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Black scurf caused by Rhizoctonia solani severely affects potato production. 
Through amplification of V3-V4 and ITS1-5f variable regions of 16S and internal 
transcribed spacer (ITS) rRNA, the study was based on the location (Kunming, 
Qujing, and Zhaotong), plant components (rhizosphere soil and roots), and 
sample types (healthy and diseased) to assess the diversity of bacterial and 
fungal communities. We  found plant components significantly influence 
microbial diversity, with rhizosphere soil being more diverse than roots, and 
the microbial community in the root is mainly derived from the rhizosphere 
soil. Moreover, the rhizosphere soil and roots of healthy potato plants exhibit 
greater microbial diversity compared to those of potato plants infected by 
Rhizoctonia solani. Bacterial phyla Actinobacteriota and Acidobacteriota were 
enriched in rhizosphere soil compared to that of roots, whereas Proteobacteria 
and Cyanobacteria showed the opposite trend. Fungal phylum Ascomycota 
was found in low relative abundance in rhizosphere soil than in roots, whereas 
Basidiomycota showed the opposite trend. Bacterial genera including 
Streptomyces, Lysobacter, Bacillus, Pseudomonas, Ensifer, Enterobacter, and the 
Rhizobium group (Allorhizobium, Neorhizobium, Pararhizobium, Rhizobium), 
along with fungal genera such as Aspergillus, Penicillium, Purpureocillium, and 
Gibberella moniliformis, have the potential ability of plant growth promotion 
and disease resistance. However, most fungal species and some bacterial 
species are pathogenic to potato and could provide a conducive environment 
for black scurf infection. Interaction within the bacterial network increased in 
healthy plants, contrasting with the trend in the fungal network. Our findings 
indicate that R. solani significantly alters potato plant microbial diversity, 
underscoring the complexity and potential interactions between bacterial and 
fungal communities for promoting potato plant health and resistance against 
black scurf.
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Introduction

The soilborne pathogenic fungus Rhizoctonia solani Kühn, also 
known as Thanatephorus cucumeris, is a basidiomycete with a large 
host range and different anastomosis groups (AGs). The pathogen can 
cause diseases in plant families including Solanaceae, Poaceae, 
Amaranthaceae, Fabaceae, Brassicaceae, Rubiaceae, Araceae, 
Malvaceae, Moraceae, and Linaceae (Mayo et al., 2015; Verwaaijen 
et al., 2017; Ajayi-Oyetunde and Bradley, 2018). It is divided into 14 
AGs based on its special genetic and biological characteristics, 
including AG-1 to AG-13 and a bridging isolate AG-BI (Parissa and 
Tarighi, 2011), among which AG-1 to AG-13 were reported to cause 
Rhizoctonia disease on potato (Balali et al., 1995; Truter and Wehner, 
2004; Yanar et al., 2005; Woodhall et al., 2008; Yang et al., 2015; Gush 
et al., 2019; Murdock et al., 2019; Yang et al., 2019; Lopez Corrales 
et al., 2023). It is widely known that R. solani AG-3 PT is notably 
aggressive, primarily causing stem canker or black scurf on potatoes 
(Balali et al., 1995; Woodhall et al., 2008, 2013; Fiers et al., 2011; Yang 
et al., 2015).

Rhizoctonia solani AG-3 PT infects all parts of the potato plant, 
including sprout, tubers, stems, stolons, roots, and leaves (Atkinson 
et  al., 2010). Infected plants exhibit a range of symptoms such as 
sprout canker formation (Figure 1A; Gutierrez et al., 1997); sunken, 
brown, necrotic lesions on stems, stolons, and roots and sclerotia 
development on tubers (Figures 1B,C; Lehtonen et al., 2009); leaves 
turning red and upward curling (Figure 1D; Tsror, 2010; Malik et al., 
2014); an absence of tuber formation or the growth of small tubers 
(Figure 1E); aerial tubers formation on stems (Figure 1F; Beukema 
and van der Zang, 1990); and a grayish-white, felt-like mycelium mat 

emerging at the base of stems and on the plant parts that are in contact 
with soil (Figure  1G; Banville and Carling, 2001). All of these 
symptoms may appear on infected potato plants either separately or 
in combination (Zheng et al., 2014; Muzhinji et al., 2018). Currently, 
Black scurf of potato disease occurs in all potato-growing regions 
around the world, including Yunnan Province, China, leading to 
marketable yield losses of up to 30% (Banville, 1989; Samsatly et al., 
2020; Zrenner et al., 2021). Yunnan Province is located in southwest 
China, with unique geographical and climatic characteristics (Li et al., 
2022). Through an investigation of the occurrence of Rhizoctonia 
diseases in the main potato production areas of Yunnan Province, it 
was found that the principal production regions, such as the Diqing 
Tibetan Autonomous Prefecture, Lijiang, and Dali Bai Autonomous 
Prefecture in Northwestern Yunnan, as well as Zhaotong, Qujing, and 
Kunming in Northeastern Yunnan, all experienced outbreaks of 
potato black scurf disease. The incidence rate in fields with severe 
infections can reach up to 70% to 80%. Particularly in Kunming, 
Qujing, and Zhaotong, the highest incidence rates were observed at 
36.00%, 29.75%, and 29.01%, respectively, followed by Lijiang, Diqing, 
and Dali, with rates of 27.28%, 20.91%, and 12.36% (Wang et al., 
2014). The widespread occurrence of this disease has significantly 
impacted the yield and quality of local potatoes. Locations play an 
important role on the occurrence of soilborne diseases (Cai 
et al., 2021).

