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Increased global research is focused on the development of novel
therapeutics to combat antimicrobial and antiviral resistance. Pistachio
nuts represent a good source of protein, fiber, monounsaturated fatty
acids, minerals, vitamins, and phytochemicals (carotenoids, phenolic acids,
flavonoids and anthocyanins). The phytochemicals found in pistachios are
structurally diverse compounds with antimicrobial and antiviral potential,
demonstrated as individual compounds, extracts and complexed into
nanoparticles. Synergistic effects have also been reported in combination
with existing drugs. Here we report an overview of the antimicrobial and
antiviral potential of pistachio nuts: studies show that Gram-positive
bacterial strains, such as Staphylococcus aureus, are the most susceptible
amongst bacteria, whereas antiviral effect has been reported against
herpes simplex virus 1 (HSV-1). Amongst the known pistachio compounds,
zeaxanthin has been shown to affect both HSV-1 attachment penetration
of human cells and viral DNA synthesis. These data suggest that pistachio
extracts and derivatives could be used for the topical treatment of S. aureus
skin infections and ocular herpes infections.
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1 Introduction

Tackling antimicrobial resistance (AMR), considered a threat to global human
health, is a key research priority. The term ‘antimicrobial’ includes antibiotic,
antiprotozoal, antiviral and antifungal medicines. AMR causes an estimated death of at
least 1.27 million people worldwide and was associated with nearly 5 million deaths in
2019, according to a recent report released in The Lancet (Murray et al., 2022). In the
U.S., more than 2.8 million antimicrobial-resistant infections occur each year, resulting
in the death of more than 35,000 people (CDC, 2019). The estimated national cost in
the U.S. to treat infections caused by multidrug-resistant pathogens frequently found
in hospital environments can be substantial, leading to more than $4.6 billion annually.
Dedicated prevention and infection control efforts can reduce the impact of
antimicrobial-resistant infections, lowering deaths by an average of 18% (and by nearly
30% in hospitals in the U.S. in 2019). However, the COVID-19 pandemic has harmed
recent AMR prevention and control. Therefore, the United Nations and the World
Health Organization are leading initiatives to raise awareness of the problem and deliver
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solutions to protect our ability to fight infectious diseases
globally. Therefore, the discovery of novel therapeutics with
antimicrobial and antiviral effects, to be used either alone or in
combination with existing drugs, is warranted.

It is well known that plant extracts represent an important
source of bioactive compounds, mainly secondary metabolites,
which could be used for their antimicrobial and antiviral potential.
Tree nuts are known to contain an array of phytochemicals with
potential health benefits (Gervasi et al., 2021). However, the
phytochemical content of tree nuts can vary considerably, and
depends on nut species, genotype, pre- and post-harvest
conditions, and storage conditions (Bolling et al., 2011).
Additionally, processing approaches such as roasting, may affect
tree nut phytochemicals. For example, the total phenol content
and the ferric-reducing antioxidant power (FRAP) value both
decreased in almond skins after roasting, although the flavonoids
concentration was not affected (Bolling et al., 2010a). The choice
of solvents used for polyphenols and phytosterols extraction also
significantly affects their quantification, and biological activity
(Ghirardello et al., 2010). Qasimi et al. (2016) tested the effect of
five different solvents (water, 80% methanol, 80% ethanol, acetone
and chloroform) on the polyphenols and proanthocyanidin
quantification as well as the biological potential [total phenolic
(TPC), total flavonoid (TFC, antioxidant capacity using DPPH
radical scavenging and ferric reducing antioxidant power (FRAP)
activities] of medicinal alophytes: results showed that 80%
methanol was the most effective solvent, followed by ethanol and
water. Pistachio (Pistacia vera L.) nuts represent a good source of
protein, fiber, monounsaturated fatty acids, minerals, and
vitamins, as well as carotenoids, phenolic acids, flavonoids and
anthocyanins (Mandalari et al., 2021). The phytochemical fraction
in pistachios is known to contribute to their antimicrobial and
antiviral effect and could help overcome AMR (Mandalari
et al., 2021).

Here, we present an overview of the antimicrobial and
antiviral potential of pistachio nuts. In addition, the evaluation
of pistachio polyphenols, alone or in combination with existing
drugs, is described in this review in an attempt to provide novel
tools to combat AMR.

Abbreviations: AMR, Antimicrobial resistance; ATCC, American Type Culture
Collection; ATP, Adenosine triphosphate; B. subtilis, Bacillus subtilis; C. albicans,
C. albicans; EGC, Epigallocatechin; E. coli, Escherichia coli; FRAP, Ferric-reducing
antioxidant power; H. pylori, Helicobacter pylori; HSV-1, Herpes simplex virus 1;
HSV-2, Herpes simplex virus 2; K. pneumoniae, Klebsiella pneumoniae; L. innocua,
Listeria innocua; L. monocytogenes, Listeria monocytogenes; MIC, Minimum
inhibitory concentration; MBC, Minimum bactericidal concentration; MRSA,
Methicillin-Resistant Staphylococcus aureus; NK, Natural killer; P aeruginosa,
Pseudomonas aeruginosa; P. putida, Pseudomonas putida; Salm. enterica,
Salmonella enterica; S. aureus, Staphylococcus aureus; S. saprophyticus,

Staphylococcus saprophyticus; TPC, Total phenolic content.
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2 Antimicrobial and antiviral
properties of pistachio bioactives

Pistachios are known to contain an array of bioactive
compounds, which include carotenoids' [beta-carotene, alpha-
carotene, lutein and zeaxanthin, chlorophylls (chlorophyll a,
chlorophyll b, pheaphytin a)] (Giuffrida et al., 2006; Bellomo and
2007),
phytosterols' (campsterol, beta-sitosterol, stigmasterol), phenolic

Fallico, gamma-tocopherol, gamma-tocotrienol,
acids™ (Neveu et al., 2010), resveratrol (Tokusoglu et al., 2005;
Gentile et al., 2007; Grippi et al., 2008), flavonoids™* (Tomaino et al.,
2010), anthocyanins (cyanidin-3-galactoside, cyanidin-3-glucoside)
(Seeram et al., 2008), proanthocyanidins (PAC) and stilbenes"?,
isoflavones (genistein, genistein-7-O-glucoside, dadzein) (Bulld
et al., 2015), as well as phytates, sphingolipids, alkylphenols and
lignans (Bolling et al., 2010b). The total phenolic content (TPC, mg
gallic acid equivalent/100g, fresh weight) in pistachios has been
reported to between 1657 (USDA) and 1,420 (Phenol-Explorer),
where the most abundant phenolic compounds were: daidzein,
genistein, quercetin, eriodictyol, luteolin, naringenin, and cyanidins
(amongst flavonoids); gallic acid and derivatives including
gallotannins; alkyl phenols*® (anacardic acid derivatives) (Yang
et al., 2009).

