detection of C.t in the human GI tract.

Addressing this question in human subjects would necessitate

extensive clinical investigations, potentially involving therapeutic

interventions. As an alternative approach, evaluating the impact of

GI tract Chlamydia on genital tract pathogenicity can be explored

using the murine model of CM induction of hydrosalpinx (Tian

et al., 2023).

The successful transformation of C.m by has provided a

valuable tool for real-time monitoring of live chlamydial infection

in mice (Campbell et al., 2014). This tool has revealed the swift

ascent of vaginal C.m to the oviduct, its subsequent spread to the

GI tract, and its ability to establish long-lasting colonization within

the GI tract (Zhang et al., 2015). In the context of mice, chlamydial

long-lasting colonization in the gut denotes the enduring presence

and survival of Chlamydia within the GI tract over an extended

period.While a clear definition in human hosts is currently lacking,

the persistence of Chlamydia in the large intestine of mice can

extend for hundreds of days (>50 weeks), significantly surpassing

the duration observed in the genital tract. Chlamydial colonization

in the GI tract depends on its overcoming mucosal barriers,

utilizing chromosomal genes to evade IFNγ from innate lymphoid

cells (Zhong, 2021). Remarkably, the spread from the genital

tract to the GI tract appears independent of the oral/anorectal

route, as evidenced by experiments with mice wearing restraining

Elizabethan collars and housed in net-bottom cages to prevent

coprophagy. Instead, this spreading seems to be dependent on

multiple pathways (Zhang et al., 2015). The research indicates

potential pathways for hematogenous Chlamydia to reach the large

intestine lumen after genital infection dissemination, involving

both spleen-to-stomach and liver-to-intestine routes (Zhou et al.,

2021). Additionally, other studies suggest that genital Chlamydia

can also be transported to the gut by host cells (Howe et al.,

2019). Upon arrival in the GI tract, C.m does not autoinoculate
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FIGURE 1

A hypothetical model for Chlamydia pathogenesis: interactions between the genital and gastrointestinal (GI) tracts (A Two-Hit Model). (A) First Hit:

Chlamydia ascends the female reproductive tract (FRT), invading oviduct epithelial cells, inducing acute inflammation, and resulting in the clearance

of tubal infection, epithelial damage, and transient fibrotic responses. (B) Spreading Routes: Chlamydia spreads from the FRT to the GI tract through

multiple pathways, including blood circulation and host cells. (C) GI Tract Colonization: Chlamydia further spreads and colonizes the large intestine.

(D) Second Hit: The colonized gut act as a reservoir for continuous exposure, perpetuating its impact on FRT pathogenicity. This contributes to

sustained inflammation, pro-fibrotic responses, and e�ects on the FRT. (E) Long-Term Consequences: The enduring impact from GI tract on tubal

fibrosis in the FRT may contribute to infertility and other reproductive complications. Portions of the figure utilized images from Servier Medical Art,

licensed under Creative Commons Attribution 3.0 Unported License.

extra-GI tissues (Wang et al., 2016), challenging the hypothesis

that chlamydial organisms in the GI tract could act as a reservoir

for auto-inoculating the genital tract (Yeruva et al., 2013). Despite

the absence of autoinoculation, the correlation between chlamydial

spreading from the genital to GI tracts and pathogenicity in the

upper genital tract has led to the proposition of a Two-Hit model as

a chlamydial pathogenic mechanism (Tian et al., 2020).

In this Two-Hit model (Figure 1), the first hit is attributed

to genital C.m ascending infection, where C.m invades oviduct

epithelial cells and induces tubal inflammation. This initial hit

may cause epithelial damage, triggering tissue repair responses,

including fibrosis. While the fibrotic response is typically transient

and halts upon the restoration of oviduct function, the second

hit comes into play when genital C.m spreads to the GI tract.

Here, C.m organisms residing in the GI tract for extended periods

induce pro-fibrotic lymphocytes, which, when recruited into the

oviduct previously affected by C.m ascending infection, act as the

second hit. And the nature of the second hit might be GI related

lymphocytes, such as CD8+T cells (Tian et al., 2021). These GI

tract-derived C.m-specific profibrotic lymphocytes may convert the

initially transient tubal repairing fibrotic response into a long-

lasting tubal fibrotic blockade (Tian et al., 2020). The 2-hit model

aligns with the concept that responses induced by gut bacteria can

impact tissues beyond the GI tract. Conversely, if a naive mouse is

exposed to C.m in the GI tract first, it essentially becomes immune

to subsequent C.m exposure in extra-GI tissues (Wang et al., 2018;

Zhu et al., 2018). The site of the first exposure to C.mmay therefore

determine the consequential outcome. It is essential to note that

the contribution of gut Chlamydia to upper genital pathology has

only been tested in mice under specific experimental conditions.