It is important to note that R. solani AG3 PT predominantly 
colonizes the belowground parts of potato, including roots (Schreiter 
et al., 2018). It is a seed- and soil-borne pathogen, which survives 
through sclerotia and mycelia in infected seeds or soil in tropical 
environments. Exhibiting facultative parasitism, it can survive in soil 

FIGURE 1

Disease potato plant with typical black scurf symptoms. (A) Causing sprout nipping and cankers. (B) Sunken brown necrotic lesions formation on 
stems, stolons, and roots. (C) Sclerotia formation on tubers. (D) Reddening and inward curling of leaves. (E) No tuber formation or small tubers. 
(F) Aerial potato formation on stems. (G) White fruiting bodies forming at stem base.
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residues as a saprophyte without a specific host (Akber et al., 2022). 
Infected soil is a primary inoculum source, with the pathogen 
emerging in the rhizosphere soil from roots (Senapati et al., 2022). The 
spread of the pathogen occurs through mechanisms such as sclerotia 
dispersal by rain, contaminated soil particles, and mycelial networks 
connecting plants, as well as via seeds that are already infected 
(Schreiter et al., 2018). While the teleomorph stage allows airborne 
basidiospore transmission but is less common in the fields. The 
sclerotia, the asexual stage, can remain viable in soil for years (Kouzai 
et al., 2020).

The rhizosphere, the root-surrounding zone, is among Earth’s 
most intricate ecosystems (Wierzbicka-Woś et al., 2019). Plant disease 
resistance and growth largely depend on rhizosphere microbial 
diversity (Mendes et al., 2013; Dong et al., 2019). Plant genetics and 
soil type play key roles in forming a beneficial rhizosphere microbiome 
(Mendes et al., 2013; Dong et al., 2019). Recent scientific progress and 
advanced sequencing technologies have simplified studying plant-
microbe interactions (Govindasamy et al., 2014; Mhlongo et al., 2018). 
Nonetheless, further research is needed to fully understand these 
interactions and their mechanisms (Bulgarelli et al., 2013).

Currently, biological control involving specific endophytes and 
rhizosphere microbiome like Aspergillus, Bacillus, Pseudomonas, 
Streptomyces, and Lysobacter is a viable method for managing various 
soilborne diseases and this approach works through mechanisms such 
as antagonism, altering rhizospheric microbial diversity, and 
metabolite production (Ma et al., 2018; Schreiter et al., 2018; Wu et al., 
2020; Zhang J. et al., 2020; Asaturova et al., 2021; Wei et al., 2021; 
Abdelaziz et al., 2023; Rashad et al., 2023). In recent years, there have 
been successive reports on the biological control of potato black scurf. 
Ikeda et al. (2012) found that Pythium oligandrum effectively reduces 
potato black scurf through mechanisms like hyperparasitism and 
triggering the plant’s resistance. Furthermore, Tsror et  al. (2001) 
observed that in organic potato cultivation, applying Trichoderma 
harzianum, nonpathogenic Rhizoctonia (np-R), and cattle manure 
compost amendment (CMC-H) directly into the soil furrows 
effectively reduced the occurrence of black scurf. Additionally, studies 
have shown that strains StS3 and StT2 of Pseudomonas spp. are 
promising as biocontrol agents. They not only enhance plant growth 
but also effectively diminish the occurrence of black scurf in potatoes 
(Tariq et al., 2010). The challenge in effectively controlling this disease 
stems from its ability to infect a wide variety of hosts, its complex 
species characteristics, extensive geographical spread, and its resilience 
(Mayo et  al., 2015; Verwaaijen et  al., 2017; Ajayi-Oyetunde and 
Bradley, 2018). Currently, there is no comprehensive solution to fully 
manage this widespread and stubborn disease.

