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Freshwater wetlands are the wetland ecosystems surrounded by freshwater, 
which are at the interface of terrestrial and freshwater ecosystems, and are rich 
in ecological composition and function. Biodiversity in freshwater wetlands 
plays a key role in maintaining the stability of their habitat functions. Due to 
anthropogenic interference and global change, the biodiversity of freshwater 
wetlands decreases, which in turn destroys the habitat function of freshwater 
wetlands and leads to serious degradation of wetlands. An in-depth understanding 
of the effects of biodiversity on the stability of habitat function and its regulation 
in freshwater wetlands is crucial for wetland conservation. Therefore, this paper 
reviews the environmental drivers of habitat function stability in freshwater 
wetlands, explores the effects of plant diversity and microbial diversity on habitat 
function stability, reveals the impacts and mechanisms of habitat changes on 
biodiversity, and further proposes an outlook for freshwater wetland research. 
This paper provides an important reference for freshwater wetland conservation 
and its habitat function enhancement.
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1 Introduction

Freshwater wetlands (FWs) are ecosystems formed by the interaction between freshwater 
rivers, lakes and land, mainly including riverine wetlands, lakes, marshes and floodplains. FWs 
not only provide suitable habitats for many plants and animals (McKown et al., 2021), but also 
play an important role in nutrient cycling, water purification and biodiversity maintenance (Li 
C. et al., 2022; Yu et al., 2023; Li et al., 2024). FWs have four the ecological services categories: 
provisioning, regulating, cultural and supporting services (Keddy et al., 2009). However, FWs 
have been severely damaged due to the increase in global population and economic 
development, resulting in a decrease in the global wetland area (Davidson, 2014), and a 
consequent severe destruction of wetland functions and biodiversity (Herbert et al., 2015; 
Ndehedehe et al., 2020).

Biodiversity is a complex system formed by the interaction between organisms and the 
external environment, expressing in genetic diversity, species diversity, and ecosystem diversity 
(Song, 2017; Liang et al., 2023). Habitat function refers to the specific functions and conditions 
providing for organisms, and many studies have shown that biodiversity plays a crucial role 
in habitat function and its stability (Weisser et al., 2017; Yao et al., 2017). FWs are complex 
ecosystems composed of special environmental conditions and organisms, and their functional 
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stability is affected by many factors (Rideout et al., 2022). In FWs, high 
biodiversity can enhance the stability of wetland functions, such as 
nutrient cycling, water purification, and biodiversity maintenance 
(Thomaz, 2023). Rich diversity can alleviate competitive pressures 
among organisms by providing more ecological niches through 
complementary effects, allowing different species in FWs to fully 
utilize resources such as water, nutrients and sunlight (Steudel et al., 
2011). In addition, biodiversity can also improve the stability and 
disturbance resistance of food chains, mitigating external disturbances 
in wetlands by building complex foodweb structures (Peel et al., 2019; 
Hatton et al., 2024).

Although many studies showed that the biodiversity of FWs has 
an important impact on the functional stability of the habitats in 
which they exist, few literatures have been reviewed and summarized. 
Therefore, the objectives of this study are to (1) analyze the effects of 
biodiversity on the functional stability of freshwater wetland habitats; 
(2) illuminate the impacts and mechanisms of habitat change on 
biodiversity; and (3) propose future research directions and 
perspectives. This paper synthesizes the environmental drivers of 
functional stability in FWs, the effects of plant and microbial diversity 
on the functional stability of FWs, and further discusses the effects 
and mechanisms of habitat change on biodiversity.

2 Environmental drivers of functional 
stability in freshwater wetlands

Freshwater wetlands provide numerous functions such as 
biodiversity maintenance, freshwater supply, carbon storage, etc., and 
at the same time they are one of the most fragile ecosystems (Zedler 
and Kercher, 2005). Changes in environmental drivers such as 
hydrological factors, climatic factors, water quality, and soil 
physicochemical properties have led to serious functional degradation 
of some wetlands (Xue et  al., 2018; Xiu et  al., 2019). Therefore, 
understanding the effects of these environmental drivers on freshwater 
wetland ecosystems (Table  1) is important for improving the 
functional stability of FWs and optimizing wetland 
management options.

