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Clostridioides difficile infection (CDI) is responsible for around 300,000 
hospitalizations yearly in the United States, with the associated monetary cost 
being billions of dollars. Gut microbiome dysbiosis is known to be  important 
to CDI. To the best of our knowledge, metatranscriptomics (MT) has only been 
used to characterize gut microbiome composition and function in one prior 
study involving CDI patients. Therefore, we utilized MT to investigate differences 
in active community diversity and composition between CDI+ (n  =  20) and 
CDI− (n  =  19) samples with respect to microbial taxa and expressed genes. 
No significant (Kruskal-Wallis, p  >  0.05) differences were detected for richness 
or evenness based on CDI status. However, clustering based on CDI status 
was significant for both active microbial taxa and expressed genes datasets 
(PERMANOVA, p  ≤  0.05). Furthermore, differential feature analysis revealed 
greater expression of the opportunistic pathogens Enterocloster bolteae 
and Ruminococcus gnavus in CDI+ compared to CDI− samples. When only 
fungal sequences were considered, the family Saccharomycetaceae expressed 
more genes in CDI−, while 31 other fungal taxa were identified as significantly 
(Kruskal-Wallis p  ≤  0.05, log(LDA)  ≥  2) associated with CDI+. We also detected a 
variety of genes and pathways that differed significantly (Kruskal-Wallis p  ≤  0.05, 
log(LDA)  ≥  2) based on CDI status. Notably, differential genes associated with 
biofilm formation were expressed by C. difficile. This provides evidence of 
another possible contributor to C. difficile’s resistance to antibiotics and frequent 
recurrence in vivo. Furthermore, the greater number of CDI+ associated fungal 
taxa constitute additional evidence that the mycobiome is important to CDI 
pathogenesis. Future work will focus on establishing if C. difficile is actively 
producing biofilms during infection and if any specific fungal taxa are particularly 
influential in CDI.
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1 Introduction

Hospital-acquired Clostridioides difficile infection (CDI) accounts 
for approximately 300,000 hospitalizations per year (Bobo et  al., 
2011) with mortality rates as high as 16.7% during outbreaks 
(Dubberke et al., 2008), and it has surpassed methicillin-resistant 
Staphylococcus aureus as the highest incidence hospital-acquired 
infection in the United States (Lessa et al., 2015), all resulting in 
billions of dollars in annual healthcare costs (Dubberke and Olsen, 
2012). Antibiotics remain the most important risk factor for CDI due 
to their mechanism of action lacking species-level specificity, with 
their broad impact on gut ecology creating an intestinal dysbiosis in 
which C. difficile has a selective advantage for population growth 
(Aslam et al., 2005; Shivashankar et al., 2014). Antibiotics are also the 
most common intervention for CDI, with unacceptably high 
recurrence rates of 15%–30% after first treatment, representing 
another manifestation of their causal influence in creating gut 
microbial environments that promote this disease state (Choi et al., 
2011). These observations underscore the importance of gut dysbiosis 
in the pathogenesis of CDI, which has implications both for disease 
prevention and disease treatment. A more precise understanding of 
the dysbiosis of CDI may, therefore, impact the prevention and 
treatment of this disease.

The majority of microbiome studies on CDI have used amplicons 
(16S rRNA and/or ITS) to characterize the dominant microbial 
communities in CDI (Antharam et al., 2013; Sangster et al., 2016; 
Lamendella et al., 2018; Zuo et al., 2018). However, the studies that 
relied solely on 16S rRNA data were unable to comment on the 
possible role of fungi in the pathogenesis of CDI. More recent 
investigations, including several by our team, suggest that fungi may 
have a role in CDI (Lamendella et al., 2018; Markey et al., 2018; 
Stewart et al., 2019). These data suggest that pre-colonization of mice 
with C. albicans lowers their susceptibility to CDI (Markey et al., 
2018). Several human cohort studies also demonstrate the consistent 
presence of fungi, especially C. glabrata, in patients with CDI, while 
CDI− patients with diarrhea and comparable antibiotic exposures 
lack this fungal enrichment (Lamendella et al., 2018; Stewart et al., 
2019). Furthermore, while predictive functional tools exist, namely 
PICRUSt2 (Douglas et al., 2020) and Tax4Fun2 (Wemheuer et al., 
2020), 16S rRNA and ITS data do not allow for the direct detection 
of expressed genes, and neither of those tools provide any 
information on which of the predictive functions were likely 
being expressed.

Shotgun metagenomics can directly detect genes, but it does not 
distinguish between genes that were expressed vs. those that were 
only present. In contrast, metatranscriptomics (MT) both overcomes 
limitations associated with amplicon sequencing and allows us to 
focus on transcriptionally active microbes, as well as the genes they 
were expressing. Therefore, we once more utilized MT sequencing to 
characterize microbial communities within the context of CDI. In 
this study, we  sought to examine potential differences in overall 
community diversity and identify differentially active microbes and 
differentially expressed functions based on CDI status. Additionally, 
building on previous work, we were able to link specific genes and 
pathways to fungal expression. Despite only having information on 
CDI status, we  were able to detect multiple differences in active 
community composition and function, which seem to have remained 
consistent regardless of possible confounding variables.

