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Background: Desmodium species used as intercrops in push-pull cropping

systems are known to repel insect-pests, suppress Striga species weeds, and

shift soil microbiome. However, the mechanisms through which Desmodium

species impact the soil microbiome, either through its root exudates, changes

in soil nutrition, or shading microbes from its nodules into the rhizosphere, are

less understood. Here, we investigated the diversity of root-nodule microbial

communities of three Desmodium species- Desmodium uncinatum (SLD),

Desmodium intortum (GLD), and Desmodium incanum (AID) which are currently

used in smallholder maize push-pull technology (PPT).

Methods: Desmodium species root-nodule samples were collected from

selected smallholder farms in western Kenya, and genomic DNA was

extracted from the root-nodules. The amplicons underwent paired-end Illumina

sequencing to assess bacterial and fungal populations.

Results: We found no significant di�erences in composition and relative

abundance of bacterial and fungal species within the root-nodules of the

three Desmodium species. While a more pronounced shift was observed for

fungal community compositions compared to bacteria, no significant di�erences

were observed in the general diversity (evenness and richness) of fungal and

bacterial populations among the three Desmodium species. Similarly, beta

diversity was not significantly di�erent among the three Desmodium species.

The root-nodule microbiome of the three Desmodium species was dominated

by Bradyrhizobium and Fusarium species. Nevertheless, there were significant

di�erences in the proportion of marker gene sequences responsible for energy

and amino acid biosynthesis among the three Desmodium species, with higher

sequence proportions observed in SLD.

Conclusion: There is no significant di�erence in the microbial community of

the three Desmodium species used in PPT. However, root-nodule microbiome

of SLD had significantly higher marker gene sequences responsible for energy

and amino acid biosynthesis. Therefore, it is likely that the root-nodules of the
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three Desmodium species host similar microbiomes and influence soil health,

consequently impacting plant growth and agroecosystem functioning.

KEYWORDS

16S and ITS, Amplicon sequencing, Desmodium species, root-nodules microbiome,

push-pull cropping system

1 Introduction

Africa grapples with the escalating challenge of feeding its
rapidly growing population, leading to high rates of hunger and
poverty (OECD/FAO, 2016). Addressing this crisis necessitates
enhancing agricultural productivity to curb hunger and poverty
and ensure food security (Tadele, 2017). One promising approach
involves synergizing perennial and feed legumes in agroecological
systems, such as push-pull technology (PPT), offering an alternative
for elevating agricultural sustainability (Khan et al., 2014; Tadele,
2017). Since its inception in the mid-1990s, PPT has been
recognized as a pathway for sustainable cereal crop intensification
against lepidopteran pests, parasitic Striga weeds, and biodiversity
restoration (Khan et al., 2014; Mutyambai et al., 2023). The
strategy provides additional ecosystem services such as soil
phytoremediation, moisture content regulation, and shifts in soil
microbial and physico-chemical properties (Drinkwater et al.,
2021; Jalloh et al., 2024). PPT involves intercropping perennial
Desmodium species alongside maize while bordering the plantings
with Napier or Brachiaria grass (Khan et al., 2014). The ‘pull’ plant
(Brachiaria/Napier grass) produces a gummy substance in reaction
to the penetration of the stemborer larvae, which causes the death
of early instar larvae (Khan and Pickett, 2004). On the other hand,
the “push” plant (Desmodium species) emits repellent volatiles
against crop pests, limiting oviposition preference of female moths
(Cheruiyot et al., 2018; Mutyambai et al., 2019; Peter et al., 2023).
Desmodium species also prevent Striga hermonthica parasitism by
inducing allelopathic suicidal germination, thereby providing a
novel means of in situ reductions of the Striga seed bank in soil
(Tsanuo et al., 2003). Despite the existence of several Desmodium

species worldwide, only a few species have been utilized
in PPT.

Globally, 350 Desmodium species have been delineated, of
which only 39 species have been identified in Africa (Ma et al.,
2011). Of these Desmodium species, PPT has utilized three,
including silverleaf desmodium (SLD) [Desmodium uncinatum

(Jacq.) DC] in the conventional PPT (Khan et al., 2000), greenleaf
desmodium (GLD) [D. intortum; (Mill.) Urb.] in the climate-
smart PPT (Khan et al., 2016a), and African desmodium (AID)
(D. incanum DC.) in the third-generation PPT (Cheruiyot et al.,
2021). In addition,Desmodium species have specialized interactions
with host-specific endophytic microbes such as rhizobia, forming
atmospheric N2-fixing root-nodules that have been reported to
yield up to 90 kg N ha−1 seasonally (Gu et al., 2007; Ojiem et al.,
2007; Xu et al., 2016). Moreover, Desmodium plants enhance the
availability of major nutrients such as phosphorus and carbon in
agricultural soils (Drinkwater et al., 2021; Ndayisaba et al., 2022,
2023). AID also effectively remediates petroleum-degraded soils,

favoring the multiplication of rhizospheric microbiota (Kitamura
and Maranho, 2016). However, the mechanisms through which
Desmodium plants affect the below-ground microbial communities
have been largely unknown.

Beneath the surface, plant roots engage with a diverse soil
microbiome, shaping a localized plant-soil feedback mechanism
(Mutyambai et al., 2019; Hannula et al., 2021). This interaction,
guided by microbial communities, positively influences soil
nutrient cycling, fostering beneficial microbe s survival and plant
growth and defense against insects (Muthini et al., 2020; Hannula
et al., 2021; Mutyambai et al., 2023; Jalloh et al., 2024). The
plant root microbiome is shaped by microbe historical contingency
(Carlström et al., 2019), interspecies microbial competition,
rhizodeposit signaling cues (flavonoids), and numerous symbiosis
(Nod) genes (Curtis et al., 2002; Shi et al., 2011; Oldroyd, 2013).
Plants cannot assimilate nitrogen, the primary limiting nutrient in
agriculture, due to their inability to break down existing complex
bonds (Oldroyd, 2013). However, rhizobia colonizes legume plant
roots, forming an endosymbiotic relationship that ensures nitrogen
is converted to ammonia via biological nitrogen fixation (BNF)
(Jalloh et al., 2020; Wekesa et al., 2022). This happens in specialized
organs known as root-nodules, which are formed via an intricate
association with rhizobia (Oldroyd, 2013). While nodulation has
long been studied as a two-member system (legume plant and
rhizobia), recent research highlights complex and distinct microbes
residing in separate ecological microniches (Hartman et al., 2017).