2.1 Hydrology

Water plays a crucial role in the formation, development, 
succession, and extinction of wetlands, directly affecting their 
structure, function, and ecosystem stability (Wang et  al., 2015). 
Human activities and climate change cause changes in precipitation, 
evapotranspiration, and temperature, which lead to changes in 
hydrological conditions such as water-holding capacity, water level, 
and inundation duration of wetlands (Karim et al., 2015). Changes in 
these hydrological characteristics in turn affect the structure, 
distribution (Todd et  al., 2010; Maietta et  al., 2020a) and 
biogeochemical cycling (Chen et al., 2013) of biological communities 
in FWs, leading to degradation of wetland ecosystem functions.

An increase in water loss from FWs leads to hydrological 
conditions variation and a decrease in available water resources, which 
can disrupt their freshwater supply (Zhao and Liu, 2016). Hydrological 
changes can also affect the structure, distribution and biogeochemical 
cycling of freshwater wetland biological communities, which in turn 
can degrade wetland ecosystems (Chen et al., 2013; Maietta et al., 

2020a). Large fluctuations in water level can affect the structure and 
diversity of biological communities (Luo, 2009). During periods of 
low water levels in the Paraná River delta, the beta diversity and 
individual biomass of zooplankton decreases, leading to a 
simplification of the functional diversity (Gutierrez et al., 2022) and a 
degradation of the wetland environment that sustains aquatic 
vegetation in Lake Michigan-Lake Huron (DeVries-Zimmerman 
et  al., 2021), whereas high water levels have led to a decrease in 
vegetation cover in Lake Ontario (Smith et al., 2021), resulting in 
habitat loss and the frustration of the supply functions of FWs. 
Overall, water level with too low or high is not conducive to wetland 
ecosystems. Soil water content, aeration conditions and redox 
potential also change with fluctuations in wetland water level, affecting 
the ecological processes and metabolic activities of microbial 
communities (Ma et al., 2018). Therefore, the relative stability of water 
level plays an important role in maintaining the functional 
stability of FWs.

2.2 Water quality and soil properties

Humans production and life discharge heavy metals (Li et al., 
2021), pesticides and nutrient salts (Sremacki et al., 2020; Ding et al., 
2021) into freshwater wetland ecosystems, directly and indirectly 
leading to changes in water quality and soil physicochemical 
properties of wetlands, which in turn cause wetland degradation (Wei 
et al., 2019). Relevant studies have shown that increased loading of 
nutrients such as nitrogen and phosphorus in water will deteriorate 
water quality, and cause eutrophication of the water body, leading to 
significant changes in the structure and function of wetland 
ecosystems (Khan and Ansari, 2005; Bano et al., 2022). It has been 
found that increased loading of nitrogen and phosphorus in FWs may 
affect the rates of nitrification, denitrification, and methane 
production, which in turn affects the nutrient cycling (Herbert et al., 
2020). Soil physicochemical properties are key factors in shaping 
microbial community structure, composition, and metabolic activity 
(Ou et al., 2019). Changes in soil physicochemical properties caused 
by human disturbances and natural processes likewise have serious 
impacts on freshwater wetland biological communities (Lai, 2010).

2.3 Temperature

Temperature is recognized as one of the key climatic factors 
influencing the functional stability of FWs (Bano et al., 2022). Changes 
in temperature can have pervasive effects on the structure and 
function of freshwater wetland ecosystems (Hamilton, 2010). Wetland 
plant growth and photosynthesis efficiency increase with increasing 
temperatures within a certain range, increasing nutrient uptake and 
conversion (Zou et al., 2014). However, excessively high temperatures 
may reduce the germination of plant seeds and incubation of animals, 
which can have serious effects on wetland plant and microbial 
communities, disrupting wetland biodiversity (Nielsen et al., 2015). 
Temperature changes can also have an impact on microbial 
metabolism, for example, the role of iron-reducing bacteria in 
inhibiting methane production may diminish as the global average 
temperature increases, thus affecting greenhouse gas emissions from 
FWs. In addition, temperature changes may also lead to species 
migration and range shifts (Chen X. et al., 2023).
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The hydrological conditions of wetlands are closely related to 
temperature changes, and global warming will lead to changes in 
evaporation and precipitation, which may alter the hydrological cycle 
of wetlands and thus indirectly affect the functional stability of 
wetlands (Luo, 2009; You et al., 2015). A previous study showed that 
a 10% decrease in rainfall will lead to changes in the redox conditions 
of the soil in the Everglades, thus affecting its biogeochemical 
processes; whereas the elemental load of the wetland ecosystem may 
increase when rainfall increases by 10%, which helps to maintain 
suitable redox conditions and promotes biogeochemical elemental 
cycling (Orem et al., 2015).