2 Materials and methods

2.1 Sample collection

The Institutional Review Board at the University of Virginia 
approved this study (IRB-HSR# 21646) with waiver of consent, as 
samples were de-identified remnants. Diarrheal samples from CDI+ 
(n = 20) and CDI− (n = 20) patients collected by the University of 
Virginia Medical Center between September 2019 and August 2020. 
CDI was diagnosed based on the presence of a conserved sequence of 
the tcdB gene, as determined by Xpert® C. difficile assay (Cepheid, 
Sunnyvale, CA, United States). To be included in the study, patients 
had to be at least 18 years old. Samples were stored in a −80°C freezer 
after collection until further processing.

2.2 RNA extraction, library preparation, and 
sequencing

RNA was extracted from samples using the ZymoBIOMICS RNA 
Miniprep Kit (Zymo Research, Irvine, CA, United States) according 
to the manufacturer’s protocol with the following exceptions: 1 volume 
of lysis buffer was used, the optional DNase I treatment was completed, 
and extracts were eluted with 50 uL of DNase/RNase free water. After 
extraction, quantification was conducted using an Invitrogen Qubit 4 
Fluorometer and Qubit RNA High Sensitivity Assay Kit (ThermoFisher 
Scientific, Waltham, MA, United States).

RNA was then processed to make MT libraries using the NEBNext 
Ultra II RNA Library Prep Kit for use with Illumina (New England 
Biolabs, Ipswich, MA, United States), which utilizes a random priming 
approach for reverse transcription. The protocol specifically for use 
with purified mRNA was followed. Depletion of rRNA was 
not performed.

Libraries were quality checked using an Agilent 2100 Bioanalyzer 
and DNA High Sensitivity kit. Results from these steps were used to 
pool samples in an equimolar ratio. The pool was then gel purified 
using a 2% agarose gel and the Qiagen QIAquick gel extraction kit 
(Qiagen, Germantown, MD, United States). Following purification, 
the pool was sequenced using an Illumina NextSeq 550 platform to 
produce 2 × 150 bp reads by Wright Labs LLC (Huntingdon, PA, 
United States).

2.3 Bioinformatics and statistical analyses

2.3.1 Quality checking and sequence annotation
Quality was checked in the raw sequence data using VSEARCH 

(Rognes et al., 2016). Following initial quality evaluation, fastp (Chen 
et al., 2018) was used to filter the data with a sliding window of 4 with 
a minimum average Phred Q score of 20  in which a window not 
meeting the average would result in the window as well as the 
remainder of the sequence being dropped. Sequences shorter than 
90 bp after filtering were discarded.

Kraken2 (Wood et  al., 2019) was subsequently used to 
taxonomically annotate the remaining sequences with a database, 
including its standard libraries, as well as fungi. Species-level 
annotations were then collated into a table for use with downstream 
analyses. Counts for the species Homo sapiens were excluded to avoid 
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human contamination impacting results. Another table was created 
by subsetting the full species table to only include fungal species.

The Kraken2-annotated sequences, except for those identified 
as Homo sapiens, were paired with PEAR (Zhang et al., 2014) and 
dereplicated with VSEARCH. Emapper v2.0 (Huerta-Cepas et al., 
2017) using the eggNOG 5.0 database (Huerta-Cepas et al., 2019) 
was run on the dereplicated sequences. Hits against KEGG 
Orthologs (KOs) were used to create a table of reads per kilobase 
(rpk) values for downstream analysis. During table creation, the 
counts were rpk normalized by dividing sequence occurrences by 
three times the respective length of the protein they were annotated 
as (to convert from amino acid length to nucleotide length) and 
multiplying the quotient by 1,000. The full KOs table was subsetted 
to create another table containing only annotations of 
fungal sequences.

Additionally, a fifth dataset containing predicted metabolites 
based on the paired filtered data was created for use with LEfSe 
analysis (Segata et al., 2011). The filtered paired sequences were used 
with HUMAnN3 (Beghini et  al., 2021) to generate UniRef90 
annotations as input for MelonnPan (Mallick et al., 2019) predicted 
metabolite analysis using their pre-trained model (Franzosa et al., 
2019). The “Unmapped” row was removed from the table, and 
UniRef90 counts were converted to relative abundances prior to 
MelonnPan analysis.

In total, five datasets were generated and used for all subsequent 
analyses: total active species, fungal active species, total expressed 
genes, fungal expressed genes, and predicted metabolites. Of the five, 
total active species and total expressed genes were used with all 
subsequent analyses, while the other three were only used for 
differential feature analysis. One sample (73) was omitted from all 
analyses due to yielding fewer than 500,000 raw sequences.