Rhizobia, the nitrogen-fixing bacteria crucial for nodulation,
operate in harmony with other representative microbes, forming
a balanced association with non-rhizobial endophytes (NREs) like
Azospirillum, Devosia, Bacillus, Pseudomonas, and Streptomyces

(Mayhood and Mirza, 2021). While information on nodule-
colonizing fungi remains limited, various genera, such as
Aspergillus, Glomus, Penicillium, Trichoderma, Macrophomina,
Fusarium, and Rhizoctonia, have been isolated from legume
root-nodules using culture techniques (Muthini et al., 2020;
Mayhood and Mirza, 2021). These bacterial and fungal endophytes
facilitate nutrient cycling and acquisition, siderophore production,
antibiotic resistance, phosphate solubilization, bio-defense against
pathogens, regulation of osmotic pressure, hydrolytic enzyme
production and secretion of metabolites (Rajendran et al., 2008;
Dakora, 2015; Hartman et al., 2017; Drinkwater et al., 2021; Jalloh
et al., 2024). These NREs have also been proven to positively impact
plant growth when co-inoculated with rhizobia (Mayhood and
Mirza, 2021). Consequently, this legume-microbe association holds
significant environmental benefits by reducing the overreliance
on/and disproportionate use of synthetic chemical fertilizers, which
are known contributors to human and environmental hazards
(Lupini et al., 2023).
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The existing body of research has extensively examined and
documented plant-plant and plant-insect interactions within PPT
(Khan et al., 2016b; Mutyambai et al., 2016, 2019, 2023). However,
the domain of below-ground interactions, particularly focusing on
microbial communities inhabiting Desmodium root-nodules and
their potential ecological benefits, remains largely unexplored. In
this study, we hypothesized that Desmodium species root-nodules
serve as habitats for diverse fungal and bacterial communities.
Exploring these belowground interactions is anticipated to uncover
novel dimensions that could significantly contribute to enhancing
the sustainability and productivity of PPT.

2 Materials and methods

2.1 Sampling site

The study was carried out in western Kenya across four
counties: Homabay, Siaya, Vihiga and Kisumu (Figure 1;
Supplementary Table S1). Root-nodule samples of Desmodium

species were collected from 24 smallholder maize PPT farmers’
fields, with eight PPT farms for each Desmodium species that
were already established. Western Kenya soils are predominantly
ferralsol, cambisols, nitisols, and acrisols and have varying
physicochemical properties based on agronomic practices
(Mutyambai et al., 2019; Ndayisaba et al., 2023). Climate
conditions in the study areas vary, with a mean annual temperature
of 25 ± 2◦C and a bimodal annual rainfall averaging 1,395 –
1,500mm per annum (p.a). Vihiga receives 1,800 – 2,000mm
of rainfall p.a, an average of 24◦C, and altitudes ranging from
1,300 to 1,500m above sea level (masl). Siaya experiences an
average rainfall of 800 – 2,000mm p.a, with a mean annual
temperature of 21◦C, and altitudes ranging from 1,140–1,400 masl
(Odendo et al., 2010). Homabay receives an average rainfall of
1,000–1,250mm pa, with a mean annual temperature of 15–30◦C,
with an average altitude of 1,146 masl (Ogenga, 2021). Kisumu
records an average of 1,362mm p.a., temperatures ranging from
18–34◦C, and altitudes ranging from 1,100 to 1,131 masl (Nyberg
et al., 2020). Soil temperature and relative humidity were obtained
from Open-Meteo (https://open-meteo.com/) using their Python
Application Programming Interface (API) for the year 2022
(Table 1; Supplementary Table S1).

All sampled smallholder farmers’ fields practiced PPT with
Brachiaria (Brachiaria cv mulato II) as the border crop. The age
of PPT farms ranged from 5 to 20 years, relying on seasonal rainfall
without any synthetic chemical inputs throughout the cultivation
period (Mutyambai et al., 2019; Jalloh et al., 2024).

2.2 Sample collection

Desmodium species root-nodule samples were collected
during the short rain season from November to December
2022 when Desmodium plants were at the flowering stage
(Supplementary Table S1). A 70% ethanol solution was used
to sterilize the spade, which was used to detach the rooting
system from five healthy Desmodium plants selected from five
separate rows in each smallholder maize PPT field. Afterwards,

10 intact root-nodules were detached from each of the five plants
after shaking the Desmodium plant roots to remove adhering
rhizospheric soil, followed by careful washing under running
water. These root-nodules were subjected to drying using sterile
adsorbent paper, and finally placed in closed-cap 10mL sterile
centrifuge tubes (Thermo Fischer Scientific, Wilmington, USA).
The collected root-nodule samples were transported in a cooler
box to the International Center of Insect Physiology and Ecology
(icipe), Nairobi, Kenya, and stored at 4◦C before further analysis.

2.3 Root-nodules genomic DNA extraction,
library preparation and sequencing

Genomic DNA (gDNA) extraction was carried out using a
modified protocol of Fukuda et al. (2022). Four healthy nodules
were selected from each Desmodium plant based on consistency
in size and shape making a total of 20 Desmodium root-nodules
per farm for each Desmodium species which were pooled together
during analysis. After that, they were sterilized by washing with
70% ethanol and 1% sodium hypochlorite for 2min each to remove
air bubbles from the tissues and reduce surface tension. This
was followed by six-time washes with sterile distilled water, as
previously described by Da Silva et al. (2021). To validate sterility,
the distilled water from the last rinsing step was plated on yeast
extract mannitol agar (YEMA) and potato dextrose agar (PDA)
(Oxoid Ltd, Basingstoke Hampshire RG24, UK), and incubated at
28 ± 2◦C for 48 h and 25 ± 2◦C for 72 h for bacteria and fungi,
respectively (Vincent, 1970; Jing et al., 2022; Jalloh et al., 2024).
The nodules were air-dried on sterile blotting paper in a sterilized
laminar flow cabinet and aseptically crushed using a sterile mortar
and pestle in liquid nitrogen. Total gDNA was extracted from
confirmed surface-sterilized nodules using an Isolate II plant
DNA kit (Bioline, London UK) according to the manufacturer’s
protocol. The extracted DNA was visualized using 1.5% (wt/vol)
agarose gel and quantified using a NanoDropTM 2000 UV-Vis
spectrophotometer (Thermo Fischer Scientific Inc., California,
USA). Samples with good quality DNA ranging from 1.7 to 2.1
based on A260/A280 nmwere selected for 16S rDNA (bacteria) and
internal transcribed spacer gene (ITS, fungi) sequencing.

