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Introduction: The accurate estimation of postmortem interval (PMI), the 
time between death and discovery of the body, is crucial in forensic science 
investigations as it impacts legal outcomes. PMI estimation in extremely cold 
environments becomes susceptible to errors and misinterpretations, especially 
with prolonged PMIs. This study addresses the lack of data on decomposition 
in extreme cold by providing the first overview of decomposition in such 
settings. Moreover, it proposes the first postmortem microbiome prediction 
model for PMI estimation in cold environments, applicable even when the visual 
decomposition is halted.

Methods: The experiment was conducted on animal models in the second-
coldest region in the United States, Grand Forks, North Dakota, and covered 
23 weeks, including the winter months with temperatures as low as −39°C. 
Random Forest analysis models were developed to estimate the PMI based 
either uniquely on 16s rRNA gene microbial data derived from nasal swabs or 
based on both microbial data and measurable environmental parameters such 
as snow depth and outdoor temperatures, on a total of 393 samples.

Results: Among the six developed models, the best performing one was the 
complex model based on both internal and external swabs. It achieved a Mean 
Absolute Error (MAE) of 1.36 weeks and an R2 value of 0.91. On the other hand, 
the worst performing model was the minimal one that relied solely on external 
swabs. It had an MAE of 2.89 weeks and an R2 of 0.73. Furthermore, among the 
six developed models, the commonly identified predictors across at least five 
out of six models included the following genera: Psychrobacter (ASV1925 and 
ASV1929), Carnobacterium (ASV2872) and Pseudomonas (ASV1863).

Discussion: The outcome of this research provides the first microbial model 
able to predict PMI with an accuracy of 9.52 days over a six-month period of 
extreme winter conditions.
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Introduction

The postmortem interval (PMI) is the time elapsed between death 
and the body discovery, and its estimation is extremely important in the 
court of law in cases of homicide and suspicious deaths (Janaway et al., 
2009). The decomposition process of an animal or a human body can 
be divided into five stages of decay based on physical and chemical 
changes (Smith, 1986). The early postmortem physical changes 
commonly documented are temperature changes (algor mortis), 
muscular contraction/relaxation (rigor mortis), and the pooling of blood 
by gravity after blood circulation stops (livor mortis) (Janaway et al., 
2009). Following the early postmortem changes, the decomposition of a 
body progresses through several stages that lead to complete 
skeletonization. The first stage is the “fresh,” characterized by the autolytic 
self-digestion of cells and the start of the putrefactive processes caused 
by the bacterial breakdown of tissues. Following, “bloating” (or 
putrefaction) is the stage when the accumulation of gasses produced by 
bacteria causes the body to bloat and to discolorate. Then, “active decay” 
involves the piercing of the body, which releases the accumulated gasses, 
and the breakdown of tissues, organs, and bodily fluids. It is characterized 
by a strong and distinctive odor and the liquefaction of tissues. During 
active decay, most of the body mass is lost due to the action of larvae 
feeding on the remains (Smith, 1986). Subsequently, “advanced decay” is 
characterized by the presence of leathery skin, few bones, hair, and other 
resistant materials. Finally, “skeletonized” (or dry remains) is the stage 
when only skeletal remains and any non-degradable materials such as 
dental fillings or artificial joints are available (Teo et al., 2014). The tissues 
progress through these stages faster during higher temperatures, while 
the lower temperatures can cause a delay or even can halt decomposition, 
making the PMI estimation challenging (Carter et  al., 2015). 
Consequently, the classification of the decomposition stages may not 
be relevant in environments with extremely low temperatures.

Among the key players driving decomposition, intrinsic 
microorganisms (e.g., those that naturally inhabit various tissues and 
organs of the human body) and extrinsic microbial populations (e.g., 
foreign invaders from the environment) were shown to have an 
essential role as decomposers, due to their capability to start the decay 
process and to make it progress further (Hyde et al., 2013, 2015; Carter 
et al., 2015; Metcalf et al., 2016). Moreover, the microbial succession 
on cadaveric remains can be successfully linked with PMI, therefore 
offering a molecular tool also known as “microbial clock” able to 
estimate the time elapsed since death with great accuracy (Metcalf 
et al., 2013, 2017; Javan et al., 2016; Roy et al., 2021). Researchers have 
made attempts to study more systematically the decomposition 
process and the associated microbial successions in various 
circumstances (e.g., different host species, environments, burial 
conditions, anatomical locations for samplings, etc.) to finely tune the 
microbial clock and to evaluate its applicability to forensic scenarios / 
death investigations where PMI is unknown (Pechal et al., 2014, 2018; 
Guo et al., 2016; Burcham et al., 2019; Iancu et al., 2023).