3 Impact of plant diversity on 
functional stability of freshwater 
wetlands

Freshwater wetlands are rich in plant species, which play multiple 
roles in wetland ecosystems (Figure 1A). Different types of wetlands 
have different dominant vegetation, and diverse plants play an 
important role in maintaining the stability of wetland habitat functions 
(e.g., water purification, carbon storage, biodiversity maintenance, 
etc.) (Zhang et al., 2014).

3.1 Water purification

Removal of pollutants by wetlands plants is one of the main ways 
of water quality purification, mainly through two main pathways 
involving in direct pollutants removal and microbial processes 

mediating (Figure  1B; Stottmeister et  al., 2003). The uptake of 
nutrients and heavy metals varies among different plant species 
(Adhikari et al., 2011; Abbasi et al., 2018). The study showed that the 
nitrogen uptake and fixation capacity of Rhododendron ilfescens 
Siberianum was higher, and the remediation of nitrogen pollution in 
wetlands was more effective (Weragoda et al., 2012). In addition, the 
dissolved oxygen in the water were affected by the abundance of 
submerged plant species (Qian, 2019), and different plants had 
different inter-roots, physiological processes, and growth modes, 
which might affect the community structure and activity of 
microorganisms, and further affect water quality purification (Zhang 
et al., 2010; Pang et al., 2016). Resource complementarity between 
plant species may also play a positive role in nutrient uptake and water 
purification (Choudhury et al., 2018). Therefore, maintaining high 
plant diversity can help to improve pollutants removal from water 
(Brisson et al., 2020).

3.2 Carbon storage

Freshwater wetlands are one of the valuable carbon storage sites, 
covering about 6% of the land area, and contain more than 30% of the 
soil carbon pool (Stewart et al., 2024). Plants play an important role in 
wetland carbon storage (Sheng et  al., 2021). Wetland plants can 
convert atmospheric carbon dioxide into biomass through 
photosynthesis, and plant residues and leaves are deposited at wetland 
after death, which is one of the main mechanisms of carbon storage in 
wetlands (Adhikari et al., 2009). Previous studies have shown that the 
plants vary in nutrient and light utilization (Abbasi et al., 2018). Plant 
diversity has an important effect on freshwater wetland productivity 

TABLE 1 Effects of environmental drivers on freshwater wetland ecosystems.

Environmental drivers Factor change Functional changes References

Wetland hydrology: Lake levels, 

rainfall, runoff, land use, and 

groundwater recharge

Extreme water level Reduced primary productivity of wetlands. Ojdanič et al. (2023)

Lowering of wetland levels Reduced biodiversity and biomass simplifies wetland function. Gutierrez et al. (2022)

Excessive high/low 

groundwater levels

Wetland water levels affect biogeochemical cycles, increasing CO and 

NO emissions when water is low and CH4 emissions when water is high.
Yang et al. (2013)

Lowering of lake and river 

levels

Wetland habitat suitability declines, negatively affecting wetland 

functions.
Mu et al. (2022)

Physicochemical indicators:

 1. Water quality indicators: pH, DO, 

nutrient salt content, etc.

 2. Soil indicators: soil texture, 

organic matter content, pH, etc.

Wetland salinization
Water chemistry changes negatively impact biological activity and 

ecological processes in wetlands.
Herbert et al. (2015)

Increased nutrient salts in 

the water column

Eutrophication of water bodies; changes in microbial communities and 

primary productivity.
Donato et al. (2020)

Increased quality and 

availability of soil organic 

matter

Altered microbial community structure and increased wetland CO2 and 

CH4 production rates.
Morrissey et al. (2014)

Reduced pH of wetland soils
Changes in the structure of microbial communities negatively impact 

the functions of wetlands.
Zhao et al. (2022)

Temperature

Increased water temperature
Changes in water balance and chemistry degrade wetland functions in 

hydrological regulation and water purification.
Jolly et al. (2008)

Elevated temperatures
Organisms’ physiological processes affected, reducing biodiversity and 

impairing freshwater wetland function.
Epele et al. (2022)

Warmer temperatures
Climate warming affects plant adaptations, degrading nutrient cycling in 

FWs.
Lindborg et al. (2021)
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(Isbell et al., 2013; Chaturvedi and Raghubanshi, 2015). Means et al. 
(2016) found a positive correlation between plant diversity and 
productivity in freshwater artificial wetlands. Cardinale et al. (2011) 
found that high diversity plant communities can use more ecological 
niches and increase the efficiency of nutrient utilization, which in turn 
increases primary productivity. An increase in wetland productivity 
can increase the capacity and total amount of carbon input from 
plants to the soil, which in turn increases carbon storage (Zhang 
et al., 2022).