Library preparation, PCR and sequencing were conducted
at Macrogen Europe (Amsterdam, The Netherlands). Amplicon
sequencing targeted the 16S rDNA gene (V3–V4; bacteria) and
ITS gene regions (ITS1–ITS2; fungi). Fragment libraries were
prepared using Herculase II Fusion DNA Polymerase Nextera XT
Index V2 Kit. For 16S rDNA gene amplicon library preparation,
we used the primer pair 341-F (CCTACGGGNGGCWGCAG)
and 805-R (GACTACHVGGGTATCTAATCC) that flanks the V3–
V4 dual region (Herlemann et al., 2011; Jalloh et al., 2024).
The ITS gene region was amplified using the primer pair
ITS1F (5

′

-CTTGGTCATTTAGAGGAAGTAA-3
′

) and ITS2R (5
′

-
GCTGCGTTCTTCATCGATGC-3

′

) (Gardes and Bruns, 1993).
Paired-end (2 × 300 bp) sequencing was performed using the
MiSeq v3 sequencing kit (Illumina) and run on a MiSeq Illumina
sequencing platform (Illumina, San Diego, USA), following the
manufacturer’s instructions.
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FIGURE 1

Map of Kenya showing maize push-pull farms where Desmodium root-nodules samples were collected.

TABLE 1 Comparative analysis of weather data for relative humidity and soil temperature across the study counties.

Variable Soil depth (cm) Studied counties F-value (2, 21) P-value

Vihiga Siaya Homabay Kisumu

Soil temperature 7-28 21.7± 0.512a 22.1± 0.309a 22.8± 0.512a 22.1± 0.458a 0.7785 0.5198

Relative humidity - 76.0± 0.436 bc 77.3± 0.263 c 72.8± 0.436a 75.2± 0.390b 28 0.001

Mean± SE. Different letters across the rows indicate a significant difference (P< 0.05) according to Tukeys honest significance (HSD) test.

2.4 Bioinformatics analyses

FASTQC (v0.11.6) was used to assess the quality of raw
sequence reads (Wingett and Andrews, 2018). All subsequent
analyses were conducted in R v4.3.0, using the RStudio v2023.06.0
interface (R Core Team, 2023). The sequencing libraries underwent
further processing using the Divisive Amplicon Denoising
Algorithm, DADA2 (v1.28.0), following the workflow proposed
by Callahan et al. (2016) and Jalloh et al. (2024). Bacterial
and fungal reads were trimmed and filtered with specific
customized parameters, including a fixed length of 250 from 3

′

-
end and 230 from 5’-end, respectively, using the “filterAndTrim”
function with custom parameters maxN = 0, maxEE = c(2,5),
truncQ = 2, (Schloss, 2020). Removal of low-quality DNA
sequences enhanced merging accuracy in DADA2. Dereplication
was carried out using the “derepfastq” function, and high-quality
sequences were inferred from their associated unique amplicon
sequence variants (ASVs), including singletons. Forward and
reverse overlapping reads were merged using the “mergepairs”
function. Spurious and chimeric ASVs were eliminated using
“removebimeradenovo” function.

Taxonomy was assigned against pre-trained databases,
including the SILVA database v138.1 (Quast et al., 2013)

and UNITE ITS database v9.0 (Nilsson et al., 2019) using
the “assigntaxonomy” function in a sequence table output
(seqtab.nochim). Further analyses, including diversity assessment,
visualization, and manipulation of the data, were performed
using phyloseq v1.44.0 (McMurdie and Holmes, 2013), Tidyverse
package v2.0.0 (Wickham et al., 2019), and Janitor package v2.2.0
(Firke, 2021). The taxonomy and ASV tables created two phyloseq
objects for both bacteria and fungi. Bacterial and fungal ASVs
were subjected to prevalence taxonomic subsetting to eliminate
undesired sequences including plant-associated chloroplast,
taxonomically unassigned ASVs at the genus level (NAs) (28
out of 514 which is ∼5.08% for 16S rDNA and 206 out of 799,
∼25.78% for ITS), mitochondrial sequences and singletons before
downstream analysis using the “subset_taxa” function of phyloseq.
Subsequent taxa were filtered using the “prune_taxa” function
across all samples to retain only the most abundant ones. The
two phyloseq objects were merged with the sample metadata,
transformed into data frames, and underwent cumulative sum
scaling using the metagmisc package (Mikryukov, 2020). The
top 30 genera and species relative abundance bar plots were
generated using the ggplot2 package v3.4.2 (Wickham, 2016).
Relative abundance count data for the dominant genera and
species were transformed into proportions and analyzed using
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the compositional total sum scaling (TSS) linear regression
model (P < 0.05).

Alpha diversity (α-diversity) was calculated using the
Microbiota process v1.9.3 based on sample ASV richness/profiles
from a rarefied phyloseq object using; “Chao1,” “Evenness,” and
“Shannon” diversity predictors (Xu et al., 2022; Jalloh et al., 2024).
The resulting indices were subjected to a Shapiro-Wilk test to
assess normality and visualized with boxplots using the “ggpubr”
package v0.6.0 (Kassambara, 2020). Beta diversity (β-diversity) was
computed using generalized Unifrac distances based on phylogeny,
using the “phyloseq:ordinate” function (Lozupone and Knight,
2005; Chen et al., 2012). Resulting distances were clustered and
ordinated using principal coordinates analysis (PCoA) biplots
using the Vegan package v2.6.4 (Oksanen et al., 2012). Venn
diagrams were generated using the “Venn Diagram” package
v1.7.3 (Chen and Boutros, 2011; Jalloh et al., 2024) to illustrate
shared and unique ASVs as influenced by study locations and
the three Desmodium species at the species level. Permutational
multivariate analysis of variance (PERMANOVA) was used to
compare the microbial differences between the three Desmodium

species and sample locations using the “adonis” function
implemented in the “vegan” package v2.6.4 (Oksanen et al.,
2012). Additionally, relative metabolic functional abundances
were predicted for bacterial communities using phylogenetic
investigation of communities by reconstruction of unobserved
states (PICRUSt2 pipeline; v2.4.1) with metacyc as the reference
database (https://metacyc.org/). The results were visualized
through a heatmap generated using the “gplots” package v3.1.3
(Warnes et al., 2016) with unsupervised hierarchical clustering
employing both Pearson and Spearman correlation coefficients.
Lastly, statistical analysis of the obtained functions was performed
using statistical analysis of taxonomic and functional profiles
(STAMP; v2.1.3) software (Parks et al., 2014) and visualized
using boxplots.