While several works have focused on the comparison between 
animal and human remains and have successfully demonstrated the 
possibility of using animal analogs to study the postmortem microbial 
succession, there is very scarce information availability on 
decomposition in extreme negative temperatures (Komar, 1998; 
Cockle and Bell, 2017; Alfsdotter and Petaros, 2021).

Studies (Carter et al., 2008; Bucheli and Lynne, 2016; Guo et al., 
2016; Metcalf et al., 2016; Tozzo et al., 2020; Roy et al., 2021) so far have 
primarily focused on decomposition during elevated temperatures, 

using either outdoor locations or controlled laboratory conditions. It is 
well known that the decay rate is influenced by many factors, including 
the cause of death, environment, season, vertebrate and invertebrate 
scavengers, humidity, oxygen content, precipitation, and temperature 
(Janaway et al., 2009). Among all factors, environmental temperature 
plays a crucial role for insect activity, microbial composition, and rate of 
the decomposition process. Thus, during low temperatures, insects are 
no longer present on the body, while extreme low temperatures together 
with snow depth can limit the activity and access of vertebrate 
scavengers (Catts and Goff, 1992). Microorganisms are consistently 
present in wide ranges of temperatures during decomposition, as such, 
these could be the only witnesses for the PMI estimation (Iancu et al., 
2015; Bucheli and Lynne, 2016; Metcalf et al., 2017). Certain bacteria 
species, like the ones belonging to Psychrobacter genus are better 
adapted to cold environments, being identified during decomposition 
(Iancu et al., 2015).

The main objective of the current research was to answer the 
following critical question: can forensic microbiology assist in 
predicting the PMI for bodies disposed of in an open field, exposed to 
extreme environmental factors (temperature as low as −39°C, and 
snow depth as high as 130 cm)?

Consequently, the current research aimed to fill in this severe 
knowledge gap on decomposition in extreme environments, by 
providing for the first-time comprehensive data related to the 
decomposition process of pig carcasses along 6 months of extreme 
winter temperatures in a North Dakota outdoor location. This work will 
analyze the evolution of the stages of decomposition in association with 
the climatic conditions and will evaluate the necrobiome structural 
patterns during the carcasses’ breakdown. Additionally, this research 
will evaluate two different sampling areas for the successful development 
of a microbial clock applicable in such extreme environments and will 
provide the first microbial model able to predict PMI with an accuracy 
of 9.52 days in severe negative temperature environments.

Materials and methods

Experimental design

Three pig carcasses (Sus domesticus Erxleben, 1777) (approx. 50 kg 
each) were purchased from a local pig farm and used as human 
analogs for the decomposition and microbiome investigation. The 
Institutional Animal Care and Use Committee (IACUC) protocol was 
not required, as the pigs were euthanized at the farm by captive blitz 
bolt. Further, the carcasses were transported to the research site in less 
than an hour and placed on the Mekinock Field Station research land 
(47°57′11.5″N 97°25′42.4″W), University of North Dakota, Grand 
Forks, North Dakota, at 20 m from one another, facing south. All three 
carcasses were protected from vertebrate scavengers by cages 
(120 × 90 × 180 cm).

University of North Dakota Field Station Committee approved the 
use of a designated plot for decomposition studies, while the research 
project received the approval from the Institutional Biosafety 
Committee (IBC) University of North Dakota (IBC-202111-009).

Daily temperatures (minimum and maximum), relative humidity, 
and wind speed were recorded from the nearest weather station from 
the research site (Grand Forks Air Force Base Weather Station, ND), 
at 3 km, respectively. The temperature under the snow was recorded 
during each sampling time.
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Sample collection

Sample collection was performed weekly, for 23 weeks, starting in 
mid-November 2021. Tissue samples were collected in triplicate via 
sterile cotton swabs from two regions of the head area, as follows: 
exterior region of the nostrils (circular swabbing for 30 s); interior 
region of both nostrils (circular swabbing 15 s/nostril). The sampling 
areas were selected based on accessibility under dense snow cover. To 
avoid disturbing the entire carcass, only the front part of the cage was 
excavated during sampling, and it was carefully covered again 
afterward. A total number of 402 samples were preserved in sterile 
tubes (without any buffer) at −20°C until further analysis. Pig number 
2 (P2) was not sampled during week 11 due to the ice thickness and 
extreme field conditions; and pig number 1 (P1) was not sampled 
during week 21 because the head was submerged, as the field was 
partially flooded from the melting snow.