2.3.2 Alpha diversity analysis
Alpha diversity was calculated by subsampling the active 

microbial taxa and expressed genes dataset tables at 10 different 
depths, ranging from 99,000 to 990,000 for the active microbial species 
dataset (Supplementary Figure S1) and 590 to 5,900 for the expressed 
genes dataset (Supplementary Figure S2). A single sample (68) was 
omitted from alpha diversity analyses with the microbial taxa dataset 
to facilitate a higher rarefaction depth as opposed to having to use a 
maximum depth of 117,600 instead to retain it. Twenty iterations were 
performed at each depth to obtain average alpha diversity values for 
the different metrics [Observed Features and Pielou’s Evenness 
(Pielou, 1966)]. Averages for the greatest depth were used to see if any 
alpha diversity metrics differed significantly based on CDI status 
(Kruskal-Wallis, p ≤ 0.05) with QIIME2 (Bolyen et al., 2019).

2.3.3 Beta diversity analysis
Beta diversity analyses were conducted after the tables had first 

undergone counts per million normalization to mitigate differences 
between samples based on sequencing depth. The Bray-Curtis distance 
metric (Sørensen, 1948) was used to create a distance matrix for both 
datasets. The resulting distance matrices were visualized as Principal 
Coordinates Analysis plots with 95% confidence intervals around the 
centroids using the ggordiplot package (Quensen, 2020) through R (R 
Core Team, 2023). Statistical differences between sample groupings 
based on CDI status were evaluated as well (PERMANOVA, p ≤ 0.05) 
through QIIME2.

2.3.4 Differential feature analysis
Differential feature analysis was performed using LEfSe (Segata 

et  al., 2011) to identify features (genes, pathways, predicted 
metabolites, and taxa) that had significantly different abundances 
based on CDI status. For all datasets, the table was normalized with 
the counts per million (CPM) method. Only features identified as 
having significantly differential abundance (Kruskal-Wallis, 
p ≤ 0.05) with a log(LDA) score of at least 2.0 were considered to 
be  enriched, with the exception of the predicted metabolites 
dataset in which features only had to differ significantly based on 
Kruskal-Wallis. Levene’s test was performed using the rstatix 
package (Kassambara, 2020) in R with CPM-normalized values for 
differential features identified within the active microbial species 
dataset, as several of the most differential taxa seemed to 
be highly variable.

SparseDossa2 (Ma et al., 2021) was used to simulate 1,000 tables 
with various minimum fold change differences for the active microbial 
taxa and expressed genes datasets in order to assess the corresponding 
change required to achieve 80% power for LEfSe to detect significant 
features. Each simulated table consisted of 39 samples, split into two 
groups of sizes 19 and 20, and was based on a SparseDossa2 model 
fitted for the respective data type.

For every simulation, the active microbial taxa simulated 
tables used 17 of the 346 species (5%) that were present in at least 
30% of the samples with a minimum average relative abundance 
of 0.01% to model differential features and 76 of the 1,515 KOs 
(5%) meeting those requirements were used for each simulation 
based on the expressed genes dataset. Simulated samples had an 
average depth of 10,000,000 for both the active microbial taxa and 
expressed genes datasets. All simulated tables were 
CPM-normalized prior to being used as input for LEfSe and 
subject to the same criteria as the observed data to be considered 
differential. Differential features associated with the expected 
group were counted as true positives.

2.3.5 Differential contributors analysis
The stratified gene contribution table was subsetted to include 

only genes of interest. The rpk-normalized values were then converted 
to relative abundances such that for each sample, the values of the taxa 
contributing to the gene(s) of interest summed to 100. Wilcoxon rank 
sum tests were then used to assess the significance of differences in 
relative contribution based on CDI status.

2.3.6 Machine learning
Random forest models were created to assess how well the features 

identified as differential by LEfSe could be used to predict CDI status 
compared to models trained on the full datasets. The models were 
generated with Scikit-learn in Python based on 500 decision trees 
(Pedregosa et  al., 2011). They were evaluated using k-fold cross-
validation with five repetitions of 10 folds. The datasets used for model 
creation include the full species datasets and the species identified as 
differential by LEfSe. Those two datasets were used to generate 
additional models after excluding Clostridioides difficile. Models were 
also generated using the full genes dataset and the genes identified as 
differential. All datasets were subject to CPM normalization prior to 
model creation. Feature importance was evaluated using Gini 
importance, and the 10 most important features were plotted for 
all models.
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2.3.7 CoNet analysis
Cooccurrence networks for the active microbial taxa datasets were 

generated with CoNet (Faust and Raes, 2016) in Cytoscape (Shannon 
et  al., 2003), using automatic thresholds for Spearman correlation 
(Spearman Rank Correlation Coefficient, 2008), Bray-Curtis (Sørensen, 
1948), and Kullback–Leibler (Kullback and Leibler, 1951), with an edge 
selection parameter of 100 and a minimum occurrence of 10 samples 
for a feature to be considered. The p-values from the individual methods 
were combined with the Brown method (Brown, 1975), and Benjamini-
Hochberg (Benjamini and Hochberg, 1995) p-value correction was 
performed with a cutoff of 0.05 for significance. Networks were created 
for CDI+ Total Active Species and CDI− Total Active Species datasets 
and then juxtaposed using CytoGEDEVO (Malek et al., 2016).