3 Results

3.1 Relative abundance of root-nodule
microbiome in three Desmodium species

While all 24 16S rDNA samples passed the quality check, three
ITS samples (one from each Desmodium species) were excluded
due to low reads. Fungal profiling of amplicon sequencing of
root-nodules from the three Desmodium species yielded 1,036,518
high-quality sequence reads, with a median of 43,236 and a
mean of 43,188. Bacterial amplicon sequencing of the three
Desmodium species root-nodules yielded 874,794 reads, with a
median of 36,865 and a mean of 36,449. Bacterial reads ranged
from 29,286 to 44,115, whereas fungal reads ranged from 33,196
to 60,966. From the 16S reads, 514 ASVs were identified, whereas
799 ASVs were obtained from the ITS reads. However, after
quality control, filtering, and chimera removal (excluding non-
fungal and non-bacterial sequences), we identified 393 fungal
and 367 bacterial ASVs in the root-nodule samples of the three
Desmodium species.

3.2 Composition and structure of the
root-nodule microbiome across di�erent
Desmodium species and sampling locations

Over 98% of the sequences were identified as belonging to
Bradyrhizobium species across allDesmodium species and locations
(Supplementary Figures S1, S2 and Supplementary Tables S2, S3).
Other bacterial species accounted for <2% of the sequences
obtained, although their distribution and presence varied among
treatments. Within the Bradyrhizobium genus, several species
were detected, namely Bradyrhizobium elkanii, B. liaoningense,
B. yuanmingense and B. japonicum with varying abundances
(Figure 2A, Supplementary Table S4). Interestingly, we only
detected Phenylobacterium in AID, Streptomyces in GLD and SLD,
Bacillus in GLD and Enterobacter in SLD (Supplementary Figure S1
and Supplementary Table S2). Moreover, the bacterial species
Mycobacterium neoaurum, Enterobacter kobei, Streptomyces

griseorubiginosus and Variovorax paradoxus were only observed in
SLD. Streptomyces griseorubiginosus, V. paradoxus, M. neoaurum,
and E. kobei were unique to SLD whereas Labrys neptuniae

was only detected in GLD (Figure 2A, Supplementary Table S4).
Besides, we only found Acidothermus and Phenylobacterium in
Homabay, and Variovorax and Mesorhizobium in Siaya County
whereas Pseudomonas and Enterobacter were unique to Vihiga
County (Supplementary Figure S2 and Supplementary Table S4).
However, some species were exclusively detected in some locations.
For example, Chryseobacterium indologenes and Dyadobacter

fermentans were only found in Vihiga, Mycobacterium neoaurum

was only detected in Homabay whereas Enterobacter kobei was
only found in Siaya County (Figure 2B, Supplementary Table S5).

Pairwise TSS analysis revealed no significant differences in
the relative abundances of bacterial communities across the
three Desmodium species (P > 0.05) (Supplementary Tables S6,
S7). However, we found significant differences in the relative
abundances of some bacteria genera across the sampling sites.
For instance, Bradyrhizobium was more abundant in Vihiga
than in Homabay (P = 0.018), while Homabay was composed
of relatively more Streptomyces than Vihiga county (P =

0.015) (Supplementary Table S8). On the other hand, significant
differences emerged in bacterial species across study locations,
particularly in B. japonicum and B. liaoningense which were more
abundant in Siaya than Homabay (P = <0.001 and P = <0.001
respectively) and Homabay than Vihiga (P = 0.005, P = 0.004)
counties, respectively (Supplementary Table S9).

Analysis of root nodule mycobiome revealed Fusarium as the
most abundant fungal genus in although with varying abundances
across the treatments (33.40%;, 34.60%, and 76.10% respectively for
GLD, SLD and AID and 85.40%, 28.30% and 35.00% respectively
for Homabay, Kisumu and Siaya counties except in Vihiga where
Botryosphaeria dominated at 45.40%) (Supplementary Figures S3,
S4 and Supplementary Tables S10, S11). Other fungal genera
such as Penicillium, Talaromyces, Cladosporium, and Knufia were
detected at varying abundances across the three Desmodium

species. Notably, Sistotrema and Clonostachys were only found
in SLD and GLD, Monosporascus and Cadophora were only
present in AID, Purpureocillium and Scytalidium were unique
to SLD whereas Sarocladium was exclusively found in GLD
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FIGURE 2

Barplots representing the relative abundance of the predominant bacterial amplicon sequence variants (ASVs) at the species level (A) across all the

three Desmodium species; (B), Barplots representing the relative abundance of the predominant bacterial amplicon sequence variants (ASVs) at the

species level across all the four sampling locations. Desmodium intortum (Green leaf), Desmodium uncinatum (Silver leaf) and Desmodium incanum

(incanum).
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FIGURE 3

Barplots representing the relative abundance of the predominant fungal amplicon sequence variants (ASVs) at the species level (A) across all the three

Desmodium species; (B), Barplots representing the relative abundance of the predominant fungal amplicon sequence variants (ASVs) at the species

level across all the four sampling locations. Desmodium intortum (Green leaf), Desmodium uncinatum (Silver leaf) and Desmodium incanum

(incanum).
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FIGURE 4

Alpha diversity estimates for bacterial species are represented using box plots, with (A) Chao1 index for the three Desmodium species, Silverleaf

desmodium (SLD), Desmodium uncinatum; Greenleaf desmodium (GLD), Desmodium intortum; and and African desmodium (AID), Desmodium

incanum: (B) Influence of sampling locations on the Chao1 index; (C) Shannon diversity index for the three Desmodium species; (D) Impact of

sampling locations on the Shannon index; (E) Evenness of microbial diversity within the three Desmodium species; (F) Influence of sampling

locations on microbial Evenness. In each plot, boxes represent the interquartile range (IQR) between the first and third quartiles, and the median is

indicated by a horizontal line inside the box. Whiskers represent the lowest and highest values within the first and third quartiles, respectively.