The carcasses were most of the time under a thick layer of snow, 
monitored and recorded weekly. During each sampling, the head area 
was uncovered only for the duration of samples collection, and covered 
again with snow, to not influence the local decomposition environment.

Genomic DNA isolation

A modified Qiagen Blood and Tissue protocol was used for 
genomic DNA isolation. The protocol used double the quantity of the 
lysis buffers, buffer ATL 360 μL/sample, and buffer AL 400 μL/sample. 
This modification was chosen because the swabs were not preserved in 
any buffer, and there was an increased risk of them absorbing the initial 
lysis buffers and drying during the incubation step. NanoDrop One 
spectrophotometer (Thermo Scientific, United States) was used to assess 
DNA concentration and purity, using the ratio of absorbance at 260 and 
280 nm. To avoid any contamination and cross contamination of the 
samples during collection, sterile gloves, cotton swabs, and collection 
tubes were used, while all laboratory work was performed under aseptic 
conditions via a purifier filtered PCR (Polymerase Chain Reaction) 
enclosure (Labconco, United States). The isolated DNA samples were 
stored at −20°C until submission for Illumina MiSeq sequencing.

16S rRNA gene sequencing and processing

Samples were sequenced via Illumina MiSeq PE300 sequencing 
platform, using the primer pair 341F/805R for the PCR amplification 
of the 16S rRNA gene fragments (V3–V4 variable region) [100 K reads 
per sample/amplicon], at the McGill Genome Centre, Canada.

Paired-end reads from each sample were sequenced with forward 
and reverse reads in separate files and processed by means of the 
microbiome bioinformatics platform QIIME2 (Quantitative Insights 
Into Microbial Ecology 2), v.0.99.6 (Bolyen et al., 2019). Nine samples 
that failed the sequencing were excluded from further processing, 
resulting in 393 samples being used for data analysis. Denoising and 
quality control, including removal of chimeras, were achieved by means 
of the DADA2 plugin v. 1.26.0 (Callahan et al., 2016) and to avoid low 
quality sequences reads were truncated to (280 bp for forward, 220 bp 
for reverse reads). The classifier adopted for the taxonomic assignment 
was Silva v.138 (99% OTUs full-length sequences) (Quast et al., 2012). 
Statistical analyses were performed within the computing environment 
R (R Core Team, 2021). All the taxon abundances were calculated and 

graphically plotted with the aid of the “phyloseq” v.1.42.0 package 
(McMurdie and Holmes, 2013). Alpha diversity was employed to 
evaluate differences within different individuals, locations, and snow 
coverage between the samples. Significance was tested via global 
Analysis of Variance (ANOVA) and pairwise t-test with α < 0.05. Beta 
diversity for differences between the same groups was investigated by 
means of Principal Coordinate Analysis (PCoA).

Modeling

PMI was modeled by means of random forest (RF) implemented in 
the ‘ranger’ package v0.15.1 (Wright and Ziegler, 2017). The sample was 
divided into 70% development (train) and 30% validation (test) set 
maintaining balanced class distributions according to the entire PMI 
range (23 weeks). Three models were trained on different sample subsets: 
total sample (train N = 271, test N = 114), swabs obtained from internal 
nasal cavity (train N = 139, test N = 58), and swabs obtained from external 
nasal cavity (train N = 133, test N = 55). Model tuning was performed 
based on ith hyperparameter combination based on the following grid:

hyper_grid <− expand.grid(.
num.trees = floor(n_features / c(10, 20, 30, 40, 50)),
mtry = floor(n_features * c(0.05, 0.15, 0.25, 0.333, 0.4)),
min.node.size = c(1, 3, 5, 10),
replace = c(TRUE, FALSE),
sample.fraction = c(0.5, 0.6, 0.7, 0.8, 1),
rmse = NA.
)

The models were then used to estimate PMI on the validation set. 
Root mean square error (RMSE), absolute error (MAE), and 
correlation coefficient (R2) were used to compare the different model 
performance on both development (out-of-bag) and validation set 
results. Variable of importance (VIP) was considered to identify ASV 
with estimation power using importance scores based on permutation. 
Results were visualized in “ggplot2” v3.4.4 (Wickham, 2016). The same 
modeling approach was reproduced adding timepoint temperature 
and snow coverage as independent variables to evaluate the difference 
in performance when environmental conditions are known.