In addition, the decomposition mode (humification and 
mineralization) and rate of plant apoplasts are particularly important 
for wetland carbon storage (Prescott and Vesterdal, 2021). Litter from 
different types of plants has different chemical compositions (Yan 
et al., 2018) and decomposition rates (Xi et al., 2023). It has been 
shown that the litter of freshwater wetland vegetation has the ability 
to alter the nutrient content of soil nitrogen and carbon, thus leading 
to the construction of different dominant microorganisms (Bonetti 
et al., 2021). Some plant litter leads to the production of microbial 
communities of humification, while others lead to the construction of 
microbial communities of carbon dioxide or methane production (Lin 
et al., 2015). Increased plant diversity can provide a wider variety of 
little, and this little can lead to the construction of more stable and 
resilient microbial communities, affecting the carbon storage capacity 
of the wetland (Maietta et al., 2020b).

3.3 Biodiversity maintenance

Plants can create unique microhabitat structures and provide 
suitable conditions for many animals and microorganisms (Choi et al., 
2014; Weilhoefer et al., 2017). Freshwater wetland plants serve as the 
basis of the food chain in this ecosystem, and rich wetland plant 
communities provide a more complex and stable food web that 

supports the nutrient needs of many animals and microorganisms, 
thus contributing to the maintenance of biodiversity (Peel et al., 2019). 
In addition, higher plant diversity improves the resistance of wetland 
ecosystems to invasive alien species and better defends against invasive 
alien species, thus maintaining the stability of other organisms within 
the wetland (Peter and Burdick, 2010). Therefore, the protection and 
maintenance of plant diversity in FWs is essential for maintaining 
wetland biodiversity.

4 Impact of microbial diversity on 
functional stability of freshwater 
wetlands

Microorganisms in FWs are rich and diverse, with some 
differences in microbial composition among different wetland types, 
which can be mainly categorized into bacteria, archaea, fungi and 
protozoa (Cao et al., 2017). Microorganisms play an irreplaceable role 
in maintaining the stability of freshwater wetland habitat functions 
(e.g., water purification and biogeochemical cycles, etc.) (De Mandal 
et al., 2020; Chen M. et al., 2023; Qiao et al., 2023; Chen et al., 2024).

4.1 Water purification

Microorganisms can participate in various water purification 
processes through a series of metabolic and interaction processes, 
especially some functional microorganisms play a crucial role in 
wetland water purification (Wang et al., 2022). For example, some 
inter-root microorganisms such as Pseudomonas and Flavobacterium 
can effectively remove micropollutants (Brunhoferova et al., 2022). 
Fusobacterium, Rhizobium and Erythrobacterium have significant 
removal effects on organic pollutants such as petroleum in wetlands, 

FIGURE 1

Role (A) and pollutant removal (B) of wetland plants.
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and their removal rates are positively correlated with the abundance 
of bacterial species (Xiang et al., 2020). Burkholderia, Hydrophilus, and 
Thiobacillus play important roles in the remediation of arsenic and 
antimony pollution in wetlands (Deng et al., 2022).

The areas riched in wetland microbial diversity usually have 
higher degradation capacity of organic pollutants, and different 
microbial communities can co-operate together to decompose 
complex organic matter and convert it into harmless products (Berrier 
et  al., 2022). Studies have shown that hydrocarbon-degrading 
microorganisms (e.g., Pseudomonas, Rhodococcus, and Nocardia) in 
FWs can form microbial aggregates, improving the removal efficiency 
of n-alkanes and polycyclic aromatic hydrocarbons (PAHs) (Liu et al., 
2021). Anaerobic ammonia-oxidizing bacteria in wetlands can 
cooperate with certain archaea (e.g., nitrate archaea and sulfate-
dependent archaea) to complete the denitrification process in wetlands 
(Wang et al., 2019). In addition, some microorganisms can remove 
multiple pollutants simultaneously. For example, Flavobacterium and 
Chryseobacterium can simultaneously degrade nitrogen and organic 
matter in wetlands (Shen et al., 2018). Sulfate-reducing bacteria, such 
as Desulfovibrio, Desulfobacter, and Desulfobulbus, also play dual roles 
in wetland restoration: (1) participating in the sulfate reduction 
process, producing hydrogen sulfide; (2) hydrogen sulfide reacts with 
heavy metals to form precipitation, which promotes the passivation of 
heavy metals (Chen et al., 2021).