(Supplementary Figure S3 and Supplementary Table S10). At the
species level, Fusarium solani, F. sacchari, Phlyctis speirea, and
Epicoccum sorghinum were present in all Desmodium species.
Remarkedly, Penicillium rubidurum and Aspergillus aureoterreus

were only found in AID whereas Sarocladium kiliense was
only detected in GLD (Figure 3A, Supplementary Table S12).
Fungal genera including Phlyctis, Penicillium, Cladophialophora,

and Knufia were present in all counties at varying relative
abundances. Interestingly, Botryosphaeria, Atractiella, Epicoccum,
and Purpureocillium were abundant in all counties except Kisumu
whereas Sistotrema was found in all counties except Homabay.
Moreover, Colletotrichum and Saitozyma were only found in Siaya,
while Sarocladium (mainly Sarocladium kiliense) was only detected
in Kisumu (Supplementary Table S11). Fungal species such as F.
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FIGURE 5

Beta diversity of bacterial species communities is presented through various visualization: (A) Principal coordinates analysis (PCoA) plot illustrating

the influence of the three Desmodium species on bacterial species distribution; (B) PCoA plot depicting the impact of sampling location on bacterial

communities; and (C, D) Venn diagrams showcasing the unique and commonly observed bacterial ASVs among the three Desmodium species and

di�erent sampling locations. In the Venn diagram, the number within the overlapping circles denotes the count of the shared ASVs. The three

Desmodium species include Desmodium intortum (Greenleaf desmodium), GLD; Desmodium uncinatum (Silverleaf desmodium), SLD; and

Desmodium incanum (African desmodium), AID.

saccari, F. solari, Chlonostychys spp and Knufia spp were variably
abundant across all counties. However, Penicillium rubidurum

was only found in Vihiga and Kisumu counties (Figure 3B,
Supplementary Table S13).

Pairwise (TSS) log2 linear regression analysis indicated that
Clonostachys was significantly more abundant in SLD than AID
(P = 0.002) and GLD vs. AID (P = 0.003). Botryosphaeria

was also significantly more abundant in SLD than GLD (P =

0.015) (Supplementary Table S14). Similar results were found at
the species level where Clonostachys spp. was significantly more
abundant in SLD (P = 0.002) and in GLD (P = 0.003) compared
to AID (Supplementary Table S15). Across sampling locations,
significant differences were recorded in the relative abundances
of Codinae which was more abundant in Homabay than both
Siaya (P = 0.045) and Kisumu (P = <0.001) and also in Vihiga
than Kisumu (P = 0.041). Atractiella was also more abundant in
Homabay than in Kisumu (P = 0.043), and higher in Vihiga as
compared to Kisumu (P = 0.022) (Supplementary Table S16). At
the species level, Codinaea acaciae was more enriched in Vihiga
than Homabay (P =< 0.001), while Atractiella rhizophila was

relatively abundant in Vihiga than Kisumu (P = 0.022). Fusarium
spp. was more abundant in Kisumu (P = 0.003) and Siaya (P =

0.022) than in Homabay County. Homabay had more Fusarium

spp. than Vihiga (P = 0.005), while Cladophialophora spp. was
significantly more abundant in Homabay than in Kisumu (P =

0.037) (Supplementary Table S17).

3.3 Alpha and beta diversity

There were no significant differences in bacterial species
communities among the three Desmodium species as indicated
by Chao1, evenness and Shannon indices (Chao1 estimator, P

> 0.05 and Shannon index P > 0.05) (Figures 4A, C, E,
Supplementary Table S18). Similarly, there were no significant
differences in alpha diversity of bacteria ASVs across all studied
locations, except for Homabay Vs Siaya (Chao1 estimator, P

= 0.039 and Shannon index, P = 0.039) (Figures 4B, D, F,
Supplementary Table S19).
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FIGURE 6

Alpha diversity estimates for fungal species are visually depicted using box-plots, with (A) Chao1 index of the three Desmodium species, Silverleaf

desmodium (SLD), Desmodium uncinatum; Greenleaf desmodium (GLD), Desmodium intortum; and African desmodium (AID), Desmodium

incanum: (B) influence of sampling locations on the Chao1 index; (C) Shannon diversity index of the three Desmodium species; (D) Shannon index as

influenced by sampling location; (E) Evenness of microbial diversity within the three Desmodium species; (F) Evenness of microbial diversity on

sampling locations. In each plot, boxes represent the interquartile range (IQR) between the first and third quartiles, and the median is indicated by a

horizontal line inside the box. Whiskers represent the lowest and highest values within the first and third quartiles, respectively.

β-diversity also showed that Desmodium species and study
locations did not significantly influence the diversity of root-nodule
bacterial communities, as they all clustered together. However,
we observed a subtle clustering by D. uncinatum along axis
1 and Homabay County in axis 2, suggesting that both had
unique bacterial communities (Figures 5A, B). The Venn diagram

illustrated that 36 bacteria ASVs were commonly shared across all
the three Desmodium species. SLD root-nodules had 24 unique
bacterial ASVs, while AID had only one ASV and GLD had
none (Figure 5C). AID and SLD had 11 uniquely shared bacterial
ASVs, while SLD, GLD, and AID had no overlapping bacterial
ASVs. Based on the sampling location, Siaya county had the most
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FIGURE 7

Beta diversity of fungal species communities is presented through several visualization: (A) Principal Coordinates Analysis (PCoA) plot of fungal

species as influenced by the three Desmodium species; (B) PCoA plot depicting the impact of sampling locations on fungal communities; (C, D)

Venn diagrams showcasing the unique and commonly observed fungal ASVs among the three Desmodium species and di�erent sampling locations.

The value in the overlapping circle represents the number of ASVs shared. The three Desmodium species include Desmodium intortum (Greenleaf

desmodium), GLD; Desmodium uncinatum (Silverleaf desmodium), SLD; and Desmodium incanum (African desmodium), AID.

unique ASVs (39), whereas 44 ASVs were shared between Siaya
and Kisumu counties (Figure 5D). PERMANOVA results showed a
significant effect of sampling location on the root-nodule bacterial
communities (R2 = 1.676, P = 0.003). However, Desmodium

species did not significantly affect these bacterial communities (R2

= 0.299; P = 0.456) (Supplementary Table S20).
Fungal species did not significantly vary in richness and

evenness among the three Desmodium species and sampling
locations (P > 0.05) (Figure 6; Supplementary Tables S21, S22).