Results

Environmental conditions and 
decomposition

The decomposition site is situated on the Mekinock Field Station 
research land, University of North Dakota, Grand Forks, ND, 2 km 
North of US 2 highway (Supplementary Figure S1). The site is situated 
between agricultural fields, with corn, soybeans, and wheat crops, and 
it is characterized primarily by tallgrass prairie. For six winter months 
the field has been covered with snow varying in depths, up to 130 cm.

Grand Forks environmental conditions are characterized by bitter 
cold temperatures, and high winds, being cataloged as the second 
coldest location in the US, after Fairbanks, Alaska (https://www.
weather.gov/wrh/Climate?wfo=fgf, n.d.). Another important 
environmental characteristic is represented by the high difference 
between the minimum and maximum daily temperature.
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During the current experiment, three pig carcasses were placed in 
the field mid-November, being covered with snow shortly after. The 
last half of November recorded a maximum temperature of 5°C, while 
most of the temperatures recorded in December were negative, 
dropping to −33°C. January recorded freezing temperatures, with a 
minimum record of −38°C, and February followed with a similar 
pattern. March continued with freezing temperatures as low as −26°C, 
while the second half of the month registered warmer temperatures. 
April recorded a minimum of −16°C and a maximum of 13°C 
(Supplementary Figure S2).

The relative humidity was constant within the same month and 
between months (Supplementary Figure S3). The most frequent 
precipitation rates were recorded for January and February. Snow was 
the main form of winter precipitation, sometimes accompanied by 
freezing rain, ice, and sleet. During the experimental time frame the 
snow depth recorded 130 cm. High winds up to 50 km/h were recorded 
in November and February, with a maximum wind speed record of 
80 km/h (Supplementary Figure S4).

The decomposition process during the winter months has been 
characterized by a freezing state. At the end of November, the 
outlining of the superficial blood vessels could be observed in the 
abdominal area of pig one, with no visible changes for all the winter 
weeks that followed, as the carcasses were covered with snow. At the 
end of March, the snow melted, followed by another snowstorm in 
April. While the current experiment focused on investigating the 
months with extreme winter temperatures, the decomposition process 
was monitored until skeletal remains stage, recorded mid-June.

Microbial taxonomic diversity and 
abundances

The 393 samples gave a total of 18,153,409 raw sequences, with 
46191.9 mean reads per sample. After the denoising step, 10,377,810 
high-quality sequences remained. Originally 4,285 Amplicon Sequence 
Variants (ASV) were identified. Prior to performing formal analyses and 
creating the figures, pre-processing steps were applied to the ASV 
counts, including pruning to remove samples with all empty values (total 
sum of intensities was zero) that results in the additional removal of eight 
samples. The abundances were standardized to the median sequencing 
depth according to McMurdie and Holmes (2014); ASVs recognized as 
mitochondrial, or chloroplast sequences were also excluded. This 
filtration step resulted in the final identification of 4,173 ASV.

Bacterial relative abundances at phylum and class level throughout 
the decomposition in the total sample (both internal and external 
swabs) show that Firmicutes, particularly the classes Clostridia and 
Bacilli, dominate as the most prevalent phylum in the initial weeks 
(1–7), accounting for an average of 48.8%, followed by Proteobacteria 
(mainly Gammaproteobacteria) (average 32.3%), Actinobacteriota 
(mainly Actinobacteria) (average 9.9%) and Bacteroidota, with class 
Bacteroidia (average 7.3%). Interestingly, after one PMI week, 
Bacteroidota levels (third most abundant phylum in week one) drop 
from 20.1 to 10.1%, and Actinobacteriota rise from 3.8 to 13.9% 
making them the third most abundant phylum in weeks 2–7. At week 
8 there is a significant increase in Proteobacteria, which becomes 
68.9% of the total population. Proteobacteria remains the dominant 
phylum until week 10, with a notable decrease in week 11 (22.9%). 
From weeks 12 to 16, Proteobacteria (average 52.0%) and Firmicutes 

(average 37.7%) have similar relative abundances, whereas from week 
17 onwards Proteobacteria becomes the most abundant phylum until 
the end of the experiment (average 87.8%) (Figure 1A). Remarkably, 
there is also an increase in Campylobacterota with the class 
Campylobacteria (4.9%) and Bacteroidota (8.8%) in week 23 
(Figure 1B). Details for the internal and external samples at phylum 
and class level can be found in the Supplementary Figure S5.