4.2 Biogeochemical cycles

Wetland microorganisms are involved in the process of storage, 
transformation and release of C, N and other elements, and are the 
dominant driver of the biogeochemical cycle in FWs (Hussain 
et al., 2023).

The biogeochemical cycle of carbon in FWs has received much 
attention (Zou et al., 2022; Bao et al., 2023; Qian et al., 2023), and 
microorganisms are mainly involved in the carbon cycle through the 

processes of respiration, methane production and conversion, and 
decomposition of organic matter (Bardgett et  al., 2008). 
Microorganisms play an important role in methane production and 
transformation of FWs (Figure  2). It is now widely accepted that 
methanogenic bacteria are distributed in seven orders of the phylum 
Euryarchaeota (Methanopyrales, Methanococcales, 
Methanobacteriales, Methanomicrobiales, Methanomassiliicoccales, 
Methanosarcinales, and Methanocellales) (Dean et al., 2018). Among 
them, Methanomicrobiales, Methanosarcinales, 
Methanomassiliicoccales, and Methanobacteriaceae methanogenic 
bacteria have widely found in wetland ecosystems (Horn Marcus et al., 
2003; Zhang et al., 2008; Söllinger et al., 2016). There are three main 
pathways of freshwater wetland methanogens involved in 
methanogenesis: acetate fermentation, hydrogenotrophic and 
methylotrophic methanogenesis (Narrowe et  al., 2019), whereas 
wetland methane oxidation is of two types: aerobic and anaerobic 
oxidation. The diverse microorganisms can adapt to the different 
environmental conditions and can better maintain the balance of 
wetland methane production and conversion. It was found that the 
microbial community can change the methanogenic pathway by 
adjusting the composition and activity of the microbial community 
under the fluctuation of nutrients, and then maintaining the stability 
of carbon cycle (Holmes et al., 2014). In addition, the richness of 
microbial diversity in FWs is closely related to the rate of 
mineralization of organic matter, and an active microbial community 
can increase organic matter degradation and mineralization (Li 
et al., 2015).

Microorganisms in FWs are also critical for maintaining the 
relative stability of the nitrogen cycle, and diverse microorganisms are 
an important player in driving nitrogen conversion and its cycling 
processes (Mellado and Vera, 2021; Sheng et  al., 2023). 
Microorganisms such as nitrogen-fixing bacteria and cyanobacteria 
can convert atmospheric N2 into bioavailable forms such as ammonia 
and nitrate, supplying the wetland ecosystem with available nitrogen 
(Bae et al., 2018). It has been found that the efficiency and rate of 

FIGURE 2

Methane production and transformation by wetland microorganisms.
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nitrogen fixation are usually positively correlated with the number and 
diversity of microorganisms such as nitrogen-fixing bacteria (Li 
H. et  al., 2022). On the other hand, some microorganisms (e.g., 
anaerobic ammonia-oxidizing bacteria, ammonia-oxidizing archaea, 
and denitrifying anaerobic methane-oxidizing bacteria) are also 
present in FWs, involved in key nitrogen transformation processes 
such as ammonia oxidation, nitrification and denitrification (Chen 
et  al., 2020). These microorganisms differ in their tolerance and 
sensitivity to environmental factors, and a high diversity of 
microorganisms can provide different kinds of microbial functional 
groups, improving the adaptability and stability of FWs to 
environmental changes and maintaining the relative stability of the 
nitrogen cycle (Hu et al., 2017).

5 Impacts and mechanisms of habitat 
change on biodiversity

Wetlands provide habitat for nearly 20% of the world’s species and 
are one of the most biodiversity-rich systems, however, they are under 
great pressure from human activities and climate change (Fang et al., 
2006). This is causing a large degree of degradation of FWs and 
affecting the biodiversity of ecosystems (Al-Obaid et al., 2017). Habitat 
changes have important effects on wetlands (Figure 3). Among these, 
habitat changes and alterations in food chains and interspecific 
relationships are the two main factors (Ohba et  al., 2019; Wang 
et al., 2021).