PERMANOVA analysis showed no significant effect of the
three Desmodium species on fungal β-diversity (R2 = 0.908;
P = 0.091) nor sampling location (R2 = 1.277; P = 0.118;
Supplementary Table S23). Principal component analysis (PCoA)
results showed clear clustering of root-nodule fungal communities
in all the three Desmodium and sampling locations (Figures 7A, B).
The Venn diagram revealed that SLD and AID had the most
unique ASVs compared to GLD. However, one unique fungal ASV
was shared amongst the three Desmodium species (Figure 7C).
Kisumu and Vihiga counties each had only one unique fungal
ASV compared to the rest, while only one fungal ASV was shared
between Kisumu and Siaya counties (Figure 7D).

3.4 Predicted metabolic functions of
bacterial occupants

Prediction of marker gene sequences associated with significant
functional metabolic pathways (Figure 8) in the different root-
nodules revealed that the essential pathways included fatty
acid biosynthesis, phospholipid biosynthesis, the meta-cleavage
pathway of catechol, carbon/energy biosynthesis, osmoregulation,
carbohydrate biosynthesis, nitrogen related pathways, in particular,
nucleoside and nucleotide salvage/biosynthesis, purine degradation
pathways, amino acid biosynthesis, carrier/coenzyme/cofactor
synthesis, vitamin synthesis, siderophore biosynthesis, and
heme/leghaemoglobin production. Based on hierarchical
clustering, the three Desmodium species root-nodule samples
and study locations were grouped into two main clades. The first
clade consisted of three subclades; the first subclade consisted of
GLD only, the second subclade was predominantly associated with
SLD and one GLD replicate, and the third subclade consisted of
the three species, although AID was dominant. The second clade
consisted of two major subclades, with the first subclade consisting
of AID and GLD, whereas the second one depicted a patern
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FIGURE 8

A cluster heatmap was generated to display the normalized relative abundances of moderately estimated functional profiles of root-nodule

associated bacteria from the three Desmodium species. All functional categories were predicted using PICRUSt2. In the heatmap, colors reflect the

z-score of the normalized relative abundances, with red indicating−4, and green indicating +4. The three Desmodium species include Desmodium

intortum (Greenleaf desmodium), GLD; Desmodium uncinatum (Silverleaf desmodium), SLD; and Desmodium incanum (African desmodium), AID.

distribution of the three Desmodium species. Eight metabolic
pathways related to the metabolism of amino acid synthesis were
selected. Despite the notable differences and shifts in important
metabolic pathways among the three Desmodium species,
significant differences were only observed in the proportion of
sequences responsible for energy biosynthesis (glycolysis-E-D
and gluconeo-PWY, P < 0.05) (Figure 9). A relatively higher
proportion of sequences responsible for energy and amino acid
biosynthesis were recorded in SLD (Figures 9A, B, E, H).

4 Discussion

The findings of this study revealed diverse NREs within
the root-nodules of three Desmodium species, highlighting
notable distinctions among them. The observation indicates that
Desmodium plants may adapt to soils beyond their native habitat in
South America, supported by the recruitment of diverse microbial
communities. The diversity of microbes inhabiting the root-
nodules of the three Desmodium species showed no significant

correlation with the study location. However, variations in bacterial
and fungal abundances across sampling locations could result
from recurrent differences in climatic factors, including average
annual temperatures, humidity and rainfall patterns, as reported
by Pang et al. (2021). Remarkably, there was a shift in fungal
communities compared to that of bacterial communities. The
absence of significant differences in α and β diversity suggest that
the overall composition of the Desmodium species root-nodules
microbiome among the species was random and not influenced
by either the Desmodium species or sampling location. Therefore,
these findings contribute to our understanding of the relationships
between Desmodium plants and their root-nodule microbiomes,
offering insights into potential adaptations and ecological dynamics
in diverse soil environments.

Our findings revealed that rhizobia, mainly belonging to the
Bradyrhizobium genus, predominated as the primary occupants
of Desmodium species root-nodules. This aligns with similar
studies on pulse legumes such as Trifolium spp., Pisum sativum,
Cicer arietinum, Arachis hypogaea and Glycine max (Hartman
et al., 2017; Sharaf et al., 2019; Ilyas et al., 2022). The
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FIGURE 9

The abundance of bacterial sequences influencing selected metabolic pathways was assessed in relation to the three Desmodium species;

Desmodium intortum (Greenleaf desmodium), GLD; Desmodium uncinatum (Silverleaf desmodium), SLD; and Desmodium incanum (African

desmodium), AID): (A) the glycolysis-E-D pathway (Entner–Doudoro� pathway); (B) the TCA cycle (tricarboxylic acid cycle); (C) PENTOSE-P-PWY

(pentose phosphate pathway); (D) protocatechuate-ortho-cleavage-PWY (protocatechuate degradation); (E) gluconeo-PWY (gluconeogenesis I); (F)

leu-deg2-PWY (L-leucine degradation); (G) thresyn-PWY (superpathway of L-threonine biosynthesis); and (H) PWY-3001 (L-isoleucine biosynthesis).
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prevalence of Bradyrhizobium in Desmodium species root-nodules
is noteworthy, considering its well-documented robust nitrogen-
fixing capability in legumes within tropical and subtropical regions
(Hurse and Date, 1992). This genus is a common microsymbiont
in major pulses like soybean (Glycine max), peanuts (Arachis
hypogaea), common bean (Phaseolus vulgaris), cowpea (Vigna
unguiculata), and lima beans (Phaseolus lunatus) (Ormeño-Orrillo
and Martínez-Romero, 2019; Muthini et al., 2020), with reported
associations in various regions, including sub-Saharan Africa
(Wekesa et al., 2022), China (Gu et al., 2007), Argentina (Toniutti
et al., 2017) and Mexico (Parker, 2002). Our findings, however,
differ from a study by Xu et al. (2016), which highlighted a
higher occurrence of fast-growing rhizobia isolates (Rhizobium,
Mesorhizobium, and Pararhizobium spp.) over Bradyrhizobium