Microbial alpha and beta diversity analyses

Alpha diversity measurements to compare the two anatomical 
locations used for the samplings revealed a significantly higher 
richness (“Observed”) and diversity (“Shannon”) for samples collected 
on the exterior part of the nose in comparison with those collected 
internally (T-test p-value < 0.0001 and 0.00058, respectively) 
(Figure 2A). Despite the increased diversity of the exterior samples, 
when plotted on a PCoA all samples were equally spread and did not 
create specific clusters associated with the anatomical location of the 
sampling (Figure 2B).

When comparing the diversity results for the three pigs used in 
the experiment, it is possible to notice that “Pig 2” has a lower richness 
(ANOVA p = 0.0088) and Shannon diversity (ANOVA p = 0.00042) in 
comparison with “Pig 1” (Figure 3A). However, also in this case the 
overall distribution of the samples collected from the three animals in 
the PCoA does not show any clustering associated with the specific 
animal, and “Pig 2” samples are spread and mixed between “Pig 1” and 
“Pig 3” samples (Figure 3B).

Snow depth was also considered when evaluating alpha diversity 
during all 23 weeks. The observed richness, as well as the Shannon 
diversity, fluctuates with a tendency of higher mean values for very shallow 
depths (~5–17 cm) and for medium depths (~63–140 cm) and lower 
means for small depths (~25–50 cm) and large depths (~177–130 cm) 
(ANOVA p-value < 0.0001) (Figure 4A). The PCoA shows consistent 
trends according to the snow coverage, suggesting that certain variables 
are differentially abundant at different depth conditions (Figure 4B).

Finally, when looking at increasing PMIs, it is possible to observe 
a decrease in observed richness as well as in Shannon diversity up to 
8 weeks, followed by some fluctuations with increased diversities from 
9 to 14 weeks, after which both observed richness and Shannon 
diversity decrease again (ANOVA p-value < 0.0001) (Figure 5A). The 
PCoA shows consistent trends according to the PMI, suggesting that 
certain variables are differentially abundant at specific time points 
postmortem (Figure 5B).

Postmortem microbiome prediction model

Using Random Forest analysis models were developed to estimate 
PMI based either uniquely on the bacterial data (“Minimal RF 
Model”) or based on both microbial data and measurable 
environmental parameters such as snow depth and external 
temperature (“Complex RF Model”). For each of them, models were 
developed either using only the internal nose swabs (“Internal”), the 
external nose swabs (“External”) or using all the swabs (“Total”) 
(Figure 6).

Among the six developed models, the best performing one is the 
complex model based on both internal and external swabs 
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(MAE = 1.36 weeks, R2 = 0.91), whereas the worst performing one is 
the minimal one based on external swabs only (MAE = 2.89 weeks, 
R2 = 0.73). The variable importance plots (VIPs) with a score > 1 
showed the consistent presence of specific predictors across all the 
different models developed (ASV1925, ASV1863), across the majority 
of the models (ASV2872, ASV1929), and across specific models only 
(ASV2167, ASV3752, ASV1946 only in “Total” and “Internal” models, 
ASV2134, ASV2373, ASV1898 only in “Internal” models, ASV2362, 
ASV2792, ASV2356 only in “Total” and “External” models, ASV2735, 
ASV2370, ASV2845, ASV3715 only in “External” models, ASV2950, 
ASV509 only in “Total” models) (Figure  7). For the “Complex” 
models, temperature and snow depth always represented predictors 
with a high importance score.