Current research shows the principal health-related properties
of bioactive compounds found in pistachios including their
antioxidant and cytoprotective effects, their effect on cell redox
homeostasis, as well as their anti-inflammatory and anti-cancer
effects, neuroprotective, anti-obesity and anti-diabetic effects
(Maestri, 2023). Additionally, a growing body of research has
documented antimicrobial and antiviral properties associated with
numerous pistachio compounds, as reported in Table 1 (carotenoids,
chlorophylls, gamma tocopherol, phytosterols and resveratrol) and
Table 2
proanthocyanidins). Here, we discuss the antimicrobial and

(flavonoids,  isoflavones,  anthocyanins  and
antiviral properties of each of these classes of compounds in

more detail.

2.1 Carotenoids

Carotenoids are tetraterpene pigments which exhibit orange,
yellow, red and purple colours. Amongst the carotenoids present in
pistachio nuts, B-carotene at a concentration of 100 mg/mL showed
the best antimicrobial activity against the bacterial species Klebsiella

1 U.S. Department of Agriculture, Agricultural Research Service. FoodData
Central. Available online: fdc.nal.usda.gov (Accessed December 16, 2023).

2 Nutrient Data Laboratory; Beltsville Human Nutrition Research Center
Agricultural Research Service. USDA Database for the Flavonoid Content of
Selected Foods Release 3.3. Available at:
ARSUserFiles/80400535/Data/Flav/Flav3.3.pdf (Accessed December 16, 2023).
3 Nutrient Data Laboratory; Beltsville Human Nutrition Research Center;

https://www.ars.usda.gov/

Agricultural Research Service; USDA Database for the Proanthocyanidin Content
of Selected Foods Release 2.12018 Available at: https://www.ars.usda.gov/
ARSUserFiles/80400535/Data/PA/PA02-1.pdf (Accessed December 16, 2023).
4 US Department of Agriculture USDA, http://www.ars.usda.gov/nutrientdata.

5 Phenol-Explorer database http://phenol-explorer.eu/contents.
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TABLE 1 Antimicrobial and antiviral effects of pistachio carotenoids, chlorophylls, gamma tocopherol, phytosterols and resveratrol.

Active antiviral = Reference

concentration

Antiviral
effect

Active
antimicrobial
concentration

Antimicrobial effect

Compound

Klebsiella pneumonia, Escherichia coli, 100 mg/mL

Beta-carotene Staphylococcus aureus

Salmonella enteritidis

3.8 log units

Abdulhadi et al. (2020)
Hayashi et al. (2012)

Enterococcus faecium, Staphylococcus

saprophyticus, Staphylococcus aureus,

8.0-256.0 ug/mL

Mitra et al. (2021)

Lutein Hepatitis B 40 ug/mL
Escherichia coli, Pseudomonas aeruginosa, Pang et al. (2010)
Klebsiella pneumoniae
Herpes simplex
Zeaxanthin 10 pg/mL Pennisi et al. (2023)
virus 1
Photosensitizing Bertoloni et al. (1992),
Chlorophylls Gram-positive and Gram-negative bacteria SARS-CoV-2 >65nM
effect Jimenez-Aleman et al. (2021)
Escherichia coli, Pseudomonas aeruginosa, 0.25-2.0% (v/v)
Gamma Bacillus subtilis, Staphylococcus aureus,
Ulusoy et al., 2009
tocopherol Chromobacterium violaceum Erwinia
carotovora
Staphylococcus aureus, Streptococcus mutans, 0.4-1.3mM Herpes simplex 300 g/l Freitas da Silva et al. (2023)
Campesterol Escherichia coli, Pseudomonas aeruginosa, virus 2 Alqurashi et al. (2022)
Klebsiella pneumoniae SARS-CoV-2 R Jamhour et al. (2022)
10 pg/mL Ravi et al. (2020)
Vibrio species Herpes simplex
Beta-sitosterol 10 pg/mL 2.7 pg/mL Toujani et al. (2018),
Staphylococcus aureus virus 2
Alqurashi et al. (2022)
S. typhi 100 pg/mL Herpes simplex Petrera et al., 2014
& 5uM and 10 uyM
K.pneumoniae 12.5-50.0 pg/mL virus 2 Yusuf et al. (2018)
Stigmasterol
Candida albicans Jamhour et al. (2022)
SARS-CoV-2 36.45 L
Candida krusei 0 Hg/m Djouonzo et al. (2023)
25.0-128.0 pg/mL Influenza virus | 10-20 pg/mL
10.0-50.0 pg/mL Rhinovirus 10-50 pM
Gram-positive and Gram-negative bacteria,
Resveratrol ) Respiratory Abedini et al. (2021)
Fungi 30 mg/kg body weight
syncytial virus
Coronavirus 62.5uM

pneumoniae (inhibition zone diameter of 40 mm), followed by
Escherichia coli and Staphylococcus aureus (inhibition zone
diameter of 36 and 31 mm, respectively, Abdulhadi et al. (2020)).
However, no effect was shown against Pseudomonas aeruginosa. In
addition, p -carotene has been found to induce an increase from 1.4
to 3.8 log units in the bactericidal activity of a bovine
lactoperoxidase system, evaluated using Salmonella enteritidis
(Hayashi et al., 2012).

According to Mitra et al. (2021), the carotenoid pigment lutein
was able to inhibit both the growth and the proliferation of several
Gram-positive and Gram-negative bacteria, such as Enterococcus
faecium, S. saprophyticus, S. aureus, E. coli, P. aeruginosa,
K. pneumoniae, at concentrations varying from 8 to 256 pg/mL. The
in vitro antiviral activity of lutein against the hepatitis B virus
(HBV) has been reported by Pang et al. (2010). The antiviral
functions of lutein have also been investigated in stable
HBV-producing human hepatoblastoma HepG2 2.2.15 cells, where
it efficiently suppressed the dose-dependent secretion of HBsAg
and inhibited extracellular HBV DNA. We have recently reported

Frontiers in Microbiology

that zeaxanthin, a dietary carotenoid that accumulates in the retina
as a macular pigment, exhibits strong antiviral activity against
herpes simplex virus 1 (HSV-1, CC50: 16.1 uM, EC50 4.08 uM, SI
3.96), affecting viral attachment and penetration as well as viral
DNA synthesis (Pennisi et al., 2023). An overview of the use of
carotenoids as therapeutic strategies against emerging viral
diseases, such as COVID-19, has recently been published (Khalil
et al., 2021). The inhibitory activity of two marine carotenoids
blocking the entry of SARS-CoV-2 has also been reported (Yim
etal., 2021).