Potato is a major staple food and the fourth largest crop grown 
worldwide (Liu et  al., 2016). It serves not only as a food source, 
consumable as a vegetable or processed into snack foods, but also 
plays a vital role as an industrial raw material (Kowalczewski et al., 
2019). The primary regions for potato cultivation in China include 
areas like Inner Mongolia, Gansu, Guizhou, and Yunnan, which 
provide ideal natural conditions for its growth. However, R. solani 
annually causes substantial decreases in both the yield and quality of 
potato crops. Addressing this challenge necessitates a comprehensive 
understanding of both the microbiome’s population dynamics and its 
distribution within potato plants, to effectively control the black scurf 
disease. Therefore, the present study aims to explore the core 
microbiota (bacteria and fungi) associated with different locations 

(Kunming, Qujing, and Zhaotong), plant components (rhizosphere 
soil and roots), and sample types (healthy and diseased). This study 
posits that exploring the natural potato microbiome can aid in 
developing strategies to reduce the prevalence of black scurf disease 
in potatoes.

Materials and methods

Sample collection

Rhizosphere soil and root samples of healthy and diseased potato 
plants were collected from three various locations: Kunming 
(24.9195°N, 102.4785°E), Qujing (25.6742°N, 104.2550°E), and 
Zhaotong (28.6299°N, 104.4160°E) in Yunnan Province, China, in 
September 2021 (Figure 2). Over the past 4 years, these agricultural 
fields have been consistently used for potato cultivation, employing 
conventional management practices without the use of any probiotic 
microorganisms. During the collection process, the top layer of soil, 
measuring 4–5 cm, was removed, and the potato plants were then 
carefully uprooted (three plants per field from three different fields for 
both healthy and diseased plants). The bulk soil was separated by 
gently shaking the roots, and the finer soil particles adhering to the 
roots were retained as samples of rhizosphere soil, along with fibrous 
root samples. In total, 12 composite samples were acquired (three 
replicates per sample) from these locations in Yunnan. These samples 
were immediately placed in polythene bags and stored in an icebox for 
transport. Upon arrival at the laboratory, they were preserved at 
−80°C for subsequent analysis.

DNA extraction and polymerase chain 
reaction amplification

Genomic DNA was isolated from each sample using the Soil and 
Plant DNA Extraction Kit (Zymo Research Corp., Irvine, CA, 
United States). The process involved extracting DNA from 0.5 grams of 
soil and 1 gram of roots per sample, adhering to the kit’s provided 
guidelines. The DNA’s purity was then assessed using a NanoDrop 
spectrophotometer (ND2000, Thermo Scientific, Madison, WI, 
United States), ensuring an optical density (OD) ratio of 260/280 nm 
between 1.7 and 1.9. The isolated DNA was subsequently stored at −20°C 
for later analysis. For investigating the bacterial and fungal diversity, the 
V3-V4 and ITS1-5F regions of the 16S and internal transcribed spacer 
(ITS) rRNA genes were amplified. This was done using two sets of 
universal primers: 341F (5′-CCTAYGGGRBGCASCAG-3′) and 806R 
(5′-GGACTACNNGGGTATCTAAT-3′) for bacteria, and 1743F 
(5′-GGAAGTAAAAGTCGTAACAAGG-3′) and 2043R (5′-GCTGCGT 
TCTTCATCGATGC-3′) for fungi (Zhang J. et al., 2020).

Library preparation and sequencing

The construction of the amplicon library followed the 
protocols for 16S and ITS Metagenomic Sequencing Library 
preparation, utilizing the Nextera XT Index Kit (Illumina Inc. 
Madison, WI, United  States). To evaluate the quality of the 
amplicons, gel electrophoresis was employed. The purification of 
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the amplicon library was conducted using 1X AMPure XP beads, 
with further assessment on an Agilent DNA1000 chip via a 
Bioanalyzer2100. Quantification was performed using the Qubit 
Fluorometer 2.0 and a Qubit dsDNA assay kit (Life Technologies, 
Cat. No. Q328520; Gao et  al., 2018). Equal amounts of these 
purified amplicons were combined for further sequencing analysis. 
The sequencing was carried out using the Illumina MiSeq platform 
at Novogene Bioinformatics Technology Co. Ltd., based in 
Beijing, China.

Quality control

The initial sequencing data were gathered in FASTQ format, and 
the Trimmomatic software was employed to eliminate low-quality 
reads (those with a score below 20) and to arrange the reads into 
paired ends (Bolger et al., 2014). For the assembly of these paired-end 
reads, FLASH software was utilized, setting parameters for a minimum 
and maximum overlap of 10 and 200 bp, respectively, with a maximum 
mismatch rate of 20%. The UCHIME software was then applied for 
the exclusion of chimeric sequences, facilitating the generation of 
clean reads (Edgar et al., 2011).