in wild Desmodium sequax, Desmodium elegans, Desmodium

gangeticum and Desmodium oldhamii. Importantly, our study did
not identify Bradyrhizobium denitrificans, previously reported in
AID from Argentina (Toniutti et al., 2017), suggesting potential
regional endemism among major rhizobial occupants (Xu et al.,
2016). Beyond fixing nitrogen, Bradyrhizobium exhibits other
beneficial traits, including acetylene reduction (Parker, 2002),
antibiotic resistance (Hurse and Date, 1992), denitrification, and
defense against fungal pathogens from the Macrophomina and
Sclerotium genera (Chan, 2009). Bacillus spp., the second most
abundant NRE known for enhancing heat and freezing tolerance,
nodulation and phosphorous solubilization, was exclusively
observed in GLD (Xu et al., 2014; Khalifa and Almalki, 2015;
Tiwari et al., 2017). This endophyte, when co-inoculated with
rhizobia, also serves as a biocontrol agent against Rhizoctonia solani
and Sclerotium rolfsii by producing β-1, 3-glucanase enzymes that
degrades their cell walls (Compant et al., 2005).

Another notable finding was the association of Labrys

neptuniae with Desmodium species root-nodule, a bacterium
belonging to the family Xanthobacteraceae. While this is the first
report of Labrys neptuniae in Desmodium species, it has been
previously isolated from root-nodules of wild Acaciella spp. in
Mexico and Entada phaseoloides in Japan (Chou et al., 2007; Bai
et al., 2011; Chávez-Ramírez et al., 2022). Variovarax, a genus
capable of producing a broad spectrum of hydrolytic enzymes (like
lipase, cellulase, and protease) and demonstrating various beneficial
traits such as phosphorous solubilization, indoleacetic acid (IAA)
synthesis, and heavy metal phytoremediation, was detected in
SLD root-nodules (Aserse et al., 2013; De Almeida Lopes et al.,
2016; Bessadok et al., 2020; Khan et al., 2023). However, the
low occurrence of Variovarax in the studied Desmodium species
suggests a lack of specific mechanisms to select these endophytes,
limiting their potential role in enhancing plant growth (Mayhood
and Mirza, 2021).

The study identified phytopathogenic bacteria, including
Enterobacter kobei, Macrophomina neoaurum, Pseudomonas

spp. and Dyadobacter fermentans, exclusively associated with
SLD root-nodules. Enterobacter kobei, previously isolated from
the root-nodules of wild Hedysarum genera, was reported to
inhibit anthracnose causing Colletotrichum musae in bananas
and improve zinc and phosphate solubilization in Barleria

lupulina and lentils (Muresu et al., 2010; Damasceno et al.,
2019). Macrophomina neoaurum, known for enhancing in vitro

iron acquisition under iron-deficiency conditions via exochelin
secretion, was also identified by Chan (2009). Pseudomonas

spp. and Chryseobacterium indologenes reported as phosphate-
solubilizing plant growth-promoting rhizobacteria (PGPR),
IAA synthesis and biocontrol agents against Phytophthora, were
associated with SLD root-nodules (Chelius and Triplett, 2001; Sang
et al., 2018).

Fungal abundance within Desmodium species root-nodules
uncovered a diverse assembly of filamentous fungi coexisting with
bacterial occupants. These fungi, identified across all Desmodium

species, colonize root-nodules by developing abruptly ending,
thin-walled hyphae within cortical cells (Russell et al., 2002).
Notably, pathogenic and non-pathogenic fungi have been identified
in asymptomatic legumes, with potential mitigating effects by
cohabiting bacteria (Da Silva et al., 2021). Talaromyces spp.
was found across all three Desmodium species with higher
abundance in GLD. This fungus is an antagonist against Sclerotinia
sclerotiorum solubilizes phosphorous and produces IAA (Sahu
et al., 2019). Fusarium was more abundant in the root-nodules of
AID compared to SLD and GLD, a contrast to previous reports
identifying it as a major fungal genus in the roots of forage
legume Sainfoin (Onobrychis viciifolia) (Slabbert et al., 2023).While
Fusarium has been isolated from various plant roots, including
Medicago species and chickpeas (Cicer arietinum L.) (Lamprecht
et al., 1988; Moparthi et al., 2021), its presence as Desmodium

species root-nodule occupants is novel. SLD has also been reported
to mediate the inhibition of Fusarium oxysporum growth (Were
et al., 2022). Interestingly, the pathogen was not observed in all
the Desmodium species, indicating that the mediation effect could
be present in all three Desmodium species. Fusarium solani and
F. chlamydosporum were previously isolated from the roots and
nodules of Medicago species (Lamprecht et al., 1988), while F.

solani and F. sporotrichioides were also isolated and identified from
chickpeas (Cicer arietinum), dry pea (Pisum sativum), lentil (Lens
culinaris) and Axonopus compressus roots (Moparthi et al., 2021).
SLD and GLD exhibited enrichment of phytopathogenic microbes,
including F. sporotrichioides and F. sacharri, known to cause root
rot, lag-leaf sheath spot, wilt, and blights in legume plants, rice and
potatoes compared to AID (Moparthi et al., 2021).

Clonostachys spp., observed in GLD and SLD, is recognized as
a mycoparasitic fungus and biocontrol agent against pathogens,
including Rosellinia root rot of cocoa by Clonostachys byssicola

and banana crown rot by C. byssicola (Krauss et al., 2013). It
also acts as an antagonist to Phytophthora palmivora (Krauss
et al., 2013), Moniliophthora roreri (Harry et al., 2003), and F.

graminearum (Nygren et al., 2018). Clonostachys rosea, secretes
secondary metabolites with biotic activity against Sclerotinia

sclerotiorum (Cabrera et al., 2011). Monosporascus spp., reported
in higher relative abundance in GLD, has been previously isolated
from the roots of xerophytic shrubs and as an endophyte
of Astragalus adsurgens, contributing to soil organic carbon
accumulation (Zuo et al., 2022). Sistotrema spp. also found in
GLD and SLD, has conferred resilience to nutrient deficiency
and drought stress in blueberries (Vaccinium corymbosum) (Ye
et al., 2023). Metacordyceps chlamydosporia, a nematophagous
fungal endophyte isolated from soybean root tips, (Strom et al.,
2020) was only detected in SLD and GLD. Acrocalymma,
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Atractiella rhizophila, Serendipita, Cadophora and Melanconiella

were selectively identified in the three Desmodium species root-
nodules. Acrocalymma and Melanconiella were only observed in
GLD and SLD, Atractiella rhizophila only observed in SLD and
AID, and Cadophora only observed in AID. These microbes are
classified as dark septate root endophytes (DSEs), which, through
strain-dependent symbiotic associations with plants, enhance host
plant tolerance to various environmental stresses, such as water
deficit and salt stress (Farias et al., 2020; He et al., 2021).
Melanconiella spp. andA. rhizophila have been reported to improve
nitrogen and phosphorous nutrition in cowpeas under elevated
salinity (Bonito et al., 2017; Farias et al., 2020; Gama et al., 2020;
Muazzam and Darah, 2020). To the best of our knowledge, this
is the first report of DSEs in Desmodium species root-nodules,
although their agroecological services still need further study.