3 Results

3.1 Description of sequencing results

In total, 40 samples were subjected to MT sequencing, yielding 
759,555,378 raw sequences, and after quality filtration, 639,700,992 

sequences remained. Of those samples, 39 (CDI + =20, CDI− = 19) 
had enough data for downstream analysis after quality filtering (range 
942,194–82,265,454 sequences per sample, Figure 1).

3.2 Richness and evenness

Pielou’s evenness values within the expressed genes dataset tended 
to be higher in CDI− samples compared to the CDI+ cohort, though 
the difference was not significant (Table 1). Overall, alpha diversity 
was variable among samples but did not differ significantly between 
CDI+ and CDI− for the active microbial taxa or expressed genes 
datasets based on either the Pielou’s evenness or Observed Features 
metrics (Figure 2).

3.3 Differential active microbial 
communities

Significant clustering based on CDI status was observed for both 
active taxa and expressed gene datasets (PERMANOVA, p = 0.005 and 

FIGURE 1

Bar plots of sequencing results. The number of sequences retained after quality control (QC Pass), annotated as Bacteria (Bacteria), annotated as Fungi 
(Fungi), annotated as Homo sapiens (Human), and unidentified by Kraken2 (Unmapped) are shown. Raw sequence counts are shown on the y-axis. The 
x-axis shows individual samples. Each patient was associated with a single sample.
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p = 0.013, respectively; Figure 3). Subsequent LEfSe analysis identified 
the microbial taxa and KEGG Orthologs (KOs) driving 
differential clustering.

The commensal bacteria Clostridium butyricum, Lacticaseibacillus 
rhamnosus, and Roseburia intestinalis were the most differentially 
active microbial species in CDI− (Figure 4). However, variability in 
the expression of all three taxa within CDI− was relatively high 
(Supplementary Table S1). In contrast, though its corresponding LDA 
score was lower, Lactiplantibacillus plantarum was more consistently 
active in the CDI− samples (Supplementary Table S1).

Multiple butyrate producers were identified as being more active 
in CDI+, including Anaerostipes hadrus (Allen-Vercoe et al., 2012), 
Coproccocus comes (Louis and Flint, 2009), and Roseburia hominis 
(Louis and Flint, 2009), and all three were found to express genes 

within the Butanoate Metabolism pathway (ko00650) in this study. 
However, the taxa Clostridioides difficile, Enterocloster bolteae, and 
Ruminococcus gnavus were the three most differentially active species 
in CDI+ (Kruskal-Wallis, p ≤ 0.05, log(LDA) ≥ 3.0), with C. difficile 
being the most differential (Supplementary Figure S3). Clostridium 
scindens was also identified as being more active in CDI+.

When our microbial taxa table was subsetted to include only 
fungal taxa, the family Saccharomycetaceae was more active in CDI− 
samples (Figure 5). In contrast, 31 fungal taxa were more active in 
CDI+ (Supplementary Table S2). Several differential genes 
(Supplementary Table S3) and pathways (Supplementary Table S4) 
were also identified within the fungi functional gene datasets. 
However, we recovered relatively low numbers of fungal sequences 
(Supplementary Figure S4).

TABLE 1 Alpha diversity results for the Observed Features and Pielou’s evenness metrics.

Metric Dataset CDI− mean CDI+ mean H Kruskal-Wallis p-
value

Observed features Total active species 1188.278 (±91.799) 1431.865 (±98.996) 2.585 0.108

Observed features Total expressed genes 1297.142 (±68.824) 1245.733 (±56.513) 0.967 0.325

Pielou’s evenness Total active species 0.403 (±0.034) 0.464 (±0.014) 1.969 0.161

Pielou’s evenness Total expressed genes 0.838 (±0.023) 0.831 (±0.011) 3.651 0.056

Significance was evaluated using Kruskal-Wallis tests through QIIME2. Mean values with standard error are reported.

FIGURE 2

Alpha diversity values for the active composition and expressed genes datasets based on the Observed Features and Pielou’s Evenness metrics per 
sample. Samples are colored based on CDI status. Sample 68 was omitted from the active microbial species analyses to allow for a greater maximum 
rarefaction depth. (A) Observed Features within the active microbial species dataset. (B) Observed Features within the expressed genes dataset. 
(C) Pielou’s evenness within the active microbial species dataset. (D) Pielou’s evenness within the expressed genes dataset. Alpha diversity did not differ 
significantly (Kruskal-Wallis, p  ≤  0.05) based on CDI status within either dataset by either metric.
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More differential genes were identified within the CDI+ cohort in 
the total expressed genes dataset (CDI+ genes = 99, CDI− genes = 31), 
including several that were especially of interest due to their 
involvement with biofilm formation or sporulation and their 
expression by C. difficile (Table 2). However, a greater number of 
pathways were expressed associated as differential in CDI− 
(Supplementary Table S5). Interestingly, 22 of the genes more 
expressed in CDI+ code for ribosomal subunits 
(Supplementary Table S6). The most significantly different 
contributors to those genes were taxa significantly more active in 
CDI+ (Supplementary Table S7).