Data processing

The UPARSE pipeline was utilized to process the clean reads, 
leading to the formation of operational taxonomic units (OTUs) at a 
similarity threshold of 97% or higher (Edgar, 2013). Taxonomic 
classification of each representative read and OTU was carried out 
using the ribosomal database project (RDP) classifier within the 

SILVA database for bacterial species (with a confidence level of 70%) 
and the UNITE database for fungal species (Ikeda et al., 2012; Kõljalg 
et al., 2013). The analysis of OTUs included their relative abundance 
at both the genus and phylum levels. Furthermore, alpha and beta 
diversity indices were computed to assess species richness and 
evenness. To identify common and unique OTUs across different 
variables, such as sample types, plant components, and locations, a 
Venn diagram was employed.

Statistical analysis

Statistical analysis of the data was carried out using the t-test 
method, setting the significance level at p < 0.05. IBM SPSS software, 
version 20.0 (SPSS Inc., Chicago, IL, United States), was the tool of 
choice for all statistical computations. The QIIME software, version 
1.9.1, was employed to determine various indices, including observed 
OTUs, Chao1, Shannon, and the abundance-based coverage estimator 
(ACE). For the beta diversity assessment of both bacterial and fungal 
communities, the Bray–Curtis dissimilarity index was calculated and 
then applied in principal coordinate analysis (PCoA) using 
QIIME. The creation of relative abundance bar plots and heatmaps at 
the genera level, as well as bar plots at the species level, was achieved 
through R scripts in R software (version 2.15.3; Dong et al., 2018). 
Co-occurrence network analysis at the genera level for OTUs was 
conducted using the SPARCC method in R, adhering to criteria of 
p < 0.05 and a correlation coefficient greater than 0.3. Network 
characteristics were computed and visualized utilizing Gephi version 
0.9.2. For the processing and illustration of all figures, Adobe 
Illustrator CC 2019, provided by Adobe Systems Inc. in San Francisco, 
CA, United States, was used.

FIGURE 2

Overview of sampling strategy for both healthy and black scurf-infected diseased Hezuo 88 potato plants. We gathered samples of rhizosphere soil 
and roots from three distinct sites in Yunnan Province: Kunming (Anning), Qujing (Fuyuan), and Zhaotong (Shuifu). Here: Kunming (KM), Qujing (QJ), 
Zhaotong (ZT), Healthy plants (HP), Diseased plants (DP), Healthy plants rhizosphere soil (HPRS), Healthy plants roots (HPR), Diseased plants 
rhizosphere soil (DPRS), Diseased plants roots (DHR), Kunming healthy plants rhizosphere soil (KMHS), Kunming healthy plants roots (KMHR), Kunming 
diseased plants rhizosphere soil (KMDS), Kunming diseased plants roots (KMDR), Qujing healthy plants rhizosphere soil (QJHS), Qujing healthy plants 
roots (QJHR), Qujing diseased plants rhizosphere soil (QJDS), Qujing diseased plants roots (QJDR), Zhaotong healthy plants rhizosphere soil (ZTHS), 
Zhaotong healthy plants roots (ZTHR), Zhaotong diseased plants rhizosphere soil (ZTDS), Zhaotong diseased plants roots (ZTDR).
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Results

General characteristics of potato 
microbiome

This study delved into the composition of bacterial and fungal 
communities in various segments of the potato plant, including the 
rhizosphere soil and roots, across different regions (Kunming, 
Qujing, and Zhaotong), and between contrasting types of samples 
(healthy vs. diseased). Supplementary Table 1 displays information 
on the number of raw and clean reads, along with quality control 
metrics (Q20% and Q30%), derived from amplifying the 16S 
(V3-V4) and ITS (1-5f) rRNA sequences of bacteria and fungi, 
respectively. Post quality assurance and the removal of chimeric 
sequences, the average yield was 70,327 bacterial and 77,241 fungal 
clean reads for each sample, with an average sequence length of 
415 bps for bacteria and 265 bps for fungi, as obtained through 
Illumina sequencing (Supplementary Table  1). Furthermore, 
rarefaction curves constructed from the OTUs indicated 
comprehensive sampling coverage for all samples in both the 
bacterial and fungal communities (Supplementary Figure 1).

Effects of different locations, plant 
components, and sample types on beta 
diversity

The impact of various factors, including geographical locations 
(Kunming, Qujing, and Zhaotong), parts of the plant (rhizosphere soil 
and roots), and the nature of the samples (healthy vs. diseased), on the 
composition of bacterial and fungal communities was examined. The 
Bray–Curtis dissimilarity metric was employed to assess beta diversity, 
which reflects variations in the structure of bacterial and fungal 
communities, across all 12 composite samples (Figure 3). Among 
these factors, the components of the plant, namely rhizosphere soil 
and roots, were found to have a significant effect on the composition 
of both bacterial and fungal communities. The distinct separation of 
samples along one axis for the bacterial community composition 
suggests a more pronounced influence of this variable on the structure 
of bacterial communities compared to fungal ones. The types of 
samples and their locations exhibited a minimal impact on both 
bacterial and fungal communities. A different trend was noted in the 
principal coordinate analysis (PCoA), revealing differences of 40.44% 
and 40.46% in the composition of bacterial and fungal communities, 
respectively. To further evaluate beta diversity, distance heatmap 
graphs were created for all 12 samples using both Weighted UniFrac 
(which considers taxa abundances) and Unweighted UniFrac 
(sensitive to less common taxa), providing insight into the diversity of 
bacterial and fungal communities (Supplementary Figure 2).