2.2 Tocopherols

Tocopherols are a class of organic fat-soluble phenolic compounds,
many of which have vitamin E activity. The antibacterial potential of
gamma-tocopherol has been demonstrated in flower extracts of
Damask rose (Rosa damascena Mill), which contained beta-carotene,
alpha-tocopherol well as

and phenolic compounds as

frontiersin.org
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TABLE 2 Antimicrobial and antiviral effects of pistachio flavonoids, isoflavones, anthocyanins and proanthocyanidins.

Compound  Antimicrobial effect Active Antiviral effect Active antiviral Reference
antimicrobial concentration
concentration
Escherichia coli, Salmonella sp., 6-50mg/mL Ma et al. (2019)
Catechin Herpes simplex virus 1 0.4mg/mL
Staphylococcus aureus 0.15mg/mL Musarra-Pizzo et al. (2019)
0.078-0.15mg/mL Taylor et al. (2005)
128-1,024 pg/mL Reygaert (2014)
Epicatechin Staphylococcus aureus, Helicobacter pylori Herpes simplex virus 1 0.4mg/mL
Musarra-Pizzo et al. (2019)
Bisignano et al. (2013b)
0.002-8 mg/mL
Flaviviridae 50 pM
16-64 M
Orthomyxoviridae 1.2uM
Rojas et al. (2016)
Herpesviridae 145puM Anand David et al. (2016)
Gram-positive and Gram-negative bacteria Coronaviridae 200uM Nguyen and Bhattacharya,
Quercetin .
Fungi Retroviridae 11.0pM (2022)
Enterovirus 71 (EV71) 39.63 pg/mL DiPetrillo etal. (2022)
Fanunza et al. (2020)
Coxsackievirus A16
59.53 ug/mL
(CVA1le6)
Filoviridae 7.4pM
Escherichia coli, Salmonella enterica, 250-800 pg/mL
Pseudomonas putida, Bacillus subtilis,
Mandalari et al. (2007), Kaul
Eriodictyol Listeria innocua, Lactococcus lactis, SARS-CoV-2 10pM
etal. (2021)
Staphylococcus aureus, Saccharomyces
cerevisiae
Staphylococcus aureus, Listeria 250-500 pg/mL Mandalari et al. (2010), Kaul
Naringenin SARS-CoV-2 200 pM
monocytogenes, Salmonella enterica etal. (2021)
Gram-positive and Gram-negative bacteria 0.5-625pg/mL Periferakis et al. (2022), Kaul
Kaempferol SARS-CoV-2 200pM
Fungi 25-500 pg/mL etal. (2021)
Herpes simplex virus 1 5pg/mL
Enterovirus 71 11.0pM
» i Wang et al. (2019)
Gram-positive and Gram-negative bacteria 2-400 pg/mL Hepatitis C virus 0.1pM- 5puM
Apigenin Lee et al. (2023)
Fungi 8-68 pg/mL D i 40pM
Hgim engue virus " Kaul et al. (2021)
SARS-CoV-2 200pM
Influenza virus 1.438 pg/mL- 15.3 pg/mL
Coronavirus 10.6 uM Yi et al. (2004)
16-32pg/mL Influenza virus 73+3nM Xuetal. (2014)
i Qian et al. (2020)
Staphylococcus aureus 32-64pug/mL Enterovirus 71 10.31pM
Luteolin Banerjee et al. (2022)
Listeria monocytogenes Rotavirus 2.79-4.36mM
Luetal. (2023)
Herpes virus 25uM Wang et al. (2023)
Respiratory syncytial virus 2.075-49.94pM Wang et al. (2020)
62.5-1,000 pM Herpes B virus 33uM Hong et al. (2006)
Genistein Staphylococcus aureus, Bacillus cereus LeCher et al. (2019)
Hemorrhagic fever virus 50 pM - 100 pM
Vela et al. (2010)
Staphylococcus aureus (ATCC and clinical 2,048-4,096 pg/mL Lalouckova et al. (2021)
Daidzein Hepatitis C virus 50 uM
isolates) He et al. (2021)
H implex virus 1 > 20 pg/mL
€rpes stmplex virus Hg/m Choudhary and Pan (2020)
Escherichia coli, Salmonella sp. 10-400 mg/mL Coxsackievirus Bl - Ma et al. (2019) El Majdoub
Anthocyanins Staphylococcus aureus, Listeria Influenza A virus 48 mug/ml etal. (2021), Mohammadi
monocytogenes Influenza B virus 54 mug/ml Pour et al. (2019)
Hayashi et al. (2003)
Avian influenza virus -
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gamma-tocopherol: results demonstrated a strong antibacterial
activity against E. coli (ATCC 25922), P. aeruginosa (ATCC 27853),
(ATCC 6633), S. (ATCC  6538),
Chromobacterium violaceum (ATCC 12472) and Erwinia carotovora
(ATCC 39048) strains (Ulusoy et al., 2009).

Bacillus  subtilis aureus

2.3 Chlorophylls

The susceptibility of Gram-positive and Gram-negative bacteria
to photodynamic therapy using natural chlorophylls, the green
photosynthetic pigments found in plants, has been widely investigated
(Bertoloni et al., 1992; Merchat et al., 1996; Minnock et al., 1996). The
use of derivatives of natural chlorophylls as agents for antimicrobial
photodynamic therapy has recently been reviewed also in relation to
their effect against bacterial biofilm, which is known to be highly
resistant to antibiotic treatment (Suvorov et al., 2021). A chlorophyll
derivative pheophorbide A (PheoA), a porphyrin compound similar
to animal Protoporphyrin IX, has shown an antiviral activity against
SARS-CoV-2, preventing infection of cultured monkey and human
cells, without noticeable cytotoxicity (Jimenez-Aleman et al., 2021).

2.4 Phytosterols

Phytosterols are plant-based compounds similar to cholesterol.
Using the microdilution method, the phytosterol campsterol displayed
a weak antibacterial effect in vitro against S. aureus (ATCC 6538),
Streptococcus  mutans (ATCC 0046), E. coli (ATCC 10536),
P, aeruginosa (ATCC 15442), and K. pneumoniae (ATCC 10031), with
minimum inhibitory concentration (MIC) values of 1.280 mM (Freitas
da Silva et al,, 2023). Through computational analyses, it was proposed
that p-sitosterol exhibited antibacterial activity against several
bacterial Vibrio species and could be used in aquaculture, both as a
nutritional supplement and also as a disease control agent to prevent
and control fish diseases caused by bacterial infection (Ravi et al.,
2020). Furthermore, f3-sitosterol isolated from the leaves of the South
American firespike plant (Odontonema strictum) has been found to
be active against S. aureus, showing both a bacteriostatic and a
bactericidal effect (Pierre Luhata and Usuki, 2021). Yusuf et al. (2018)
have demonstrated the antibacterial and the antifungal activity of
stigmasterol isolated from the stem bark of the African tree species
Neocarya macrophylla (Yusuf et al., 2018).