Thus, the Two-Hit Model remains a hypothesis requiring further

exploration in human studies.

While C.t is frequently detected in the human GI tracts, the

impact of human GI tract C.t on C.t pathogenicity in the genital

tract remains unclear. Exploring the current studies in human

contexts could provide valuable insights into this aspect.

4 Discussion

The review emphasizes challenges in modeling chlamydial

infections and the limitations of current animal models

(Table 1). Host-specific adaptation poses a critical challenge,

hindering lasting fibrosis induction in murine genital

tracts by genitourinary C.t serovars. While IFNγ-mediated

immunity is crucial for both human C.t and murine

C.m infections, distinct mechanisms highlight complex

host-pathogen interactions.

Tissue tropisms of C.t serovars in humans raise questions about

factors influencing tissue-specific evolution. Chlamydial spreading

patterns within and between hosts, coupled with infection dose

and frequency considerations, add complexity to modeling disease

outcomes. NHP and rodent models, valuable in certain contexts,

cannot precisely replicate human disease, emphasizing the need for

further exploration.

The discussion introduces the GI tract perspective, emphasizing

Chlamydia’s interaction with different anatomical sites. C.m spread

from genital to GI tract prompts consideration of GI Chlamydia’s

impact on genital tract pathogenicity. The Two-Hit model in

murine studies provides a framework, but exploring diverse animal

models beyond mice is imperative. Examining different species can

offer insights into varied responses and consequences, enhancing

our understanding of Chlamydia pathogenesis.

In conclusion, complexities in modeling Chlamydia infections

underscore the need for diverse animal models and continued

exploration, especially in non-murine species, to capture nuanced

host-pathogen interactions in different anatomical sites and

broaden our understanding of GI tract Chlamydia.
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TABLE 1 Comparative summary of Chlamydia animal models.

Model Infection site Key findings Significance References

NHP ocular model Eyes - Successful isolation of C.t organisms

- Induction of ocular inflammatory

pathologies similar to humans

- Recognizing the role of

plasmid-encoded protein Pgp3 in

chlamydial pathogenicity

- Evaluation of trachoma vaccines

Initiating studies on chlamydia

pathogenesis and gaining insights into

C.t ocular infection mechanisms,

thereby informing strategies for

trachoma prevention.

(Tang et al., 1957; Wang,

1999; Kari et al., 2011;

Olivares-Zavaleta et al., 2014;

de la Maza et al., 2017;

Winstanley et al., 2017;

Wiegand et al., 2018; Zhu

et al., 2018)

NHP genital model Genital tract - Evaluation of C.t infection and disease

in female macaques

- Importance of the chlamydial plasmid

- Exploration of vaccine strategies

Unraveling C.t pathogenesis in the

genital tract of NHP, and exploration of

therapeutic strategies

(Bell et al., 2011; Qu et al.,

2015; Patton et al., 2018; Zhu

et al., 2018)

Mouse genital

model

Genital tract - Use of C.t/C.mfor productive infection

and upper genital tract pathology

- Examination of genetic manipulation

for understanding Chlamydia

pathogenesis

- Exploration of vaccine strategies

Identifying key factors in chlamydial

pathogenicity

(Sturdevant et al., 2010; Eko

et al., 2014; Ramsey et al.,

2014; Sturdevant and

Caldwell, 2014; Zhang et al.,

2014; Stary et al., 2015; Sun

et al., 2015; Conrad et al.,

2016; de la Maza et al., 2017;

Pal et al., 2018; Zhong, 2018)

Mouse GI tract

model

Gastrointestinal

tract

- Detection of C.t in human GI tracts

-Discussion of meaning of GI tract

Chlamydial infection

- Exploration of potential routes of

spread from genital to GI tract

- Exploration of vaccination through GI

tract

- Proposal of the Two-Hit model

involving both genital and GI tracts in

Chlamydia pathogenesis

Exploring the GI tract as a novel site for

Chlamydia infection, discussing

potential routes of C.m spread from the

genital to the GI tract, and proposing the

possible contribution of GI Chlamydia

to upper genital tract pathogenesis.

(Yeruva et al., 2013; Campbell

et al., 2014; Dlugosz et al.,

2014; Craig et al., 2015; Zhang

et al., 2015; Wang et al., 2016,

2018; Bavoil et al., 2017; Tian

et al., 2020, 2021, 2023)
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