Effects of different locations, plant 
components, and sample types on alpha 
diversity

Figure  4 presents the alpha diversity indices, including the 
Observed species, Shannon, Chao 1, and Pielou_e at cutoff levels of 
3%. Within the different plant parts (rhizosphere soil and roots), it was 

observed that the alpha diversity indices, namely Observed species, 
Shannon, Chao 1, and Pielou_e, were significantly greater in 
rhizosphere soil compared to the roots for both bacterial and fungal 
communities. This suggests a notably higher count of bacteria and 
fungi in the rhizosphere soil than in the roots. Regarding the types of 
samples (healthy and diseased), the alpha diversity indices for bacterial 
and fungal communities were found to be higher in healthy samples 
as opposed to diseased ones. The locations have little impact on alpha 
diversity indices of bacterial and fungal communities.

Analysis of operational taxonomy units

The number of operational taxonomic units (OTUs) was observed 
to be higher in rhizosphere soil than in root samples. Rhizosphere soil 
samples displayed greater diversity and richness in both bacterial and 
fungal OTUs compared to root samples. Furthermore, a higher 
diversity of bacterial communities was noted in healthy plant samples 
as opposed to diseased ones (Figure 5). In terms of specific bacterial 
OTUs, rhizosphere soil contained a substantially larger count (13,579) 
than root tissue (2,858), with 1,511 OTUs shared between them. 
Conversely, root tissues fewer specific fungal OTUs (481) compared 
to those in rhizosphere soil (3,704), with 173 OTUs common to both. 
When comparing healthy and diseased plant samples, unique bacterial 
OTUs numbered 6,988 and 6,672, respectively, with 4,288 common 
OTUs between them. For fungal OTUs, healthy samples had 1,859 
unique OTUs, surpassing the 1,521  in diseased samples, with 978 
OTUs shared. Further analysis of OTUs from different locations 
(Kunming, Qujing, and Zhaotong) showed that a total of 17,948 and 
4,358 specific OTUs were recovered for both bacterial and fungal 
communities, respectively, and 713 (bacterial) and 144 (fungal) OTUs 
were found as common OTUs.

Bacterial and fungal community 
composition at phylum level

Figure 6 and Supplementary Table 2 display the top 10 bacterial 
and fungal phyla whose relative abundance exceeds 1%. The 
predominant bacterial phyla in all samples of rhizosphere soil and 
roots, with a relative abundance over 1%, include Proteobacteria, 
Cyanobacteria, Firmicutes, Actinobacteriota, Chloroflexi, 
Acidobacteriota, Gemmatimonadota, Bacteroidota, Myxococcota, 
Crenarchaeota, and Others (Figure 6A). Similarly, the leading fungal 
phyla in these samples, with a relative abundance above 1%, are 
Ascomycota, Basidiomycota, Mortierellomycota, Mucoromycota, 
Rozellomycota, Fungi_phy_Incertae_sedis, Chytridiomycota, 
Aphelidiomycota, Basidiobolomycota, Olpidiomycota, and Others 
(Figure  6B). Among the three factors (plant components, sample 
types, and locations), the plant components, namely rhizosphere soil 
and roots, markedly affect the composition of bacterial and fungal 
communities. In rhizosphere soil, a high relative abundance of the 
phyla Actinobacteriota (19.64% average) and Acidobacteriota 
(10.35% average) was observed. Conversely, in root samples, 
Proteobacteria (46.54% average) and Cyanobacteria (45.67% average) 
were more abundantly present (Figure  6A). For fungal phyla, 
Ascomycota showed a lower relative abundance in rhizosphere soil 
(64.84% average) compared to roots (87.22% average). On the other 
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hand, the phylum Basidiomycota demonstrated a higher relative 
abundance in rhizosphere soil (15.33% average) compared to roots 
(0.48% average; Figure 6B).