Seed oil from the prickly pear (Opuntia ficus-indica) containing
phytosterols, primarily campesterol, followed by y- & f -sitosterol, and
stigmasterol, has been shown to exhibit an antiviral effect
(22.67£2.79%) at 300 pg/mL of oil against herpes simplex type 2
(HSV-2) virus (Alqurashi et al., 2022). After rutin, stigmasterol and
campesterol were shown to be the most prominent inhibitors for
SARS-CoV-2 proteins using an in-silico approach (Jamhour
etal., 2022).

2.5 Resveratrol
Resveratrol is a natural phenolic compound with antioxidant-like

properties. A comprehensive study on the antimicrobial and antiviral
properties of resveratrol as an alternative therapy has recently been
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published by Abedini et al. (2021) (Abedini et al., 2021). Resveratrol
has been shown to inhibit the growth of numerous bacteria
detrimental to human health, including B. cereus species (at a
concentration of 50pug/mL) (Paulo et al., 2010), Mycobacterium
smegmatis (64pg/mL) (Lechner et al, 2008), Helicobacter pylori
(25-50 pg/mL) (Makobongo et al., 2014), Vibrio cholerae (60 pg/mL)
(Augustine et al, 2014), Neisseria gonorrhoeae (75ug/mL)
(Vestergaard and Ingmer, 2019), Campylobacter coli (50 ug/mL)
(Duarte et al., 2015), and Arcobacter cryaerophilus (50 pug/mL)
(Ferreira et al., 2014). An antifungal activity of resveratrol has been
reported in vitro against the yeast Candida albicans at a concentration
of 20 pg/mL (Lee and Lee, 2015). Furthermore, resveratrol has been
shown to have inhibitory activity against viral replication and viral-
induced inflammation by several respiratory viruses, including
influenza virus (Pourghanbari et al., 2016), respiratory syncytial virus
(Liu et al., 2014), coronavirus (SARS-CoV and MERS-CoV) (Filardo
et al., 2020), and rhinovirus (Mastromarino et al., 2015).

2.6 Flavonoids

Flavonoids are polyphenolic secondary metabolites found in
plants. Extensive scientific literature is available on the antimicrobial
and antiviral properties of catechins and epicatechins (Taylor et al.,
2005; 2014). For
epigallocatechin, and epigallocatechin-3-gallate have been shown to

Reygaert, example, epicatechin-3-gallate,
have antimicrobial effects against a variety of bacteria, including
S. aureus, methicillin-resistant S. aureus (MRSA) and E. coli (Reygaert,
2014). Taylor et al. (2005) demonstrated that low concentrations of
epicatechin gallate can sensitize MRSA clinical isolates to levels of
oxacillin which can be readily achieved in clinical practice.

We have previously demonstrated the antibacterial effect of
catechin and epicatechin against S. aureus ATCC 6538P (MIC values
of 0.078-0.15 and 0.15mg/mL, respectively) and H. pylori (both
ATCC strains and clinical isolates, Bisignano et al. (2013b)) and the
antiviral activity (decrease in the viral titer ** p <0.01, and viral DNA
accumulation * p<0.05) of a polyphenols mix containing catechin,
naringenin-7-O-glucoside, kaempferol-3-O-glucoside, epicatechin,
isorhamnetin-3-O-rutinoside, and isorhamnetin-3-O-glucoside
against HSV-1 (Musarra-Pizzo et al., 2019). Through Western blot,
real-time polymerase chain reaction (PCR) and viral binding assay,
we also demonstrated that polyphenols were able to block the
production of infectious HSV-1 particles and inhibited HSV-1
adsorption to Vero cells (Bisignano et al., 2017).

The antimicrobial and antiviral activity of quercetin, and the
possible mechanism of action, have recently been reviewed (Di
Petrillo et al., 2022; Nguyen and Bhattacharya, 2022). Strong growth
inhibition of different Gram-positive and Gram-negative bacteria has
been reported, particularly affecting gastrointestinal, respiratory,
urinary, and dermal system (Anand David et al., 2016) as well as the
yeast C. albicans (Singh et al., 2015; Gao et al, 2016) the fungi
Aspergillus fumigatus (Yin et al, 2021) and Aspergillus niger
(Abd-Allah et al.,, 2015) and several viruses, such as the human
immunodeficiency virus (HIV)-1 strain (Kim et al., 1998), the herpes
simplex and the respiratory syncytial virus (Cushnie and Lamb, 2005),
the polio-virus type 1 (Kaul et al., 1985) and the influenza virus (Liu
et al, 2016). The mechanism of quercetin antimicrobial action
includes cell membrane damage, change of membrane permeability,
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inhibition of synthesis of nucleic acids and proteins, reduction of
expression of virulence factors, mitochondrial dysfunction, and
prevention of biofilm formation.

We have previously reported the antibacterial potential of
eriodictyol and naringenin: eriodictyol was more effective (MICs in
the range of 250 and 800pg/mL) compared with other tested
flavonoids, such as naringenin, against a range of Gram-positive
and Gram-negative bacteria (E. coli, Salm. enterica, P. putida,
B. subtilis, L. innocua, Lactococcus lactis, S. aureus) and the yeast
Saccharomyces cerevisiae (Mandalari et al., 2007). On the other
hand, naringenin was active against S. aureus ATCC 6538P,
L. monocytogenes ATCC 7466 and Salm. enterica ser. Typhimurium
ATCC 14028 (MIC values of 250, 500 and 250 pg/mL), respectively
(Mandalari et al., 2010). Periferakis et al. (2022) reviewed the
antibacterial and antifungal properties of kaempferol. Pure
kaempferol, kaempferol extracts and nanoparticles loaded with
kaempferol have shown activity against Gram-negative bacteria,
including Acinetobacter baumannii (Ozgelik et al., 2006; Rofeal
et al., 2021), Enterobacter cloacae (Christopoulou et al., 2008),
Enterobacter aerogenes (Karimi et al., 2011), E. coli (Ozgelik et al.,
2006; Kannanoor et al., 2021), K. pneumoniae (Habbu et al., 2009),
P aeruginosa (Attallah et al., 2022), Vibrio cholerae (Martini et al.,
2004), as well as Gram-positive bacteria, including S. aureus
(Ozgelik et al., 2006), Streptococcus pyogenes (Ozcelik et al., 2006),
Bacillus sp. (Youssef et al., 2021), and Mycobacterium sp. (Nguyen
et al,, 2021). Moreover, both isolated kaempferol-3-O-[3-O-acetyl-
6-0O-(E)-p-coumaroyl]-b-d-glucopyranoside and kaempferol
3-O-b-D-kaempferol 3-O-b-D-glucopyranoside, were found to
be active in vitro against C. albicans, Candida glabrata and Candida
tropicalis (Christopoulou et al., 2008).