Habitat loss and fragmentation can result in the reduction and 
fragmentation of freshwater wetland areas, weakening the available 
area and connectivity of habitats for species, and these can directly lead 
to the reduction of the number and distribution range of some species, 

and consequently the decline of biodiversity (Jamin et al., 2020). For 
example, the size and connectivity of wetlands in Xin Jiang Wan Town, 
Shanghai, decreased with the accelerated urbanization of the area, 
leading to habitat loss and diversity reduction of wetland birds (Xu 
et al., 2018). Vascular plants in the wetlands of the canton of Zurich in 
eastern Switzerland became extinct as a result of the reduction of 
wetland connectivity and patch size under human activities (Jamin 
et al., 2020). In addition, the movement and migration of amphibians 
are limited when wetlands are fragmented, which may lead to the 
delayed extinction of these species (Gimmi et al., 2011).

Habitat change also affects wetland biodiversity by altering 
wetland food chains and interspecific relationships (Araújo et  al., 
2014). Previous studies have found that species richness of 
insectivorous birds in the Lampertheimer Altrhein area has decreased, 
due to the reducing food resources for insectivorous birds under 
agricultural intensification (Schrauth and Wink, 2018). The reduction 
in species richness and cover of plant communities during the 
degradation of the Ruoerge wetland has led to changes in the trophic 
structure of omnivores and algae, which in turn had a serious impact 
on the diversity of nematode communities (Wu et  al., 2017). In 
addition, biological invasions are recognized as one of the main 
drivers of biodiversity loss (Mazor et al., 2018). Habitat changes can 
promote the invasion and spread of non-native species (e.g., Spartina 
alterniflora), and these invasive species can disrupt the original food 
chains and interspecific relationships of ecosystems, thus leading to 
biodiversity reduction (Wang et al., 2021).

In addition, changes in environmental factors such as wetland 
water level and pollution have significant impacts on biodiversity. For 
example, during the degradation of wet marshes to meadows in the 
Sanjiang Plain, changes in wetland water level alter the living 
conditions of organisms, which in turn affects the diversity and 

FIGURE 3

Impacts of habitat change on biodiversity in FWs.
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community composition of plants and microorganisms (Sui et al., 
2017; Liping et al., 2020). The overuse of herbicides and pesticides in 
agricultural production activities has caused severe pollution of the 
Infranz wetlands in north-west Ethiopia, adversely affecting their 
biodiversity (Eneyew and Assefa, 2021).

6 Future prospects

Freshwater wetlands with high biodiversity play an extremely 
important role in maintaining the functional stability of wetland 
habitats. Many environmental drivers such as water level, water 
quality, soil properties, temperature, and biological drivers (e.g., plant/
microbial diversity) have important impacts on the functional stability 
of freshwater wetland ecosystems, but many in-depth studies are 
needed in the following aspects in the future:

 1. Changes in biodiversity can directly or indirectly regulate 
ecosystem processes, and biodiversity is the main determinant 
of maintaining ecosystem functional stability. Therefore, it is of 
great significance to investigate the relationship between 
biodiversity and functional stability. Nowadays, most studies 
on the functional stability and biodiversity of freshwater 
wetland have focused on small-scale scales and homogeneous 
habitats, ignoring the effects of spatial and temporal scales and 
environmental heterogeneity. Therefore, the study on the 
multi-scale integration and relationship between biodiversity 
and functional stability at different scales is important. This will 
help maintain the stability of freshwater ecosystems and 
provide theoretical support for the conservation of FWs.

 2. Many studies are about the response of habitat function to 
environmental and biological elements in the context of global 
change. Most studies agreed that high levels of biodiversity can 
better maintain the stability of habitat function. In addition, 
changes in environmental factors can indirectly affect ecosystem 
habitat function through biodiversity. Therefore, future research 
needs to focus on the mechanisms by which environmental and 
biological factors drive habitat function enhancement through 
community composition, species diversity, environmental 
heterogeneity and biological interactions.

7 Conclusion

Freshwater wetlands are one of the most biodiverse ecosystems, and 
abundant species has a significant impact on the habitat function of 

FWs. Many environmental factors are changing under global change 
and human activities, and these changes can either directly affect the 
stability of wetland habitat functions or indirectly affect habitat 
functions by altering the biodiversity of FWs. Our study analyzes the 
roles of environmental drivers maintaining the stability of wetland 
habitat functions, such as hydrology, temperature, and water quality, 
discusses the impacts of plant and microbial diversity on the functional 
stability of FWs, and further reveals the impacts and mechanisms of 
habitat changes on biodiversity. In general, biodiversity can promote the 
stability of habitat functions in FWs. However, most studies focus on 
small-scale scales and homogeneous habitats. Therefore, future studies 
on biodiversity and stability of habitat functions in FWs at large scales 
and non-homogeneous habitats still need to be further explored.
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