Among all predictors identified, those commonly identified 
between at least five out six models include the genera Psychrobacter 
(ASV1925 and ASV1929), Carnobacterium (ASV2872) and 
Pseudomonas (ASV1863). Other taxa were defined as good predictors 
only in selected models; examples are the genera Aeromonas 
(ASV2167), Rothia (ASV3752), Moraxella (ASV1946), 

Clostridium_sensu_stricto_5 (ASV2373), Pseudomonas (ASV1898) 
and Shewanella (ASV2134), which are considered identifiers only in 
“Internal” or “Internal” and “Total” models. Similarly, the genera 
Clostridium_sensu_stricto_1 (ASV2362 and ASV2356, including the 
species Clostridium_butyricum, ASV2370), Lactobacillus (ASV2792), 
Streptococcus (ASV2735), Terrisporobacter (ASV3715) and 
Turicibacter (ASV2845) are identifiers only for “External” or 
“External” and “Total” models. Finally, genus Sporosarcina (ASV2950) 
and Bacteroides_stercoris species (ASV509) are identifiers only in 
“Total” models.

Considering the most significative taxa for PMI estimation based 
on their importance scores, it is possible to identify different trends 
(Figure 7G); respectively, taxa whose relative abundance increases 
over time, and taxa characterized by an initial increase on short PMIs 
followed by a decrease in abundance over time. Psychrobacter sp. 
increase in abundance consistently starting from 5 weeks PMI and 
reach and maintain their highest relative abundance starting from 
10 weeks PMI. Similarly, Pseudomonas sp. tend to increase in 
abundance between 5 and 9 weeks PMI and are high again at 18 weeks. 

FIGURE 1

Bacterial community relative abundances for the top 10 phyla (A) and classes (B) for the total swabs (internal and external) for up to 23  weeks PMI.

FIGURE 2

(A) Observed richness and Shannon diversity for samples collected either externally (purple) or internally (yellow) from the nostrils of the three pigs. 
p-value significance: * <0.05, ** <0.01, *** <0.001, **** <0.0001. (B) PCoA (Principal Coordinates Analysis) on unweighted-UniFrac distance for samples 
collected externally (purple) or internally (yellow) from the nostrils of the three pigs.
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On the contrary, Moraxella sp. are abundant from 1 to 5 weeks, after 
which their abundance is low. Clostridium_sensu_stricto_1 sp. 
abundance is relatively high from 1 to 7 weeks, decreases in weeks 
8–10, and increases again in weeks 11–16, after which decreases to low 
levels. Rothia sp. finally increased in abundance from 2 to 5 weeks PMI 
and constantly decreased until the end of the experiment.

Discussion

The estimation of the time elapsed since death is a highly exploited 
topic in the forensic arena, with an increasing body of research being 
conducted with the ultimate aim of improving the current 
understanding on cadaveric decomposition. One key research area is 
the development of models for PMI estimation applicable to various 
scenarios (e.g., terrestrial, or aquatic environments, exposed or buried 
bodies) and tuned to consider the effect that intrinsic and extrinsic 
variables may play on such estimations (Metcalf et al., 2013, 2017; 
Burcham et al., 2024). Among all the variables known to affect the 

decomposition rate and consequently the PMI estimation of remains, 
temperature is probably one of the most studied ones (Mann et al., 
1990; Carter et al., 2006, 2008; Burcham et al., 2019). Decomposition 
is halted by very low temperatures, and macroscopically it can result 
in the complete interruption of the successional gross changes 
normally observed with increasing PMIs (Damann and Carter, 2013). 
As a result, PMI estimation in low or extremely low temperature 
environments suffers from high errors and may ultimately result in 
justice miscarriages. Moreover, an environment with extreme 
temperatures poses certain difficulties when examining a death scene. 
Consequently, to provide reference data and microbial prediction 
models for the PMI estimation, taphonomy studies in such 
environments are more than necessary to have a better understanding 
of the role the environmental factors play during decomposition.

It is worth noting that decomposition continues even at 
temperatures below 0°C due to the body salt content, as previously 
demonstrated (Vass et al., 1992), while the snow can act as an 
insulate for low temperatures by trapping residual heat (Coulson 
et al., 1995). At or under 4°C the bacterial activity is slowed down 

FIGURE 3

(A) Observed richness and Shannon diversity for samples collected both internally and externally from Pig 1 (red), Pig 2 (gray) and Pig 3 (blue). p-value 
significance: * <0.05, ** <0.01, *** <0.001, **** <0.0001. (B) PCoA (Principal Coordinates Analysis) on unweighted-UniFrac distance for samples 
collected from Pig 1 (red), Pig 2 (gray) and Pig 3 (blue).