Eriodictyol, naringenin and kaempferol have been identified as
promising antiviral compounds against SARS-CoV-2, both alone and
together existing antiviral drugs, targeting specifically the promising
3C-like protease (3CLpro) (Kaul et al., 2021).

A wide range of in vitro antibacterial activity has been reported
for apigenin by Wang et al. (2019): apigenin was active against
Acinetobacter baumannii (with MIC values between 2 and 64 pg/mL),
Bacillus subtilis (MIC values between 8 and 16 pg/mL), Enterococcus
faecalis ATCC 29212 (MIC=8pg/mL), E. coli ATCC 35818
(MIC=4pg/mL), K. pneumoniae RSKK 574 (MIC=8pug/mL) and
ESPL+ clinical isolate (MIC =128 pg/mL), Proteus mirabilis ATCC
7002, MIC=4pg/mL), S. aureus ATCC 25923 (MIC =16 pg/mL), and
C. albicans ATCC 10231 (MIC=8 pg/mL) (Ozcelik et al., 2011). The
therapeutic potential of apigenin against viral infection has recently
been reviewed by Lee et al. (2023). Apigenin exerts virucidal activity
against HSV-1 interfering with viral absorption and inhibiting the
post-entry step of the viral replication (Lyu et al., 2005; Yucharoen,
2011; Visintini Jaime et al., 2013; Fahmy et al., 2020; Ritta et al., 2020),
against Enterovirus 71 by inhibiting the interaction between internal
ribosome entry site of EV71 and hnRNP Al and A2 (Shih et al.,, 2011;
Lv et al., 2014; Zhang et al., 2014; Ji et al., 2015; Dai et al., 2019),
against hepatitis C virus by binding to NS5B and inhibiting RdRp
activity, decreasing miR122 expression levels and suppressing the
phosphorylation of TRBP (Manvar et al., 2012; Ohno et al,, 2013;
Pisonero-Vaquero et al., 2014; Shibata et al., 2014), against Dengue
virus by restoring STAT2 Tyr 689 phosphorylation and activation,
colocalization with a DENV protein in the early phase of infection
(Mazzon et al., 2009; Jasso-Miranda et al., 2019; Acchioni et al., 2023),
against SARS-CoV by reducing the production of proinflammatory
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cytokine in response to viral infection, as well as interacting with viral
protein (Mpro) and host factor (ACE-2 receptor, TMPRSS2) (Ryu
et al., 2010; Jo et al., 2020; Zhang et al., 2020; Alzaabi et al., 2022;
Chaves et al., 2022; Farhat et al., 2022) as well as against influenza
virus - by neuroaminidase inhibition, viral attachment and entry
inhibition, inhibition of viral mRNA expression, inhibition of
influenza A virus RdRP activity, reduction of viral particle production,
and nucleoprotein reduction (Liu et al., 2008; Kai et al., 2014; Xu et al.,
2020a, 2020b; Joo et al., 2022; Morimoto et al., 2023).

Amongst the flavanones, luteolin has also shown antibacterial
potential against S. aureus and L. monocytogenes in vitro, by
impairment effect on the cell membrane and restraining biofilm
formation of both strains (Qian et al., 2020). A literature review on the
antiviral mechanism of luteolin has recently been published by Lu
et al. (2023): luteolin effectively inhibited coronavirus replication
(Alzaabi et al., 2022; Chen et al., 2022), influenza virus (Lee et al.,
2016), enterovirus (Chen et al., 2008; Cao et al., 2016), rotavirus
(Knipping et al.,, 2012), herpes virus (Lu et al., 2023), and respiratory
syncytial virus (Wang et al., 2020). In particular, it prevented viral
infection by improving the hosts nonspecific immunity and
antioxidation capacity, thus inhibiting several pathways related to viral
infection, including MAPK, PI3K-AKT, TLR4/8, NF-kB, and Nrf-2/
hemeoxygenase-1. Furthermore, luteolin was able to regulate the
expression of specific receptors and factors, interfering with viral
replication and thus promoting the repair of damaged cells induced
by proinflammatory factors (Lu et al., 2023).

Hong et al. (2006) demonstrated in vitro the antibacterial potential
of the isoflavone genistein against the Gram-positive S. aureus and
Bacillus anthracis strains (Hong et al., 2006). Furthermore, an
investigation on the mechanism of action of genistein indicated
altered cell morphology (formation of filamentous cells) on bacterial
cells, together with an inhibition of DNA and RNA synthesis as shortly
as 15min after addition to a bacterial culture. Protein synthesis
inhibition was also detected (Ulanowska et al., 2006). Genistein has
also been shown to possess antiviral activity against the herpes B virus,
acting synergistically with existing antiviral drugs (LeCher et al,
2019). An effect of genistein as a general kinase inhibitor against an
arenaviral haemorrhagic fever surrogate virus has also been
demonstrated (Vela et al., 2010).

The antibacterial and antifungal effect of the isoflavone daidzein
has been reported against S. aureus (both ATCC and clinical strains)
by Lalouckova et al. (2021). Dietary daidzein was able to inhibit
hepatitis C virus replication by decreasing microRNA-122 levels (He
etal., 2021).

2.7 Anthocyanins

Anthocyanins are a group of red and blue pigments found in
plants and along with catechins, form subgroups within the flavonoids.
The antimicrobial activity of anthocyanins and catechins against the
foodborne pathogens E. coli and Salmonella sp. has been reported,
with MIC values between 10-400 mg/mL (Ma et al, 2019).
Mechanistically, anthocyanins can act as an antibacterial by destroying
the cell wall of foodborne pathogens: anthocyanins extracted from the
Assegai tree (Curtisia dentata) were able to destroy the E. coli cell wall
(Doughari et al., 2012), whereas in another study, anthocyanins
extracted from lowbush wild blueberries were able to destroy the cell
membranes of E. coli O157: H7, with consequent cytoplasmic leakage
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(Lacombe et al,, 2013). Although anthocyanins are active against
different bacterial strains, Gram-positive bacteria are usually more
susceptible than Gram-negative bacteria (Cisowska et al., 2011).
We have demonstrated the effect of an anthocyanin extract from the
flowering plant Roselle (Hibiscus sabdariffa L.) containing cyanidin-3-
O-sambubioside and delphinidin-3-O-sambubioside against S. aureus
ATCC 6538 and against a food isolate of L. monocytogenes. The effect
was bacteriostatic against S. aureus (MIC=2.5mg/mL) and
bactericidal against L. monocytogenes (Minimal Bactericidal
Concentration, MBC=2.5mg/mL) (El Majdoub et al., 2021).