Clostridioides difficile was one of the taxa found to 
be significantly more critical to the expression of differential rRNA 
genes in CDI+ (Supplementary Table S7). It was also found to be a 
significantly more important contributor to the expression of three 
differential KOs related to spore formation in CDI+ 
(Supplementary Table S8). Likewise, Enterocloster bolteae 
contributed to the differential expression of two of those KOs 

(Supplementary Table S8). Similarly, though it was not associated 
with differential expression of those three spore formation KOs, 
Ruminoccocus gnavus expressed genes relating to spore formation 
as well. Clostridioides difficile also constituted a greater proportion 
of the expression of genes relating to biofilm formation in CDI+, 
specifically K03073 (SecE), K03075 (SecG), and K03666 (hfq; 
Supplementary Tables S9, S10). Clostridioides difficile and R. gnavus 
were also significantly more important to the expression of genes 
within the differential Flagellar Assembly (ko02040) in CDI+ 
(Supplementary Table S11). Additionally, C. difficile was identified 
as expressing the tcdB gene in three CDI+ samples (13, 19, and 5), 
albeit very few sequences were associated with both (1, 2, and 5 
sequences respectively).

Random forest modeling was used to help evaluate the consistency 
of features identified by LEfSe for differentiating samples based on 
CDI status, regardless of possible confounding factors. The 
performance of those models indicates that both microbial taxa and 
expressed genes identified by LEfSe differed consistently between 

FIGURE 3

PCoA plots of samples colored by CDI status with centroids shown within 95% confidence interval ellipses based on Bray-Curtis distances calculated 
with active microbial species (A) and expressed genes (B).

FIGURE 4

Bar plot of LEfSe results showing highly differential active species (LDA  ≥  3.0, Kruskal-Wallis p  ≤  0.05) based on CDI status. See Supplementary Table S1 
for all active taxa identified as differential by LEfSe.
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CDI+ and CDI–. Both random forest models using differential 
features (genes or species) had average accuracies of 84.2% (Table 3). 
As expected, the differential species model excluding C. difficile 
performed worse, but it still had a 9% greater average accuracy than 
the random forest model that was generated using all species. 
Likewise, the genes model had a 7% increase in average accuracy 
between the dataset containing all genes and the dataset containing 
only genes identified as differentially expressed by LEfSe. Additionally, 
eight of the 10 best predictors for the full species dataset were also 
identified as being predictive of CDI status by LEfSe (Figure  6). 
The best predictors for the other models are shown in 
Supplementary Figures S5–S9.

3.4 Cross domain interactions

Co-occurrence network analysis helped us model potential 
transkingdom interactions between bacteria and fungi with respect to 
CDI status. The networks revealed negative relationships between 
fungi and bacterial taxa in both CDI− and CDI+ networks. In the 
CDI− network, 18 fungi were present, with Nakaseomyces glabratus 
(formerly Candida glabrata) having negative correlations with 57 taxa, 
55 of which were bacteria (Figure 7). In contrast, N. glabratus was also 
entirely absent in the CDI+ network (Figure 7). Furthermore, the 
CDI+ network only had two fungi, Saccharomyces cerevisiae and 
Debaryomyces hansenii.

FIGURE 5

Bar plot of LEfSe results showing differential active fungal taxa (LDA  ≥  2.0, Kruskal-Wallis p  ≤  0.05) based on CDI status.

TABLE 2 Differential CDI+ KEGG Orthologs (KOs) of interest due to their potential to facilitate CDI recurrence.

KO Reason Total Samples Samples associated 
with C. difficile 

expression

K03073: preprotein translocase subunit SecE Biofilm formation 38 13

K03075: preprotein translocase subunit SecG Biofilm formation 36 15

K03666: host factor-I protein Biofilm formation 28 7

K06334: spore coat protein JC Sporulation 29 10

K06412: stage V sporulation protein G Sporulation 27 14

K06418: small acid-soluble spore protein A (major alpha-type SASP) Sporulation 29 21

The KOs listed here were all expressed by Clostridioides difficile in at least one sample. The number of samples that the KO was present in is reported in the “Total Samples” column, and the 
number of samples that it was identified as being expressed by C. difficile is reported in the “Samples Associated with C. difficile Expression” column.
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FIGURE 6

Bar plot of most important features for classification with random forest based on the full active microbial taxa dataset. Feature importance was 
measured by the decrease in impurity after splitting by the feature (Gini Importance). Pontibacter actiniarum and Butyrivibrio proteoclasticus were not 
identified as differential (LDA  ≥  2.0, Kruskal-Wallis p  ≤  0.05) by LEfSe.

3.5 Predictive metabolic modeling

Several predicted metabolites (n = 16) were found to 
be  significantly more abundant (Kruskal-Wallis, p ≤ 0.05; 
Supplementary Table S12) in CDI+ patients, including caproic acid 
(Figure 8). In addition, a secondary bile acid, lithocholic acid, was also 
predicted to be more abundant in CDI+. Fewer predicted metabolites 
(n = 6) were associated with CDI–.

4 Discussion

4.1 Microbiome differences

Although previous studies have noted significant differences in 
alpha diversity, those studies utilized 16S rRNA and ITS data to 
characterize microbial communities (Antharam et  al., 2013; 
Lamendella et al., 2018; Zuo et al., 2018). To the best of our knowledge, 

this study is the first to examine possible alpha diversity differences 
based on CDI status using MT data. However, these results are aligned 
with another study that compared CDI− diarrheal communities to 
CDI+ communities that also did not observe significant differences 
between those groups (Antharam et al., 2013).