Bacterial and fungal community 
composition at genera level

In our study, we assessed the top 35 bacterial and fungal genera 
from the previously identified leading 10 phyla. Based on their 
relative abundance across all samples, these 35 genera were chosen 
for a heatmap analysis to ascertain their prevalence in varying 
sample types (healthy and diseased). The heatmaps, illustrating the 
relative abundance of these top 35 bacterial and fungal genera, are 
categorized and compared across three different factors: locations, 
plant components, and sample types, as presented in Figure 7. In 
healthy rhizosphere soil (HS), genera Nocardioides, Streptomyces, 
Pontibacter, Kribbella, Lysobacter, Bacillus, and Pseudomonas 
showed high abundance. In diseased rhizosphere soil (DS), genera 
Aquicella, Hydrogenophaga, Trichococcus, and Acidovorax were 
more prevalent. In healthy roots (HR), genera including 
Enterobacter, Actinoplanes, Chryseobacterium, Allorhizobium-
Neorhizobium-Pararhizobium-Rhizobium, Dyadobacter, and 
Brevundimonas were dominant, while in diseased roots (DR), 
Sphingobium, Burkholderia-Caballeronia-Paraburkholderia, and 
Ensifer were notably abundant. Notably, Ralstonia genus exhibited 
high abundance in both diseased rhizosphere soil and root samples 

(Figure  7A). Similarly, for fungi, genera like Paramyrothecium, 
Rhizophlyctis, Humicola, Plectosphaerella, Penicillium, and 
Aspergillus in HS; Alternaria, Colletotrichum, Mucor, Fusicolla, 
Varicosporellopsis, Scutellinia, Volutella, and Fusarium in DS; 
Pestalotiopsis, and Purpureocillium in HR; Meyerozyma, 
Bisifusarium, Ceratobasidium, and Gibberella moniliformis in DR, 
were highly abundant. The genus Thanatephorus, however, was 
particularly abundant in diseased rhizosphere soil and root samples 
(Figure 7B).

Relative abundance of bacterial and fungal 
communities at the species level

Our analysis focused on the relative abundance of the leading 10 
bacterial and fungal species within the top  35 genera. Bar plots 
depicting the relative abundance of these top 10 bacteria and fungi, 
categorized according to three criteria (locations, plant components, 
and sample types), are illustrated in Figure 8. In diseased roots and 
rhizosphere soil, the bacterial wilt pathogen Ralstonia solanacearum 
was notably prevalent. High abundances of Bacillus sp., Pseudomonas 
sp., Streptomyces flaveolus, and Lysobacter_daejeonensis were 
observed in healthy soil (HS). Furthermore, Ensifer adhaerens 
showed a high prevalence in diseased roots (DR; Figure 8A). In the 
context of fungi, species like Aspergillus sp. and Penicillium sp. were 
predominantly found in HS. Additionally, species such as Alternaria 
alternata, Thanatephorus cucumeris, Colletotrichum gloeosporioides, 

FIGURE 3

Principal coordinate analysis (PCoA) utilized Bray–Curtis dissimilarity metrics to exhibit the beta diversity analysis across all 12 combined samples (with 
each sample having three replicates) of potato plants, considering three different variables.
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Ceratobasidium endornavirus, and Gibberella moniliformis were 
particularly abundant in diseased rhizosphere soil and root samples 
(Figure 8B).

Characteristics of co-occurrence network

For each healthy and diseased sample, a microbial co-occurrence 
network at the genus level was developed, encompassing both bacterial 
and fungal Operational Taxonomic Units (OTUs) and relating to 
different plant components (rhizosphere soil and roots; Figure  9). 
Analysis revealed that in the bacterial communities, metrics such as 
the average degree, the total number of nodes, and the count of edges 
were more pronounced in healthy samples compared to those in 
diseased samples. Conversely, in the fungal communities, these same 
metrics—average degree, number of nodes, and number of edges—
were elevated in diseased samples relative to healthy ones. This pattern 
suggests an enhanced level of interaction and connectivity within the 
bacterial microbial network in healthy samples, whereas the fungal 
microbial network exhibited a reverse trend in its connectivity.

Discussion

The potato’s ability to adapt to various climates has made it crucial 
for both economy and global food security (Xia et  al., 2017; 

Ajayi-Oyetunde and Bradley, 2018; Iradukunda et al., 2022; Shuang 
et al., 2022). However, its continuous cultivation has led to an increase 
in black scurf disease, caused by Rhizoctonia solani, affecting potato 
yields worldwide (Lankau et  al., 2020; Zhang X.-Y. et  al., 2020; 
Hiltunen et al., 2021; Kankam et al., 2021; Kiptoo et al., 2021; Qin 
et  al., 2022; Yang et  al., 2022). To combat this, strategies such as 
resistance breeding, crop rotation, adjusting sowing dates and 
methods, chemical control, and, more recently, the use of disease-
suppressive biocontrol agents have been employed (Kiptoo et al., 2021; 
Zrenner et  al., 2021; Munir et  al., 2022; Ahmed et  al., 2022b). 
Additionally, the health of soil and microbial diversity in the 
rhizosphere play vital roles in controlling soilborne diseases and 
enhancing plant health (Köberl et al., 2013; Dong et al., 2018; Hao and 
Ashley, 2021).