The antiviral potential of anthocyanidins has been recently
reviewed by Mohammadi Pour et al. (2019): a total anthocyanins
extract from strawberry (Fragaria x ananassa) was active against
HSV-1 (Simaes et al., 2012), whereas an anthocyanins extract from
wild strawberry (Fragaria vesca), raspberry (Rubus idaeus), blueberry
(Vaccinium myrtillis) and lingonberry (Vaccinium vitis-idaea) was
active against coxsackievirus Bl (CV-B1) and influenza A virus
(Nikolaeva-Glomb et al., 2014). Specifically, cyanidin-3-galactoside,
contained in pistachios, was active against the influenza A, influenza
B and Avian influenza viruses by Increasing the NK cell activity and
enhancing the immune system responses (Niemenak et al., 2006).

These reports illustrate the extensive antimicrobial and antiviral
effects of pistachio phytochemicals, isolated or within plant extracts,
alone and combined with existing drugs. In terms of antibacterial
activity, Gram-positive strains were usually more susceptible than
Gram-negative bacteria, with a mostly bacteriostatic rather than
bactericidal effect. Amongst the Gram-positive bacterial strains tested,
ATCC and clinical isolates of S. aureus were more susceptible to the
effect of bioactive compounds. S. aureus and MRSA are known to
be responsible of various infections, including biofilm-associated
diseases, ranging from skin, prostheses, catheters and other

TABLE 3 Antimicrobial effect of pistachio extracts and essential oil.

Pistachio Strain

Natural raw and roasted salted polyphenols-rich

extracts of Pistacia vera L.

L. monocytogenes, S. aureus and MRSA | 15.6-125.0 pg/mL

10.3389/fmicb.2024.1396514

biomaterials infections to more serious systemic diseases, such as
endocarditis, pneumonia, and osteomyelitis. Given the increased
incidence of antibiotic resistant S. aureus infections, especially within
hospital settings, the discovery of natural compounds effective against
S. aureus produced biofilm is a promising area for further clinical
research (Mandalari et al., 2023).

3 Antimicrobial effect of pistachios
and mechanism of action

Table 3 reports the antimicrobial effect of pistachio extracts and
essential oil. We have previously demonstrated that polyphenol-rich
extracts of natural raw shelled and roasted salted pistachios were
active in vitro against a range of Gram-positive bacteria, with a
bactericidal effect against ATCC strains and food isolates of
L. monocytogenes, S. aureus and MRSA (Bisignano et al., 2013a).
Furthermore, we have phenotypically characterized clinical isolates of
Staphylococcus spp. and tested these for their sensitivity against natural
raw and roasted salted pistachios: both extracts were active against
clinical isolates of Staphylococcus sp., as well as the S. aureus ATCC
6538P (L.a Camera et al., 2018). We have also demonstrated that
polyphenol-rich extracts of natural raw shelled and roasted salted
pistachios were effective against L. monocytogenes food isolate strains
(MIC values between 025 and 2.0mg/mL) and against
L. monocytogenes ATCC 13932 (Gervasi et al.,, 2022). Furthermore,
the oil fractions from natural and roasted pistachios were effective
against L. monocytogenes ATCC 13932 and Enterococcus faecium
DSZM 17050. Other authors have confirmed the effect of a methanolic
extract of pistachios against staphylococcal infections (Gutiérrez-
Morales et al., 2017). Pistacia vera L. oleoresin has been tested in

Active concentration Reference

Bisignano et al. (2013a)

Natural raw and roasted salted polyphenols-rich
Staph. spp.
extracts of Pistacia vera L.

31.2-2000.0 pg/mL La Camera et al. (2018)

Natural raw and roasted salted polyphenols-rich

L. monocytogenes ATCC and food

extracts of Pistacia vera L.

isolates

0.25-2.0mg/mL

Gervasi et al. (2022)

Methanolic extract of Pistacia vera L.

Staph. spp.

68.6+£0.3% relative percentage

inhibition

Gutiérrez-Morales et al. (2017)

Pistacia vera L. oleoresin

H. pylori infection in an in vivo model

of Galleria mellonella

62% survival rate

Di Lodovico et al. (2019)

Pistacia vera L. oleoresin

Streptococcus spp.

1024.0-2048.0 pg/mL

Magi et al. (2018)

Essential oil from Pistacia vera L. hulls

S. aureus and E. coli

7.1mg/ mL

Smeriglio et al. (2017)

Essential oil from Pistacia vera L. hulls

Candida spp.

2.5-5.0mg/ mL

D’Arrigo et al. (2019)

Essential oil from Pistacia vera L. hulls

S. aureus, B. subtilis, A. flavus

60.0-500.0 pg/mL

Shahdadi et al. (2023)

extracts

Pistachio hull ethanolic (PVE) and aqueous (PVD)

E. faecalis, S. aureus, S. uberis, B. cereus

and B. subtilis

0.8-49.0 (PVE) and 9.6-82.5 (PVD)

mg/mL

Seker and Akbas (2023)

Pistachio hull extract

E. coli, B. cereus, S. aureus, P

aeruginosa, A. niger, C. albicans

0-22mm growth diameter

Bakhshi et al. (2021)
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FIGURE 1
Proposed bacterial molecular targets of bioactives in pistachios.
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combination with levofloxacin, demonstrating a protective effect
against H. pylori infection in an in vivo model of Galleria mellonella
(62 and 63% survival using oleoresin and levofloxacin, respectively)
(Di Lodovico et al., 2019). Pistacia vera L. oleoresin was also effective
against oral streptococci, such S. mutans, with a demonstrated anti-
biofilm activity (Magi et al., 2018).

The essential oil from Pistacia vera L. hulls was bactericidal against
arange of S. aureus strains and E. coli at a concentration of 7.11 mg/mL
(Smeriglio et al,, 2017). A fungicidal effect of pistachio essential oil was
demonstrated against standard and clinical strains of Candida sp. at
concentrations between 2.50 and 5.0 mg/mL, D-limonene and 3-Carene
being the most active components (D’Arrigo et al., 2019). The inhibitory
activity of pistachio hull essential oil has also recently been demonstrated
against S. aureus, B. subtilis and Aspergillus flavus (Shahdadi et al., 2023).