Still, similar to other CDI microbiome studies (Lamendella et al., 
2018; Zuo et  al., 2018; Stewart et  al., 2019) overall community 
composition and gene expression differed significantly based on CDI 
status. The recapitulation of this finding is notable because these 
results indicate that both the active community members and the 
functions they express differ with respect to CDI status.

The species most strongly associated with CDI− samples are 
beneficial to human health. Specifically, both Clostridium butyricum 
and Roseburia intestinalis are butyrate producers (Hayashi et al., 2021; 
Nie et al., 2021). Similarly, the use of Lacticaseibacillus rhamnosus as 
a probiotic has been associated with increased butyrate production 
(Berni Canani et al., 2016; Lin et al., 2020; Carucci et al., 2022), and 
Clostridium and Roseburia genera are contained in a newly 

TABLE 3 Random forest classification accuracy.

Model input Average accuracy

All microbial species 69.5%

LEfSe identified differential species 84.2%

All microbial species without Clostridioides difficile 70.2%

LEfSe identified differential species without C. difficile 78.5%

All genes 77.2%

LEfSe identified differential genes 84.2%

Random forest modeling was performed using the scikit-learn package with Python.
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FDA-approved fecal microbiota capsule (SER-109) for use against 
recurrent CDI (Khanna et al., 2016). In the context of CDI, butyrate 
has been found to reduce inflammation and improve intestinal barrier 

function following C. difficile colonization (Fachi et  al., 2019). 
Roseburia intestinalis was most abundant in the healthy cohort in a 
study examining the gut microbiome of children based on CDI and 

FIGURE 7

Co-occurrence networks for CDI+ (A) and CDI− (B). Nodes are labeled by species name and colored by network presence. Edges showing positive 
correlations between the connected nodes are shown in green, and edges showing negative correlations are shown in red. Pairs of nodes that were 
only connected to each other were omitted from the final networks.

FIGURE 8

LEfSe bar plot showing differentially abundant predicted metabolites resulting from MelonnPan analysis (Kruskal-Wallis p  ≤  0.05) based on CDI status.
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hospitalization (IC vs. non-IC) status (Mohandas et  al., 2020). 
Additionally, multiple studies have found C. butryicum promotes 
resistance to C. difficile infection (Hagihara et al., 2021; Hayashi et al., 
2021), and it has been investigated as a possible treatment for CDI 
(Oka et  al., 2018; Lee et  al., 2022). Likewise, studies have found 
evidence administering Lactiplantibacillus plantarum as a probiotic 
may help prevent CDI (Klarin et al., 2008; Kujawa-Szewieczek et al., 
2015; Dudzicz et  al., 2018). Therefore, the higher activity of 
C. butryicum and L. plantarum in CDI− samples could have helped 
protect those patients against acquiring C. difficile.

Multiple butyrate producers were also identified as more active in 
CDI+. Although previous research has shown that butyrate was 
significantly reduced in CDI cohorts compared to healthy controls 
(Pensinger et  al., 2023), another study did not find a significant 
difference in butyrate producers (based on 16S rRNA analysis) in their 
diarrheal controls compared to CDI, while their healthy cohort had 
significantly more butyrate producers compared to their CDI and 
diarrheal control groups (Antharam et al., 2013). Therefore, since both 
CDI+ and CDI− groups in this study were comprised of diarrheal 
samples, differential gene expression attributed to butyrate producers 
in both is consistent with previous findings.

Interestingly, Clostridium scindens was also identified as being 
more active in CDI+. Clostridium scindens had previously been 
associated with resistance to CDI as a result of producing secondary 
bile acids (Buffie et al., 2015; Greathouse et al., 2015), but resistance 
may be contingent on the resulting concentration of deoxycholate 
(Dubois et al., 2019). Still, C. scindens has also been found to inhibit 
C. difficile growth independent of bile acid production (Aguirre et al., 
2021). Instead, the authors of that study suggested resistance could 
be due to competition for nutrients with C. difficile (Aguirre et al., 
2021). Therefore, though unexpected, if nutrient conditions were 
conducive to C. difficile growth in our CDI+ patients, increased 
activity of C. scindens could have also been favored.

Besides Clostridioides difficile, the other species most strongly 
associated with CDI+ are also known pathogens. Enterocloster bolteae 
has been previously noted to be an opportunistic pathogen and are 
also correlated with the expression of inflammatory genes (Pandit 
et  al., 2021). Similarly, Ruminococcus gnavus has been found to 
produce a glucorhamnan that causes inflammation (Henke et  al., 
2019). Additionally, Ruminoccocus gnavus was previously associated 
with CDI in another study that found several operational taxonomic 
units (OTUs) belonging to this species were more abundant in their 
CDI IBD group compared to the non-CDI IBD group and the healthy 
subjects (Sokol et al., 2017). Notably, Ruminococcus gnavus is a mucin 
degrader, and a previous study found C. difficile grown in the presence 
of MUC2 with mucin-degrading taxa also present had increased 
expression of genes associated with flagella (Engevik et al., 2021).