Repeated cultivation of the same or closely related crops in the 
same soil, known as monoculture, leads to soil sickness, reducing 
crop yield and quality (Zheng et al., 2014). The microbiome in the 
rhizosphere serves as the initial defense mechanism against 
infections from soilborne pathogens and various forms of abiotic 
stress (Bulgarelli et al., 2013; Mendes et al., 2013). However, there 
is limited understanding of the microbial communities in the 
rhizosphere soil and roots of healthy and black scurf-infected 
potato plants across various geographical locations. In our study, 
we conducted a thorough examination of bacterial and fungal 
communities in different locations, sample types, and plant 
components by amplifying the V3-V4 and ITS1-5f variable 

FIGURE 4

Boxplot of bacterial (top) and fungal (bottom) showing alpha diversity indexes of potato plants under three variables (locations, sample types, and plant 
components). HS, healthy rhizosphere soil; DS, diseased rhizosphere soil; HR, healthy roots; DR, diseased roots; KM, Kunming; QJ, Qujing; ZT, 
Zhaotong.
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regions of the 16S and internal transcribed spacer (ITS) rRNA 
genes. Our findings reinforce the notion that distinct plant 
components markedly influence the bacterial and fungal 
community structures, regardless of the sample types and 
geographical locations.

Wang et al. (2022) studied the impact of Alternaria solani 
infection on the microbial communities and multifunctionality 
in healthy vs. infected potato rhizosphere soils to explore the 
relationship between soil microbes, functionality, and pathogens. 
Despite varied observations on how rhizospheric and endophytic 

FIGURE 5

Distribution of bacterial (top) and fungal (bottom) operational taxonomic units in three variables, i.e., plant components (rhizosphere soil and roots), 
sample types (healthy and diseased), and locations (Kunming, Qujing, and Zhaotong).

FIGURE 6

Relative abundance bar plots at phylum level based on the species annotation results in 12 composite samples (average of three replicates per sample) 
of potato plants under three variables. (A) Relative abundance at the phylum level in bacterial communities and (B) relative abundance at the phylum 
level in fungal communities. KM, Kunming; QJ, Qujing; ZT, Zhaotong; HS, healthy rhizosphere soil; DS, diseased rhizosphere soil; HR, healthy roots; DR, 
diseased roots.
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bacteria influence plant growth and health, no specific assembly 
pattern was noted (Lundberg et al., 2012; Lebeis et al., 2015). 
The rhizosphere is highlighted as a crucial habitat for microbial 
colonization into plant components, especially bacterial 
communities (Bulgarelli et al., 2013; Kaushal et al., 2020). In this 
research, we gathered samples from areas where potatoes have 
been cultivated consecutively for 4 years, identifying soil, 

diseased potatoes, and mechanical equipment as key vectors for 
spreading the black scurf pathogen.

Our study showed that the rhizosphere soil significantly affects 
microbial diversity, hosting more bacterial and fungal populations 
than the roots, with most root microbes also present in the rhizosphere 
across different locations. This suggests root microbes likely originate 
from the rhizosphere soil, supported by findings that host plants select 

FIGURE 7

Relative abundance heatmaps at the genus level for top 35 bacterial (A) and fungal (B) genera in group-wise comparison under three variables. HS, 
healthy rhizosphere soil; DS, diseased rhizosphere soil; HR, healthy roots; DS, diseased roots.

FIGURE 8

Relative abundance bar plots for top 10 bacterial (A) and fungal (B) species in group-wise comparison under three variables. HS, healthy rhizosphere 
soil; DS, diseased rhizosphere soil; HR, healthy roots; DS, diseased roots.
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specific microbial communities for their roots from the rhizosphere 
(Lundberg et al., 2012). Moreover, we observed also healthy potato 
plants exhibited richer microbial communities than those infected 
with black scurf. This may be due to disease stress impacting carbon 
availability and microbial growth (Kaushal et al., 2020), aligning with 
research showing healthier soils have more diverse microbes (Fu et al., 
2017; Wu et al., 2017). However, some studies report higher microbial 
diversity in diseased soils (Wu et  al., 2021; Zhang et  al., 2022), 
potentially due to factors like soil type, nutrient levels, crop rotation 
practices, local climate, host plant species, and disease progression 
(Yuan et al., 2020). Potato plant resistance and severity of R. solani in 
different plant components also contribute to the prevalence of 
microbial communities. Bacterial and fungal OTU count was recorded 
maximum in all locations and plant components in rhizosphere soil 
samples than in the root samples.

Host plant’s environment can either support or hinder the 
colonization of specific bacterial and fungal groups in various plant 
components. Thus, bacterial and fungal communities in these specific 
plant components are either boosted or exhausted (Kaushal et al., 
2020). In our study, we  found stable core bacterial and fungal 
communities across all samples, with notable differences in their 
distribution among plant components. Specifically, Actinobacteriota 
and Acidobacteriota were more common in the rhizosphere soil, while 
Proteobacteria and Cyanobacteria were more prevalent in the roots. 
For fungi, Ascomycota was less abundant in the rhizosphere compared 
to the roots, whereas Basidiomycota showed the opposite pattern. 
Results showed that the black scurf pathogen significantly impacts 
these microbial communities.