Recently, the phytochemical contents, the antioxidant and
antimicrobial activities of pistachio hull ethanolic (PVE) and aqueous
(PVD) extracts obtained by microwave-assisted extraction (MAE)
were investigated by Seker and Akbas (2023): both extracts showed
antimicrobial potential against E. faecalis, S. aureus, Streptococcus
uberis, B. cereus and B. subtilis, with MICs values between 0.8-49.0
and 9.6-82.5mg/mL and MBC values ranging from 1.3-99.1 and
15.5-150.0mg/mL for PVE and PVD, respectively (Seker and Akbas,
2023). The antibacterial properties of pistachio hull extracts have also
been reviewed by Arjeh et al. (2020).

A pistachio hull extract has been used as a reducing and stabilizing
agent with antibacterial and antifungal effects within copper
nanoparticles (Bakhshi et al., 2021).

Overall, these studies demonstrate that pistachios extract and
essential oil, alone or in association with existing drugs, could
be considered good candidates for the development of novel drug
formulations. Their activity against Gram-positive bacterial strains,
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including S. aureus, could be exploited to identify novel therapeutics
with topical use (i.e., to treat skin infections).

Although further studies are warranted to evaluate the
mechanisms of action involved in the observed effect exerted by
pistachio extracts, Figure 1 reports some proposed molecular bacterial
targets, as reviewed by Alvarez-Martinez et al. (Alvarez-Martinez
et al., 2020). Polyphenols can target the bacterial cell wall, causing
morphological damage to the cells, or destroying the structural
integrity of the cell wall and intracellular matrix (Din et al., 2013; Pojer
etal., 2013).

The different cell wall structure between Gram-positive and
Gram-negative bacteria could explain the higher susceptibility of
Gram-positive strains to phytochemical antimicrobial activity, given
that the outer membrane of Gram-negative bacteria acts as a
permeability barrier, therefore reducing the uptake of the phenolic
compounds (Naz et al., 2007). Polyphenols can cause leakage by
increased permeability of the bacterial membrane and the cell wall
(Lambert et al., 2001; Wang et al., 2017). Specifically, catechins can
cause destruction of the Gram-positive bacterial membranes through
interaction with lipids, which determine phase separations (Reygaert,
2014). Furthermore, epicatechin, tannic acid, epigallocatechin gallate,
quercetin and kaempferol demonstrated significant B -lactamase
inhibitory activity, also in synergy with antibiotics such as
ciprofloxacin and rifampicin (Lin et al., 2008; Bernal et al., 2010;
Mandal et al., 2017). Other possible targets could be represented by
cell surface adhesion proteins, membrane-bound enzymes and cell
wall polypeptides (Naz et al., 2007). A bioactive fraction from the tree
species Duabanga grandiflora fruit has been shown to inhibit the
penicillin-binding protein 2a in MRSA strains (Santiago et al., 2015).

Regulation of bacterial gene expression has been proposed as an
alternative mechanism of action by phytochemicals, either through
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FIGURE 2
Graphical representation of bioactive natural compounds against viral families.

modulation of transcription factors or direct interaction with
DNA. The antibacterial effect of Caffeic Acid Phenethyl Ester (CAPE)
against E. faecalis, L. monocytogenes and S. aureus has been also related
to its ability to target RNA- and DNA-related molecules (Murtaza et al.,
2014). Naringenin was able to bind the DNA of S. aureus ATCC 6538,
resulting in major metabolic changes (Wang et al., 2017). Furthermore,
the effect of phytochemicals on biofilm formation has been reported:
for example, we have shown a dose-dependent effect of phloretin on
biofilm production of S. aureus (Mandalari et al., 2023) and a dose-
dependent effect of a white grape juice extract on biofilms formation
of E. coli and Pseudomonas aeruginosa (Filocamo et al., 2015). Another
antibacterial effect of phytochemicals is related to the alteration of the
level of bacterial metabolites, proton and ion equilibrium and
adenosine triphosphate (ATP) synthesis inhibition, which could
determine cell death (Lin et al., 2005; Engels et al., 2011). Certain
polyphenols, such as gallic or caffeic acid, could reduce cytochrome
activity and, therefore, oxidative phosphorylation, thus inhibiting
bacterial growth (Shetty and Wahlqvist, 2004; Kwon et al., 2007).

It is worth noting that the antibacterial effect of polyphenolic plant
extracts is often the result of synergistic, indifferent, or antagonistic
interactions among the individual compounds. For example, we have
demonstrated that bergamot (Citrus bergamia) fractions and the pure
phytochemical compounds, neohesperidin, hesperetin (aglycone),
neoeriocitrin, eriodictyol (aglycone), naringin and naringenin
(aglycone), were active against Gram-negative bacteria (E. colj,
Pseudomonas putida, Salm. enterica) with MIC values in the range 200
to 800pg/mL. However, pairwise combinations of eriodictyol,
naringenin and hesperetin showed synergistic and indifferent
interactions, dependent on the selected, tested organism (Mandalari
etal,, 2007). Moreover, isolated phytochemicals and extracts are being
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used in combination with traditional antibiotics to sensitize
multidrug-resistant bacterial strains (Hatano et al., 2005; Betoni et al.,
2006). We have demonstrated a synergistic and post-antibiotic effect
of tobramycin in combination with tea tree (Melaleuca alternifolia) oil
against S. aureus and E. coli (D’Arrigo et al., 2010). This strategy could
represent a valuable tool to combat AMR more effectively.

4 Antiviral effect of pistachios and
mechanism of action

Figure 2 illustrates the effectiveness of bioactive natural compounds
against viral families. The antiviral potential of pistachio polyphenolic
extracts, particularly against herpes simplex virus type 1 (HSV-1), has
been demonstrated (Table 4). We have previously shown that natural raw
pistachio extracts (NRRE) significantly reduced the expression of critical
viral proteins, including ICP8 (infected cell polypeptide 8), UL42 (DNA
polymerase processivity factor), and US11. This reduction was associated
with a decrease in viral DNA synthesis, highlighting the extract’s
inhibitory effects on HSV-1 replication (Musarra-Pizzo et al., 2020).
More recently, we have further investigated the mechanisms involved in
the anti-HSV-1 effect exerted by pistachio extracts (Figure 3): NRRE and
roasted unsalted (RURE) pistachio polyphenols-rich extracts blocked
virus binding on the cell surface, impaired viral DNA synthesis, and
prevented the accumulation of viral proteins (Pennisi et al., 2023).
Indeed, by testing six compounds present in pistachio polyphenolic
extracts (o, B, and & tocopherol, p-carotene, luteolin, and zeaxanthin),
we have demonstrated that zeaxanthin inhibited HSV-1 replication by
affecting both viral internalization and replication. Furthermore,
zeaxanthin directly interacted with HSV-1 viral particles, leading to a
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TABLE 4 Antiviral effect of pistachios extracts.