Penicillium rubidurum, Cladosporium subuliforme,
Ceratobasidium ramicola and Sarocladium kiliense had varied
relative abundance across the root-nodules of the three
Desmodium species. Ceratobasidium ramicola, which exhibits
both phytopathogenic and endophytic characteristics and confers
antibiotic resistance to plants (Muazzam and Darah, 2020), was
only reported in SLD. Sarocladium kiliense is only observed in
GLD and has been reported as a Brachiaria endophyte conferring
resistance against pathogenic Sclerotinia sclerotiorum (Gama
et al., 2020). Cladosporium subuliforme, which was more relatively
abundant in GLD than SLD and AID, has been identified as a
Diaphorina citri entomopathogen (Wang et al., 2023). Penicillium
rubidurum, observed only in AID, has been isolated from soil
in Korea (Adhikari et al., 2017) and Colorado cropping soils,
respectively, with biocontrol activity against phytopathogenic
Penicillium expansum and in the roots of Artemisia annua (Yuan
et al., 2011).

The root-nodules in our study displayed a notable potential
for robust nitrogen fixation, attributable to the higher abundance
of rhizobia. However, diverse NREs, suggested potential metabolic
functional variances that warrant further exploration. In the
context of legume symbiosis, substantial energy inputs are essential,
with a critical reliance on carbon sources supplied by legume
host cells for effective nodulation and nitrogen fixation (Makoudi
et al., 2018). Here, we identified upregulated metabolic functions
for rhizosphere fitness, including carbonmetabolism, carbohydrate
metabolism, and amino acid biosynthesis. Carbon metabolism
is vital as it facilitates the transfer of photosynthates, primarily
carbohydrates, from plant leaves to root-nodules for cellular
respiration (Liu et al., 2018). Our findings indicate the involvement
of sucrose invertase in sucrose degradation, as well as the
aromatic degradation of protocatechuate and a meta-cleavage
pathway of catechol, vanillin and vanillate (C1 Compounds). These
processes are identified as characteristic features of Bradyrhizobium
japonicumUSDA110, andRhizobium leguminosarum in pea (Pisum
sativum) (Sudtachat et al., 2009; Garcia-Fraile et al., 2015; Jalloh
et al., 2024). Moreover, the super pathway of D-glucarate and D-
galactarate catabolism was reportedly enhanced in Burkholderia-
Caballeronia-Paraburkholderi spp. Following this, carbon sources
are transported across the bacteroid and peribacteroid membranes,
entering the tricarboxylic acid cycle (TCA), glycolysis, and Entner-
Doudoroff pathways for glucose catabolism (Liu et al., 2018). The

Entner-Doudoroff pathway also aids Rhizobium spp. in enduring
sulfur-abundant soils by breaking down abundant phototroph-
derived carbohydrates (Li et al., 2020).

In terms of siderophore biosynthesis, we observed higher
upregulation in SLD compared to AID and GLD, potentially
indicating the presence of more microorganisms in SLD producing
high-affinity Fe (III)-chelating compounds. Fatty acid and lipid
biosynthesis pathways play a role in generating fatty acids
and other lipids while converting nutrient-derived carbons into
fatty acids (Chandel, 2021). Amino acid biosynthesis regulates
ammonium assimilation and asparagine synthesis (Okumoto
and Pilot, 2011). Vitamin biosynthesis is essential for various
metabolic processes inside root-nodules and transporting selected
decarboxylases, carboxylases and transcarboxylases. Examples of
vitamins include thiamine, vitamin B12, and biotin production
by R. leguminosarum and R. etli (Guillén-Navarro et al., 2005).
Additionally, protocatechuate catabolism has been shown to
increase the fitness of R. leguminosarum in the rhizosphere by
providing a constant supply of dicarboxylates to the bacteroids
(Strodtman et al., 2018). PICRUSt predicts functions of multiple
16S genes within genera using defined marker-gene metagenomic
reference data. However, the lack of direct metagenome data
on root-nodule microbiomes limits comprehensive prediction of
functional gene categories within the root nodule microbiomes.
Therefore, further research is necessary to delineate the 16S
root-nodule metagenome to enable comprehensive prediction of
functional gene categories within the root-nodule microbiomes.

5 Conclusion

This study unveiled diverse microbial communities co-
inhabiting root-nodules of three Desmodium species used in
push-pull cropping systems with Bradyrhizobium spp. bacterial
symbionts being predominant within the plant organ. Additionally,
it reveals the coexistence of diazotrophic bacteria with non-
nodulating fungi within Desmodium root-nodules, although their
precise functions remain unclear warranting further investigation.
Our findings further reveal no apparent differences in the
microbiomes of AID, SLD, and GLD reflecting similarities
in symbiotic partner selection and adaptability among the
three Desmodium species to the local environment, leading
to convergence in their root-nodule microbiomes. Microbiome
diversity was generally higher in root-nodules collected from Siaya
county compared to those collected from Homabay, Vihiga, and
Kisumu counties. Further assessment of soil geochemical properties
and temporal climatic fluctuations from all sampling locations is
necessary to determine if and how these abiotic factors contribute
to the observed variation in microbial diversity. The findings of
our study also provide insights into other potential functions of
Desmodium root-nodule-associated microbiome such as carbon
metabolism and amino acid biosynthesis. These functions are
potentially involved in the endosymbiotic relationship while also
conferring rhizosphere fitness. Thus, we recommend that future
research investigates and harnesses the microbes responsible for
these novel functions for improved soil health, plant growth and
agroecosystem functioning.
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in the Additional file 1. Additionally, we also provided the R
scripts for data analysis along with all the necessary input files,
Additional files 2A, B.
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