FIGURE 4

(A) Observed richness and Shannon diversity for samples collected under increasing snow depths in cm. (B) PCoA (Principal Coordinates Analysis) on 
unweighted-UniFrac distance for samples collected under different snow depth levels.

https://doi.org/10.3389/fmicb.2024.1392716
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Iancu et al. 10.3389/fmicb.2024.1392716

Frontiers in Microbiology 07 frontiersin.org

(Micozzi, 1997), resulting in a slower rate of decomposition and 
an inversed colonization. Namely, bodies exposed to extreme cold 
will decompose from outside in, and not from the inside 
(gastrointestinal tract). Our study aimed to characterize the 
microbial spatial and temporal shifts through decomposition of 

pig carcasses during North Dakota’s extreme winter. With no 
nearby mountains or big water bodies, Grand Forks is subject to 
great temperature variation and to the cold Arctic high-pressure 
system, with high precipitation rate represented by snow during 
the winter months.

FIGURE 5

(A) Observed richness and Shannon diversity for samples collected for increasing PMIs (reported in weeks). p-value significance: * <0.05, ** <0.01, *** 
<0.001, **** <0.0001. (B) PCoA (Principal Coordinates Analysis) on unweighted-UniFrac distance for samples collected at increasing PMIs from 1 to 
23  weeks.

FIGURE 6

RF models based on: (A) Microbial data only (“Minimal RF Model”) using internal and external swabs (“Total”); (B) Microbial data only (“Minimal RF 
Model”) using internal swabs only (“Internal”); (C) Microbial data only (“Minimal RF Model”) using external swabs only (“External”); (D) Microbial and 
environmental data (“Complex RF Model”) using internal and external swabs (“Total”); (E) Microbial and environmental data (“Complex RF Model”) using 
internal swabs only (“Internal”); (F) Microbial and environmental data (“Complex RF Model”) using external swabs only (“External”). Mean Absolute Error 
(MAE) and R2 values are reported for each model. Train set  =  blue triangle; test set  =  green circle.
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Studies in environments with extreme low temperatures and high 
precipitation rates, represented by snow, are scarce (Komar, 1998; 
Wescott, 2018; Alfsdotter and Petaros, 2021). A recent study 
performed in Sweden (Alfsdotter and Petaros, 2021) aimed to 
investigate the taphonomic changes and PMI of human cadavers 
exposed to outdoor terrestrial and aquatic environments. This study 
used data from autopsies carried out between 2010 and 2020. The 
decomposition scoring was performed from photographs and the 
total body score (TBS) for terrestrial cases was assessed after Megyesi 
et al. (2005) method. In the current experiment, the TBS assessment 
was not possible as the carcasses were covered by snow for more than 
5 months. The authors (Alfsdotter and Petaros, 2021) used linear 
regression analysis to evaluate the relationship between 
decomposition stages and ADD, for cases where the PMI was less 
than 2 years. The results showed a high correlation between TBS and 
actual logADD, while the longest PMI without skeletonization was 
seen in a case exposed during the cold part of the year. Another study 
using ADD and death investigation cases was performed in Canada 
(Cockle and Bell, 2017), emphasizing the difficulty of PMI estimation 
during cold and freezing temperatures (4°C or less). Both Sweden 
and Canada studies used Megyesi et al. (2005) method for the ADD 

calculations. However, it is worth noting that all negative 
temperatures were given a “zero” value, while Cockle and Bell (2017) 
determined that PMI and ADD were not significant dependent 
variables for decomposition. The bodies that were exposed outdoors 
during the entire winter in Canada, needed more temperature and 
time, to progress through the final decomposition stages. When 
comparing the current results with these previous studies, there is a 
gap in adding the snow factor and extreme low temperatures. As 
Cockle and Bell (2017) emphasized, special consideration should 
be given to bodies found in freezing or cold environments, when 
involving the PMI estimation, as these bodies will need more ADD 
to complete decomposition.

If studies on decomposition in cold climates are sparse, studies 
involving microbiomes during winter decomposition are even sparser. 
Microbiome data can add critical information for the PMI estimation, 
as this estimation becomes less accurate with temperature decreasing. 
The investigation of the postmortem microbiome can be performed 
via autopsy cases (Pechal et al., 2018; Iancu et al., 2023), outdoor 
research facilities (Hyde et al., 2013; Bucheli and Lynne, 2016), and 
field experiments using pig carcasses as human analogs (Iancu et al., 
2015; Matuszewski et al., 2020).