The larger number of fungal taxa associated with CDI+ aligns 
with previous studies that found fungal taxa were more abundant in 
CDI patients (Sangster et al., 2016; Lamendella et al., 2018; Stewart 
et al., 2019). Therefore, this study provides further evidence that the 
mycobiome may have an important impact on the pathogenesis of 
CDI. For instance, Encephalitozoon cuniculi, a species of fungi 
enriched in CDI+ patients, is a known opportunistic pathogen 
(Moretto et al., 2015). Conversely, the use of Saccharomyces boulardii, 
which is a part of the family Saccharomycetaceae (more active in 
CDI− patients), as a probiotic seems to reduce CDI-associated 
diarrhea (Goldenberg et al., 2017).

The relatively large number of differential KEGG Orthologs 
associated with ribosomal subunits was likely due to the taxa 
expressing them being more transcriptionally active in CDI+ samples 
because of other reasons, rather than a driving reason for increased 
activity themselves. Higher expression of genes coding for ribosomes 
has previously been correlated with an increase in activity for the 
microbes expressing them, though not consistently (Blazewicz et al., 
2013). Still, the relatively greater contribution of CDI+ differential taxa 
to these genes provides another line of evidence that they were more 
active in CDI+.

Clostridioides difficile is known to form spores during infection 
(Paredes-Sabja et al., 2014), which fits with the observation of it as a 
significantly more important contributor to the expression of three 
differential KOs related to spore formation in CDI+ in this study. 
Likewise, Enterocloster bolteae can form spores (Magdy Wasfy et al., 
2023) and contributed to the differential expression of two of those 
KOs (Supplementary Table S8). Similarly, though Ruminoccocus 
gnavus had historically been considered to be non-spore forming, 
more recent work has demonstrated that it can form spores under 
certain conditions (Crost et al., 2023). Therefore, it is possible that 
members of all three taxa could form spores in response to antibiotics, 
which may help explain their presence in CDI+ samples, as antibiotics 
are often used to treat CDI.

Both SecE and SecG have previously been proposed to 
be involved with C. difficile biofilm (Poquet et al., 2018). SecE and 
SecG have also been associated with biofilm formation in 
Staphylococcus aureus (Resch et  al., 2005) and Bifidobacterium 
longum (Zhang et  al., 2023) respectively. Therefore, although 
we did not recapture our previous finding of differential biofilm 
pathways (Stewart et  al., 2019), the observed overall increased 
expression of hfq, SecE and SecG and their expression by C. difficile 
in this study, as well as other genes relating to biofilm formation, 
provides further in vivo evidence that biofilm formation is involved 
in the pathogenesis of CDI. However, hfq, SecE, and SecG are also 
components of other pathways, and of the 21 KOs expressed by 
C. difficile that are associated with at least one biofilm formation 
pathway, only two are associated solely with biofilm formation 
(Supplementary Table S10). Therefore, future work is needed to 
confirm in vivo biofilm formation. Still, biofilm formation, if 
occurring, could help protect C. difficile from antibiotics and 
consequently, contribute to CDI’s high reoccurrence rate.

Two of the four pathways more expressed in CDI+ [Ethylbenzene 
Degradation (ko00642) and Flagellar Assembly (ko02040)] were also 
identified as being differentially expressed in our prior study (Stewart 
et al., 2019). Notably, the production of flagella has been associated 
with pathogen colonization (Rossez et  al., 2015), and C. difficile, 
E. bolteae, and Parabacteroides distasonis were significantly more 
important contributors to genes within that pathway in CDI+ 
(Supplementary Table S11). Like E. bolteae, P. distasonis is also an 
opportunistic pathogen (Ezeji et al., 2021). Therefore, the enrichment 
of the flagellar assembly pathway here was driven by the increased 
activity of potentially pathogenic bacteria.

Correlations between bacteria and fungi within CDI+ samples 
have been observed in other studies (Lamendella et al., 2018; Stewart 
et al., 2019). However, Lamendella et al., 2018 found no correlations 
between fungi and bacteria in CDI− (Lamendella et al., 2018), and 
Stewart et al., 2019 had only one unidentified fungi with a significant 
correlation to an unidentified Bacteroides OTU (Stewart et al., 2019). 
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Networks in both were based on ITS data, so the use of MT data here 
instead is a likely contributor to the differences in the prevalence of 
fungi in the CDI− network. Still, despite evidence of fungi’s 
importance to CDI pathogenesis, co-occurrence analysis itself did not 
identify a significant correlation between fungal species and C. difficile 
in this study or in either of those previous studies (Lamendella et al., 
2018; Stewart et al., 2019).

Caproic acid was previously detected in 41% of CDI+ fecal 
samples according to a gas chromatography study used to predict 
C. difficile (Levett, 1984). In contrast, lithocholic acid, also associated 
with CDI+ in this study, has previously been found to inhibit the 
growth of C. difficile (Kang et al., 2019). However, it is possible that 
lithocholic acid could have been more abundant in our CDI+ samples 
but still below a concentration that would have been lethal to 
C. difficile, and if so, then it is also possible that lithocholic acid could 
have induced biofilm formation, as was the case with deoxycholate in 
a previous study (Dubois et al., 2019). This possibility is supported by 
our observance of C. difficile expressing multiple genes related to 
biofilm formation.