A substantial number of varied bacteria and fungi are known to 
boost plant growth, reduce the occurrence of diseases, and provide 
other advantageous biological functions for plants (Santoyo et al., 

2016; Gouda et  al., 2018). Our research identifies core microbial 
communities that promote plant growth, enhance resistance, and 
lower disease rates by producing antibiotics, volatile compounds, 
secondary metabolites, and fixing nitrogen. Notably abundant 
bacterial genera include Streptomyces, Lysobacter, Bacillus, 
Pseudomonas, Ensifer, Enterobacter, and the Rhizobium group 
(Allorhizobium, Neorhizobium, Pararhizobium, Rhizobium), which are 
crucial for plant growth, nutrient acquisition, and suppressing 
diseases. Among fungi, Gibberella, Aspergillus, Penicillium sp., and 
Purpureocillium act as growth enhancers and biocontrol agents, while 
others may be saprophytic or pathogenic to crops.

The black scurf pathogen, R. solani (also known as 
Thanatephorus cucumeris), was found in high concentrations in the 
rhizosphere soil and roots of diseased plants, posing a significant 
threat to agriculture by infecting plant roots and disrupting 
symbiotic relationships with beneficial soil microbes. R. solani 
competes for nutrients and may even release toxins to suppress 
beneficial microbes like Streptomyces, Lysobacter, Bacillus, 
Pseudomonas, Ensifer, Gibberella, Aspergillus, Penicillium sp., and 
Purpureocillium, reducing their population and negatively affecting 
the soil’s microbial community and plant health. Additionally, 
pathogenic bacteria and fungi such as Ralstonia solanacearum, 
Alternaria alternata, Thanatephorus cucumeris, Colletotrichum 
gloeosporioides, and Ceratobasidium endornavirus were also present 
in high relative abundance in diseased rhizosphere soil and roots, 
indicating that the health of potato plants is closely linked to these 
microbial communities, with pathogenic ones contributing to the 
spread of R. solani and black scurf disease.

Microbial co-occurrence networks show direct and indirect 
relationships among microbes, highlighting their roles and 
ecological niches. Our findings indicate that R. solani has a more 

FIGURE 9

Co-occurrence network analysis of bacterial and fungal communities at genus level associated with healthy and diseased samples. Plant components 
(rhizosphere soil and roots). Here, HS; healthy soil, DS; diseased soil, HR; healthy roots, DR; diseased roots.
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pronounced effect on the structure of bacterial communities than 
on fungal communities. This aligns with other research, such as 
that by Ahmed et al. (2022a), showing Ralstonia solanacearum’s 
significant impact on bacterial structures over fungal ones (Ahmed 
et al., 2022a). Healthy potato plants showed fewer negative bacterial 
interactions than diseased ones, echoing the findings of Wang et al. 
(2021) and Wu et al. (2021). Stronger and more resilient inter-
microbial relationships, less vulnerable to environmental shifts, 
and more effective in suppressing soil-borne diseases (Tao et al., 
2018). The heightened competition among microbial taxa in 
diseased conditions may result from an increase in potential 
pathogenic fungal and bacterial taxa in the rhizospheres of diseased 
potatoes. Simultaneously, the plant roots may recruit beneficial 
microbes to counteract pathogenic fungi (Zhang et al., 2022). Key 
species identified, such as Streptomyces, Lysobacter, Bacillus, 
Pseudomonas, Ensifer, Enterobacter, the Rhizobium group 
(Allorhizobium, Neorhizobium, Pararhizobium, Rhizobium), 
Aspergillus, Penicillium, Purpureocillium, and Gibberella 
moniliformis, are recognized for enhancing plant growth and 
disease resistance (Ma et al., 2018; Schreiter et al., 2018; Wu et al., 
2020; Zhang J. et al., 2020; Asaturova et al., 2021; Wei et al., 2021; 
Abdelaziz et al., 2023; Rashad et al., 2023).

Conclusion

Our study concludes that potato plants host diverse bacterial and 
fungal communities, with their composition significantly varying 
across different plant components. The rhizosphere soil exhibited 
richer microbial diversity than the roots, and healthy plants showed 
greater microbial diversity than diseased ones. We found that certain 
microbes in the potato microbiome contribute to growth and disease 
resistance, identifying pathogenic communities in diseased plants 
linked to potato black scurf disease. Future research should focus on 
the microbiomes of black scurf-resistant potato varieties, exploring 
potential for disease control through microbiome manipulation to 
improve yield and quality.
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