FIGURE 7

List of predictors with importance scores >1 used by: (A) “Minimal RF Model” with “Total” samples; (B) “Minimal RF Model” with “Internal” samples; 
(C) “Minimal RF Model” with “External” samples; (D) “Complex RF Model” with “Total” samples; (E) “Complex RF Model” with “Internal” samples; 
(F) “Complex RF Model” with “External” samples. For the taxonomic assignation of each ASV see Supplementary material Data S1; (G) Heatmap of the 
VIP selected by the “Complex RF Model” with “Total” samples indicating their relative abundances over increasing PMIs.
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Microbial taxonomic successions observed over time are 
consistent with the results reported in other works conducted in 
non-extreme environments (Pechal et al., 2014; Metcalf et al., 2016; 
Burcham et al., 2024), showing an increase of Gammaproteobacteria 
with prolonged PMIs and a decrease of Firmicutes (Clostridia class) 
toward the latest time points analyzed, up to 23 weeks. Firmicutes are 
normally highly abundant at advanced and skeletonised stages (Pechal 
et al., 2014; Speruda et al., 2022), however they were more abundant 
during the earlier PMIs and decreased in abundance consistently to 
reach notably lower relative abundances after 18 weeks PMI. A 
decrease in Firmicutes abundances on the head skin from the rupture 
of mice bodies (active decay) was also observed by Metcalf et  al. 
(2013), in association with an increase of Gammaproteobacteria, 
similarly to the current study. They also found an increase of 
Alphaproteobacteria during the latest time points analyzed (from 34 
to 48 days PMI); similar findings were found in our study specifically 
after 13 weeks PMI only for the internal samples and not for those 
collected on the outside of the nose. Similarly, to this previous study 
(Metcalf et al., 2013), where Actinobacteria present at time 0 and after 
3 days on the skin of belly and head decreased consistently in 
abundance from 9 days onwards, we  noticed a reduction in 
Actinobacteria over the course of the experiment, particularly from 
8 weeks PMI onwards. Overall, these results suggest that the microbial 
succession identified in extreme cold environments follows similar 
patterns of the non-extreme environment experiments, but on slower 
rates due to the environmental conditions altering the 
decomposition process.

When comparing internal versus external samples in the current 
experiment, Proteobacteria was prevalent in the internal samples, 
while Firmicutes dominated the external ones, being also 
characterized by a higher taxonomic diversity. The presence of 
Firmicutes on the skin of decomposing remains, together with 
Bacteroidetes and Fusobacteria, was already reported by Dickson et al. 
(2011) in submerged remains. Psychrobacter and Pseudomonas could 
be considered microbial markers when investigating bodies found in 
similar environments, while Clostridium_sensu_stricto_1 could 
be considered when investigating external skin samples. Psychrobacter, 
Pseudomonas and Carnobacterium could be considered candidates for 
“winter microbial markers” in the same way that Streptococcus and 
Staphylococcus were observed to be biomarkers for shorter periods of 
time, in normal environmental conditions (Pechal et al., 2018; Iancu 
et al., 2023). Psychrobacter has been previously described as a putative 
winter biomarker for above the ground (Iancu et al., 2015) and grave 
soil (Carter et al., 2015) decomposition environments, and was found 
specifically in winter studies on submerged pig heads also by Dickson 
et al. (2011). In the same study, Carnobacterium was also found as an 
indicator of autumn season, differently from the terrestrial study 
mentioned above and from the current work.

As previous studies (Johnson et al., 2016; Burcham et al., 2024) 
mentioned, machine learning microbiome-based models (e.g., 
random forest regression models) can be used to predict the PMI 
from different climates and environments. In the current case, 
among all RF models investigated, the best model was based on 
both sample types (internal and external), while snow coverage and 
temperature at the time of the sample collection were among the 
most important predictors.

This is the first study to characterize microbial diversity and 
dynamics in the second coldest location in the United States, providing 
the first microbial model able to predict PMI with an accuracy of 

9.52 days in severe negative temperature environments, along 6 
months of winter. The limitation of the current study could 
be represented by the lack of Body Total Score (TBS) data. Since the 
pig carcasses were covered by snow for almost the entire duration of 
the experiment, no TBS assessment was possible. In order to provide 
more information regarding the decomposition process and RF 
models based on microbial succession, successive and comparative 
studies across different geographical regions should be performed, to 
be used as reference data in medicolegal death investigations.
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