10.3389/fmicb.2024.1396514

Compound Class Virus Antiviral effect Sl Reference
Viral inactivation
Binding inhibition
NRRE n-hexane | Polyphenolic extracts 9.2
Viral DNA reduction
Viral proteins reduction
Viral inactivation
HSV-1 Binding inhibition Pennisi et al. (2023)
RURE n-hexane Polyphenolic extracts 4.98
Viral DNA reduction
Viral proteins reduction
Viral inactivation
Zeaxanthin Carotenoids Binding inhibition 3.96
Viral DNA reduction
Viral DNA reduction
NPRE Polyphenol-rich extracts 3
Viral proteins reduction
Catechin, eriodictyol-7- O-glucoside, =~ HSV-1 Musarra-Pizzo et al. (2020)
Binding inhibition
NP mix gallic acid, protocatechuic acid, caffeic -
Viral DNA reduction
acid, rutin, and isoquercetin
PV-FK Lipophylic extracts HSV-1 -
PV-SPS Lipophylic extracts HSV-1 -
PV-GU Lipophylic extracts HSV-1 -
HSV-1, Viral replication Ozgelik et al. (2005)
PV-GR Lipophylic extracts -
Parainfluenza viruses
HSV-1
PV-GP Lipophylic extracts -
Parainfluenza viruses
AE-Pis Aqueous extracts Viral replication 29.12
HSV-2 o o Chhoud et al. (2022)
P-Pis Polysaccharide extracts Viral inactivation 20.25
7.33 (CV- B2)
11.80 (CV-B3)
Pisv1
16.35 (CV-B4)
Allergenic protein CV-B2,CV-B3,CV-B4, | Inhibitory activity of virus- 14.21 (CV-B5)
Taghizadeh et al. (2020)
Estracts and CV-B5 induced cytopathogenicity 17.30 (CV- B2)
18.25 (CV-B3)
Pis v 2.0101
23.52 (CV-B4)
20.41 (CV-B5)

NRRE n-hexane: n-hexane-extracted Californian natural raw pistachio polyphenols-rich extracts; RURE n-hexane: n-hexane-extracted Californian roasted raw pistachio polyphenols-rich
extracts; NPRE: natural shelled pistachios kernels; NP mix: natural shelled pistachio kernels mix; PV-FK: Pistacia vera fresh kernel; PV-SPS: Pistacia vera skin of processed-woody shell; PV-
GU: Pistacia vera Gaziantep sample-unripe; PV-GR: Pistacia vera Gaziantep sample-ripe; PV-GP: Pistacia vera Gaziantep sample-processed; AE-Pis: Aqueous extract from Pistacia vera L.
male floral buds; P-Pis: Polysaccharide from Pistacia vera L. male floral buds; HSV-1: Herpes Simplex Virus type 1; HSV-2: Herpes Simplex Virus type 2; CV: Coxsackie viruses; SI: selectivity

index: the ratio of EC50/CC50.

significant reduction in HSV-1 replication (CC50 16.1, EC50 4.08 pM, SI
3.96). Additionally, Ozcelik et al. (2005) explored the antiviral properties
of 15 lyophilic extracts from various parts of Pistacia vera, including
leaves, branches, stems, kernels, shell skins, and seeds. Their research
identified kernel and seed extracts as having the most potent antiviral
effects against herpes simplex and parainfluenza viruses. Specifically, the
fresh kernel (PV-FK) and skin of processed-woody shell (PV-SPS)
extracts demonstrated significant activity against DNA viruses, which
well compared with acyclovir (Figure 3). The Gaziantep sample-unripe
(PV-GU) extract also showed notable antiviral activity. On the other
hand, some extracts displayed outstanding activity against RNA viruses,
such as PV-GR (Gaziantep sample-ripe) and PV-GP (Gaziantep sample-
processed). Chhoud et al. (2022) reported the anti-HSV-2 activity of
extracts from Pistacia vera male floral buds: the aqueous and
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polysaccharide extracts from male flower buds exhibited a selectivity
index (SI) of 29.12 and 20.25, respectively. The extracts showed virucidal
activity against HSV-2, likely by altering the viral membrane or
interacting with viral ligands, thus inhibiting their binding to receptors
on target cells. Finally, pistachio extracts have shown activity against
Coxsackie viruses (CV) B2, B3, B4, and B5. Specifically, two pistachio
allergens, 2S albumin (Pis v 1) and 11S globulin (Pis v 2.0101), were
found to inhibit these viruses (Taghizadeh et al., 2020).

5 Conclusion

Due to the increased rates of resistance to antibiotics and
antivirals, scientific research is continuously developing to find novel
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FIGURE 3
Mechanism of action of pistachio phytochemicals against Herpes simplex virus 1. (1) HSV-1 entry by attachment and penetration. (2) Release of viral
DNA. (3) Sequential transcription (A) and translation (B) of viral immediate-early, early, and late genes. (4) DNA replication by rolling circle mechanism.
(5) Assembly and packaging. (6) Maturation and (7) budding of the nucleocapsid out of the nucleus, (8) maturation and (9) release of the virions by
exocytosis.

cost-effective alternatives to reduce hospitalization and mortality
rates. Amongst natural compounds, the phytochemicals present in
pistachio nuts have been shown to exhibit significant antibacterial
and antiviral activity against resistant and non-resistant strains. Some
findings suggest that the antimicrobial and antiviral effects of
pistachio polyphenolic extracts are the result of a balance of the
individual bioactive compounds which in combination exert the
activity. The synergistic interaction of certain phytochemicals with
selected antibiotics or antiviral drugs could be a useful tool to
overcome resistance. Nevertheless, isolated compounds, such as
zeaxanthin, exhibit strong antiviral activity against HSV-1, affecting
viral attachment, penetration and viral DNA synthesis.

While the mechanism of action of pistachio extracts has been partly
elucidated, further studies are required to identify more bioactive
compounds responsible for the observed effect. However, based on the
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existing evidence, the use of pistachio extracts and derivatives should
be encouraged for the topical treatment of S. aureus skin infections and
ocular herpetic infections. Existing challenges in the development of
antimicrobials from natural products, including cytotoxicity, production
of highly active standardized extracts with defined mechanism of action
under GMP conditions, and identification of bioactive components
taking into account possible interaction amongst the individual
compounds, should also be considered, together potential sustainability
issues related to pistachio cultivation.
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