Still, it should be noted that tools like MelonnPan are predictive 
metabolic modeling tools, and it is unknown whether the lithocholic 
acid metabolite was truly more abundant in our CDI+ samples. 
Consequently, directly measuring metabolites of interest like 
lithocholic acid and caproic acid, in conjunction with microbiome 
analysis, would be  valuable to further understanding how the 
abundance of metabolites previously associated with CDI relates to 
microbiome composition and function.

4.2 Limitations

Unfortunately, no information about antibiotic usage or 
clinical history was reported for the individuals used in this study. 
Previous work has shown that antibiotic usage in conjunction with 
CDI has a large impact on the host’s overall microbial community 
(Lamendella et  al., 2018). Specifically, in that study, the 
fidaxomicin and metronidazole groups had significant differences 
in alpha and beta diversity between CDI+ and CDI−, while the 
vancomycin group did not (Lamendella et al., 2018). Additionally, 
different taxa were detected as being significantly differential 
between CDI+/− depending on the antibiotic class (Lamendella 
et  al., 2018). Still, another study did not find a significant 
difference in alpha diversity within their CDI+ and CDI− groups 
when split by antibiotics exposure (Antharam et  al., 2013). 
However, it is possible that a differential usage of antibiotics could 
have impacted our results. Consequently, we limited much of our 
discussion to comparing the results obtained herein to previous 
CDI studies.

The failure to consistently capture sequences associated with both 
C. difficile and the gene used for diagnosis (tcdB) could also indicate 
our sequencing depth was not sufficient to fully capture all expressed 
genes in our samples. Additionally, due to the cost associated with MT, 
our sample size was smaller than some previous studies. Though, post 
hoc power analysis using SparseDossa2 showed we had reasonable 
(>80%) power to detect changes corresponding to at least 7.5 log2 fold 
change in the active species dataset and 4.5 log2 fold in the expressed 
genes dataset with LEfSe.

4.3 Conclusions and future directions

Despite antibiotic usage being a potentially large confounding 
variable, this work has contributed great value in characterizing 
active microbes and their associated functions in the context of 
CDI. To the best of our knowledge, MT analysis had only been 
applied to human samples associated with this disease state in a 
previous study by our group, in which it was used to identify 
differential genes and pathways (Stewart et al., 2019). Therefore, 
this study represents one of the first applications of MT to 
characterize differences in overall community diversity between 
CDI+ and CDI− cohorts. Although alpha diversity did not differ 
significantly, beta diversity for active species and expressed genes 
differentiated CDI+ and CDI− cohorts.

Subsequent differential feature analysis identified the specific 
genes and taxa driving those overall differences, revealing 
significant increases in the activity of several beneficial bacteria in 
CDI− and increased activity of taxa associated with inflammation 
in CDI+. Although the previous finding of differential biofilm 
formation pathways (Stewart et  al., 2019) was not recaptured, 
several specific genes associated with biofilm formation were 
identified as differentially expressed in CDI+, and C. difficile was 
identified as a contributor to them, serving as additional evidence 
for the role of biofilm formation in CDI pathogenesis. Biofilm 
formation during infection would help explain CDI’s high 
recurrence rate, and if that is the case, treatments designed to 
target biofilms specifically could be  effective for 
preventing reoccurrence.

Additionally, multiple fungal taxa were identified as being 
more transcriptionally active in CDI patients, which provides 
additional support for the potential importance of the mycobiome 
to CDI. Notably, E. cuniculi can cause inflammation, and increased 
inflammation due to it or other fungi could be one mechanism by 
which severe CDI could occur irrespective of bacterial toxin 
production. However, coverage for both E. cuniculi and fungi 
overall in this study tended to be  low. Determining if specific 
fungal taxa are important for preventing or enabling CDI could 
facilitate the use of additional treatment methods. The low 
proportion of CDI+ samples that had tcdB identified within them 
suggests that greater sequencing coverage would also be valuable 
for characterizing the functional capabilities of these microbial 
communities. Therefore, future work should include deeper 
metatranscriptomics sequencing in order to increase coverage of 
the entire microbial community.

Increasing fungal sequences specifically, either through overall 
increased sequencing depth or targeting sequencing, would also 
aid better understanding if fungal activity contributes to the 
pathogenesis of CDI. Likewise, the development of methods to 
increase the proportion of fungal nucleic acids recovered would 
similarly help facilitate investigations of fungi’s role in 
CDI. Additionally, future iterations of the CDI status model could 
theoretically be trained to differentiate non-C. difficile diarrhea 
with colonization from clinically-relevant C. difficile infection, as 
a means to reduce unnecessary anti-C. difficile antibiotic use 
(Polage et al., 2015). Metabolomics data would also be invaluable 
for further exploring the role that previously identified metabolites 
of interest play in CDI.
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